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Chapter 1 

The Worlds of Database 
Systems 

Databases today are essential to every business. They are used to maintain 
internal records, to present data to customers and clients on the Mbrld-Wide- 
Web, and to support many other commercial processes. Databases are likewise 
found at  the core of many scientific investigations. They represent the data 
gathered by astronomers, by investigators of the human genome, and by bio- 
chemists exploring the medicinal properties of proteins, along with many other 
scientists. 

The power of databases comes from a body of knowledge and technology 
that has developed over several decades and is embodied in specialized soft- 
ware called a database rnarlngement system, or DBAlS, or more colloquially a 
.'database system." .\ DBMS is a powerful tool for creating and managing large 
amounts of data efficiently and allowing it to persist over long periods of time, 
safely. These s\-stems are among the most complex types of software available. 
The capabilities that a DBMS provides the user are: 

1. Persistent storage. Like a file system, a DBMS supports the storage of 
very large amounts of data that exists independently of any processes that 
are using the data. Hoxever, the DBMS goes far beyond the file system in 
pro~iding flesibility. such as data structures that support efficient access 
to very large amounts of data. 

2. Programming ~nterface. .I DBMS allo~vs the user or an application pro- 
gram to awes> and modify data through a pon-erful query language. 
Again, the advantage of a DBMS over a file system is the flexibility to 
manipulate stored data in much more complex ways than the reading and 
writing of files. 

3. Transaction management. A DBMS supports concurrent access to data, 
i.e.: simultaneous access by many distinct processes (called "transac- 
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tions") at  once. To avoid some of the undesirable consequences of si- 
multaneous access, the DBMS supports isolation, the appearance that 
transactions execute one-at-a-time, and atomicity, the requirement that 
transactions execute either completely or not at all. A DBMS also sup- 
ports durability, the ability to recover from failures or errors of many 
types. 

1.1 The Evolution of Database Systems 

What is a database? In essence a database is nothing more than a collection of 
information that exists over a long period of time, often many years. In common 
parlance, the term database refers to a collection of data that is managed by a 
DBMS. The DBMS is expected to: 

1. Allow users to create new databases and specify their schema (logical 
structure of the data), using a specialized language called a data-definition 
language. 

2. Give users the ability to query the data (a "query" is database lingo for 
a question about the data) and modify the data, using an appropriate 
language, often called a query language or data-manipulation language. 

3. Support the storage of very large amounts of data - many gigabytes or 
more - over a long period of time, keeping it secure from accident or 
unauthorized use and allowing efficient access to the data for queries and 
database modifications. 

4. Control access to data from many users at once, without allo~ving the 
actions of one user to affect other users and without allowing sin~ultaneous 
accesses to corrupt the data accidentally. 

1.1.1 Early Database Management Systems 

The first commercial database management systems appeared in the late 1960's. 
These systems evolved from file systems, which provide some of item (3) above; 
file systems store data over a long period of time, and they allow the storage of 
large amounts of data. However, file systems do not generally guarantee that 
data cannot be lost if it is not backed up, and they don't support efficient access 
to data items whose location in a particular file is not known. 

Further: file systems do not directly support item (2), a query language for 
the data in files. Their support for (1) - a schema for the data - is linlited to 
the creation of directory structures for files. Finally, file systems do not satisfy 
(4). When they allow concurrent access to files by several users or processes, 
a file system generally will not prevent situations such as two users modifying 
the same file at  about the same time, so the changes made by one user fail to 
appear in the file. 
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The first important applications of DBMS's were ones where data was com- 
posed of many small items, and many queries or modification~ were made. Here 
are some of these applications. 

Airline Reservations Systems 

In this type of system, the items of data include: 

1. Reservations by a single customer on a single flight, including such infor- 
mation as assigned seat or med preference. 

2. Information about flights - the airports they fly from and to, their de- 
parture and arrival times, or the aircraft flown, for example. 

3. Information about ticket prices, requirements, and availability. 

Typical queries ask for flights leaving around a certain time from one given 
city to another, what seats are available, and at what prices. Typical data 
modifications include the booking of a flight for a customer, assigning a seat, or 
indicating a meal preference. Many agents will be accessing parts of the data 
at  any given time. The DBMS must allow such concurrent accesses, prevent 
problems such as two agents assigning the same seat simultaneously, and protect 
against loss of records if the system suddenly fails. 

Banking Systems 

Data items include names and addresses of customers, accounts, loans, and their 
balances, and the connection between customers and their accounts and loans, 
e.g., who has signature authority over which accounts. Queries for account 
balances are common, but far more common are modifications representing a 
single payment from, or deposit to, an account. 

.Is with the airline reservation system, we expect that many tellers and 
customers (through AT11 machines or the Web) will be querying and modifying 
the bank's data at once. It is \-ital that simultaneous accesses to an  account not 
cause the effect of a transaction to be lost. Failures cannot be tolerated. For 
example, once the money has been ejected from an ATJi machine, the bank 
must record the debit, even if the po~ver immediately fails. On the other hand, 
it is not permissible for the bank to record the debit and then not deliver the 
money if the po~x-er fails. The proper way to handle this operation is far from 
ob~ious  and can he regarded as one of the significant achievements in DBlIS 
architecture. 

Corporate  Records 

llany early applications concerned corporate records, such as a record of each 
sale, information about accounts payable and recei~able, or information about 
employees - their names, addresses: salary, benefit options, tax status, and 
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so on. Queries include the printing of reports such as accounts receivable or 
employees' weekly paychecks. Each sale, purchase, bill, receipt, employee hired, 
fired, or promoted, and so on, results in a modification to the database. 

The early DBMS's, evolving from file systems, encouraged the user to visu- 
alize data much as it was stored. These database systems used several different 
data models for describing the structure of the information in a database, chief 
among them the "hierarchical" or tree-based model and the graph-based "net- 
work" model. The latter was standardized in the late 1960's through a report 
of CODASYL (Committee on Data Systems and Languages).' 

A problem with these early models and systems was that they did not sup- 
port high-level query languages. For example, the CODASYL query language 
had statements that allowed the user to jump from data element to data ele- 
ment, through a graph of pointers among these elements. There was consider- 
able effort needed to write such programs, even for very simple queries. 

1.1.2 Relational Database Systems 

Following a famous paper written by Ted Codd in 1970,2 database systems 
changed significantly. Codd proposed that database systems should present 
the user with a view of data organized as tables called relations. Behind the 
scenes, there might be a complex data structure that allowed rapid response to 
a variety of queries. But, unlike the user of earlier database systems, the user of 
a relational system would not be concerned with the storage structure. Queries 
could be expressed in a very high-level language, which greatly increased the 
efficiency of database programmers. 

We shall cover the relational model of database systems throughout most 
of this book, starting with the basic relational concepts in Chapter 3. SQL 
("Structured Query Language"), the most important query language based on 
the relational model, will be covered starting in Chapter 6. However, a brief 
introduction to relations will give the reader a hint of the simplicity of the 
model, and an SQL sample will suggest how the relational model promotes 
queries written at  a very high level, avoiding details of "navigation" through 
the database. 

Example 1.1: Relations are tables. Their columns are headed by attributes, 
which describe the entries in the column. For instance, a relation named 
Accounts, recording bank accounts, their balance, and type might look like: 

accountNo I balance I type 
12345 
67890 

'GODASYL Data Base Task Group April 1971 Report, ACM, New York. 
'Codd, E. F., "A relational model for large shared data banks," Comrn. ACM, 13:6, 

pp. 377-387, 1970. 
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Heading the columns are the three attributes: accountNo, balance, and type. 
Below the attributes are the rows, or tuples. Here we show two t.uples of the 
relation explicitly, and the dots below them suggest that there would be many 
more tuples, one for each account at  the bank. The first tuple says that account 
number-12345 has a balance of one thousand dollars, and it is a savings account. 
The second tuple says that account 67890 is a checking account wit11 $2846.92. 

Suppose we wanted to know the balance of account 67690. We could ask 
this query in SQL as follows: 

SELECT balance 
FROM Accounts 
WHERE accountNo = 67890; 

For another example, we could ask for the savings accounts with negative bal- 
ances by: 

SELECT accountNo 
FROM Accounts 
WHERE type = 'savings' AND balance < 0; 

We do not expect that these two examples are enough to make the reader an 
expert SQL programmer, but they should convey the high-level nature of the 
SQL "select-from-where" statement. In principle, they ask the DBMS to 

1. Examine all the tuples of the relation Accounts mentioned in the FROM 
clause, 

2. Pick out those tuples that satisfy some criterion indicated in the WHERE 
clause, and 

3. Produce as an answer certain attributes of those tuples, as indicated in 
the SELECT clause. 

In practice. the system must "optimize" the query and find an efficient way to 
ansn-er the query, even though the relations in~olred in the query may be rery 
large. 0 

By 1990. relational database systems were the norm. Yet the database field 
continues to evolve. and new issues and approaches to the management of data 
surface regularlj-. In the balance of this section, we shall consider some of the 
modern trends in database systems. 

1.1.3 Smaller and Smaller Systems 
Originally, DBJIS's were large, expensive softn-are systems running on large 
computers. The size was necessary, because to store a gigabyte of data required 
a large computer system. Today, many gigabytes fit on a single disk, and 
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it is quite feasible to run a DBMS on a personal computer. Thus, database 
systems based on the relational model have become available for even very small 
machines, and they are beginning to appear as a common tool for computer 
applications, much as spreadsheets and word processors did before them. 

1.1.4 Bigger and Bigger Systems 

On the other hand, a gigabyte isn't much data. Corporate databases often 
occupy hundreds of gigabytes. Further, as storage becomes cheaper people 
find new reasons to store greater amounts of data. For example, retail chains 
often store terabytes (a terabyte is 1000 gigabytes, or 101%ytes) of information 
recording the history of every sale made over a long period of time (for planning 
inventory; we shall have more to say about this matter in Section 1.1.7). 

Further, databases no longer focus on storing simple data items such as 
integers or short character strings. They can store images, audio, video, and 
many other kinds of data that take comparatively huge amounts of space. For 
instance, an hour of video consumes about a gigabyte. Databases storing images 
from satellites can involve petabytes (1000 terabytes, or 1015 bytes) of data. 

Handling such large databases required several technological advances. For 
example, databases of modest size are today stored on arrays of disks, which are 
called secondary storage devices (compared to main memory, which is "primary" 
storage). One could even argue that what distinguishes database systems from 
other software is, more than anything else, the fact that database systems 
routinely assume data is too big to fit in main memory and must be located 
primarily on disk at all times. The following two trends allow database systems 
to deal with larger amounts of data, faster. 

Tertiary Storage 

The largest databases today require more than disks. Several kinds of tertiary 
storage devices have been developed. Tertiary devices, perhaps storing a tera- 
byte each, require much more time to access a given item than does a disk. 
While typical disks can access any item in 10-20 milliseconds, a tertiary device 
may take several seconds. Tertiary storage devices involve transporting an 
object, upon which the desired data item is stored, to a reading device. This 
movement is performed by a robotic conveyance of some sort. 

For example, compact disks (CD's) or digital versatile disks (DVD's) may 
be the storage medium in a tertiary device. An arm mounted on a track goes 
to a particular disk, picks it up, carries it to a reader, and loads the disk into 
the reader. 

Parallel Computing 

The ability to store enormous volumes of data is important, but it would be 
of little use if we could not access large amounts of that data quickly. Thus, 
very large databases also require speed enhancers. One important speedup is 
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through index structures, which we shall mention in Section 1.2.2 and cover 
extensively in Chapter 13. Another way to process more data in a given time 
is to use parallelism. This parallelism manifests itself in various ways. 

For example, since the rate a t  which data can be read from a given disk is 
fairly low, a few megabytes per second, we can speed processing if we use many 
disks and read them in parallel (even if the data originates on tertiary storage, 
it is "cached on disks before being accessed by the DBMS). These disks may 
be part of an organized parallel machine, or they may be components of a 
distributed system, in which many machines, each responsible for a part of the 
database, communicate over a high-speed network when needed. 

Of course, the ability to move data quickly, like the ability to store large 
amounts of data, does not by itself guarantee that queries can be answered 
quickly. We still need to use algorithms that break queries up in ways that 
allow parallel computers or networks of distributed computers to make effective 

I use of all the resources. Thus, parallel and distributed management of very large 
! databases remains an active area of research and development; we consider some 
i 
I of its important ideas in Section 15.9. 

1.1.5 Client-Server and Multi-Tier Architectures 

Many varieties of modern software use a client-server architecture, in which 
requests by one process (the client) are sent to another process (the server) for 
execution. Database systems are no exception, and it has become increasingly 
common to divide the work of a DBMS into a server process and one or more 
client processes. 

In the simplest client-server architecture, the entire DBMS is a server, except 
for the query interfaces that interact with the user and send queries or other 
commands across to the server. For example, relational systems generally use 
the SQL language for representing requests from the client to the server. The 
database server then sends the answer, in the form of a table or relation, back 
to the client. The relationship between client and server can get more complex, 
especially when answers are extremely large. We shall have more to say about 
this matter in Section 1.1.6. 

There is also a trend to put more work in the client, since the server will 
be a bottleneck if there are many simultaneous database users. In the recent 
proliferation of system architectures in which databases are used to provide 
dynamically-generated content for Web sites, the two-tier (client-server) archi- 
tecture gives way to three (or even more) tiers. The DBMS continues to act 
as a server, but its client is typically an application server, which manages 
connections to the database, transactions, authorization, and other aspects. 
-4pplication servers in turn have clients such as Web servers, which support 
end-users or other applications. 
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1.1.6 Multimedia Data 

Another important trend in database systems is the inclusion of multimedia 
data. By "multimedia" we mean information that represents a signal of some 
sort. Common forms of multimedia data include video, audio, radar signals, 
satellite images, and documents or pictures in various encodings. These forms 
have in cornmon that they are much larger than the earlier forms of data - 
integers, character strings of fixed length, and so on - and of vastly varying 
size. 

The storage of multimedia data has forced DBMS's to expand in several 
ways. For example, the operations that one performs on multimedia data are 
not the simple ones suitable for traditional data forms. Thus, while one might 
search a bank database for accounts that have a negative balance, comparing 
each balance with the real number 0.0, it is not feasible to search a database of 
pictures for those that show a face that "looks like" a particular image. 

To allow users to create and use complex data operatiorls such as image- . 
processing, DBMS's have had to incorporate the ability of users to introduce 
functions of their own choosing. Oftcn, the object-oriented approach is used 
for such extensions, even in relational systems, which are then dubbed "object- 
relational." We shall take up object-oriented database programming in various 
places, including Chapters 4 and 9. 

The size of multimedia objects also forces the DBXIS to rnodify tlie storage 
manager so that objects or tuples of a gigabyte or more can be accommodated. 
Among the many problems that such large elements present is the delivery of 
answers to queries. In a conventional, relational database, an answer is a set of 
tuples. These tuples would be delivered to the client by the database server as 
a whole. 

However, suppose the answer to a query is a video clip a gigabyte long. It is 
not feasible for the server to deliver the gigabyte to the cllent as a whole. For 
one reason it takes too long and will prevent the server from handling other 
requests. For another. the client may want only a small part of the fill11 clip, 
but doesn't have a way to ask for exactly what it wants ~vithout seeing the 
initial portion of the clip. For a third reason, even if the client wants the whole 
clip, perhaps in order to play it on a screen, it is sufficient to deliver the clip at 
a fised rate over the course of an hour (the amount of time it takes to play a 
gigabj te of compressed video). Thus. the storage system of a DBXS supporting 
multinledia data has to be prepared to deliver answcrs in an interactive mode. 
passing a piece of the answer to tlie client on r~qucst or at a fised rate. 

1.1.7 Information Integration 

As information becomes ever more essential in our work and play, Tve find that 
esisting information resources are being used in Inany new ways. For instance. 
consider a company that wants to provide on-line catalogs for all its products. so 
that people can use the World Wide 1Ti.b to hrolvse its products and place on- 

1.2. OVERVIE IV OF d DATABASE M.4NAGEkfEhrT SYSTEM 9 

line orders. .4 large company has many divisions. Each division may have built 
its own database of products independently of other divisions. These divisions 
nlav use different DBlIS's, different structures for information. perhaps even 
different terns to mean the same thing or the same term to mean different 
things. 

Example 1.2: Imagine a company with several divisions that manufacture 
disks. One division's catalog might represent rotation rate in revolutions per 
second, another in revolutions per minute. Another might have neglected to 
represent rotation speed at  all. .-I division manufacturing floppy disks might 
refer to them as "disks," while a division manufacturing hard disks might call 
thein "disks" as well. The number of tracks on a disk might be referred to as 
"tracks" in one division, but "cylinders" in another. 

Central control is not always the answer. Divisions may have invested large 
amounts of money in their database long before information integration across 
d- lrlsions .- was recognized as a problem. A division may have been an itide- 
pendent company. recently acquired. For these or other reasons. these so-called 
legacy databases cannot be replaced easily. Thus, the company must build some 
structure on top of tlie legacy databases to present to customers a unified view 
of products across the company. 

One popular approach is the creation of data warehouses. ~vhere inforrnatiorl 
from many legacy databases is copied. with the appropriate translation, to a 
ccritral database. -4s the legacy databases change. the warehouse is updated, 
hut not necessarily instantaneously updated. .A common scheme is for the 
warehouse to be reconstructed each night, when the legacy databases are likely 
to be less  bus^ 

The legacy databases are thus able to continue serving the purposes for 
which they Tvere created. Sew functions, such as providing an on-line catalog 
service through the \leb. are done at the data warehouse. \Ye also see data 
warehouses serving ~iceds for planning and analysis. For example. rompay  an- 
alysts may run queries against the warehouse looking for sales trends, in order 
to better plan inventory and production. Data mining, the search for interest- 
ing and unusual patterns in data, has also been enabled by the construction 
of data ~varel~ouses. and there are claims of enhanced sales through exploita- 
tion of patterns disrovered in this n-ay. These and other issues of inforlnation 
integration are discussed in Chaptc~ 20. 

1.2 Overview of a Database Management 
System 

In Fig. 1.1 n-e see an outline of a complete DBMS. Single boxes represent system 
components. while double boses represent in-memory data structures. The solid 
lines indicate control and data flow, while dashed lines indicate data flow only. 
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Since the diagram is complicated, we shall consider the details in several stages. 
First, at  the top, we suggest that there are two distinct sources of commands 
to the DBMS: 

1. Conventional users and application programs that ask for data or modify 
data. 

2. A database administrator: a person or persons responsible for the struc- 
ture or schema of the database. 

1.2.1 Data-Definition Language Commands 

The second kind of command is the simpler to process, and we show its trail 
beginning a t  the upper right side of Fig. 1.1. For example, the database ad- 
ministrator, or DBA, for a university registrar's database might decide that 
there should be a table or relation with columns for a student, a course the 
student has taken, and a grade for that student in that course. The DBX' 
might also decide that the only allowable grades are A, B, C, D, and F. This 
structure and constraint information is all part of the schema of the database. 
It is shown in Fig. 1.1 as entered by the DBB, who needs special authority 
to execute schema-altering commands, since these can have profound effects 
on the database. These schema-altering DDL commands ("DDL," stands for 
"data-definition language") are parsed by a DDL processor and passed to the 
execution engine, which then goes through the index/file/record manager to 
alter the metadata, that is, the schema information for the database. 

1.2.2 Overview of Query Processing 

The great majority of interactions with the DBMS follo\v the path on the left 
side of Fig. 1.1. A user or an application program initiates some action that 
does not affect the schema of the database, but may affect the content of the 
database (if the action is a modification command) or will extract data from 
the database (if the action is a query). Remember from Section 1.1 that the 
language in which these commands are expressed is called a data-manipulation 
language (DML) or somewhat colloquially a query language. There are many 
data-manipulation languages available, but SQL, which \\*as mentioned in Es- 
ample 1.1, is by far the most commonly used. Dl IL  statements are handled by 
two separate subsystems. as follo\vs. 

Answering the query 

The query is parsed and optimized by a querg compiler. The resulting gilery 

plan, or sequence of actions the DBMS will perform to answer the query, is 
passed to the execution engine. The execution engine issues a sequence of 
requests for small pieces of data, typically records or tuples of a relation, to a 
resource manager that knows about data Eles (holding relations), the format 
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and size of records in those files, and index files, which help find elements of 
data files quickly. 

The requests for data are translated into pages and these requests are passed 
to the bufler manager. We shall discuss the role of the buffer manager in 
Section 1.2.3, but briefly, its task is to bring appropriate portions of the data 
from secondary storage (disk, normally) where it is kept permanently, to main- 
memory buffers. Kormally, the page or "disk block" is the unit of transfer 
between buffers and disk. 

The buffer manager communicates with a storage manager to get data from 
disk. The storage manager might involve operating-system commands, but 
more typically, the DBMS issues commands directly to the disk controller. 

Transaction processing 

Queries and other DML actions are grouped into transactions, which are units 
that must be executed atomically and in isolation from one another. Often each . 
query or modification action is a transaction by itself. In addition, the execu- 
tion of transactions must be durable, meaning that the effect of any completed 
transaction must be preserved even if the system fails in some way right after 
completion of the transaction. U7e divide the transaction processor into two 
major parts: 

1. A concurrency-control manager, or scheduler, responsible for assuring 
atomicity and isolation of transactions, and 

2. A logging and recovery manager, responsible for the durability of trans- 
actions. 

We shall consider these component,s further in Section 1.2.4. 

1.2.3 Storage and Buffer Management 

The data of a database normally resides in secondary storage; in today's com- 
puter systems "secondary storage" generally means magnetic disk. However. to 
perform any useful operation on data, that data must be in main memory. It 
is the job of the storage manager to control the placement of data on disk and 
its movement between disk and main memory. 

In a simple database system. the storage manager might be nothing more 
than the file system of the underlying operating system. Ho~vever. for efficiency 
purposes, DBlIS's normally control storage 011 the disk directly at least under 
some circumstances. The storage manager keeps track of the locatioil of files on 
the disk and obtains the block or blocks containing a file on request from the 
buffer manager. Recall that disks are generally divided into disk blocks. which 
are regions of contiguous storage containing a large number of bytes, perhaps 
212 or 2'' (about 4000 to 16,000 bytes). 

The buffer manager is responsible for partitioning the available main mem- 
ory into buffers, which are page-sized regions into which disk blocks can be 
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transferred. Thus, all DBMS components that need information from the disk 
will interact with the buffers and the buffer manager, either directly or through 
the execution engine. The kinds of information that various components may 
need include: 

1. Data: the contents of the dcitabase itself. 

2. Metadata: the database schema that describes the structure of, and con- 
straints on, the database. 

3. Statistics: information gathered arid stored by the DBMS about data 
properties such as the sizes of, and values in, various relations or other 
components of the database. 

4. Indexes: data structures that support efficient access to the data. 

-1 more complete discussion of the buffer manager and its role appears in Sec- 
tion 15.7. 

1.2.4 Transaction Processing 

It is normal to group one or more database operations into 3 transaction, which 
is a unit of work that must be executed atomically and in apparent isolation 
from other transactions. In addition: a DBMS offers the guarantee of durability: 
that the n-ork of a conlpletccl transaction will never be lost. The transaction 
manager therefore accepts transaction commands from an application, which 
tell the transaction manager when transactions begin and end, as \veil as infor- 
mation about the expcctations of the application (some may not wish to require 
atomicit? for example). The transaction processor performs the follo~ving tasks: 

1. Logging: In order to assure durability. every change in the database is 
logged separately on disk. Thc log manager follo~vs one of several policies 
designed to assure that no matter \\-hen a system failure or ..crash" occurs, 
a recovery manager will be able to examine the log of changes and restore 
the database to some consistent state. The log manager initially writes 
the log in buffers ant1 negotiates ~vitli the buffer manager to make sure that 
buffers are 11-rittcn to disk (where data can survive a crash) a t  appropriate 
times. 

2. Concurrerjcy control: Transactions must appear to execute in isolation. 
But in iliost systems. there will in truth be niany transactions executing 
at  once. Thus. the scliedt~ler (concurrency-control manager) lilust assure 
that the individual actions of multiple transactions are executed in such 
an order that the net effect is the same as if the transactions had in 
fact executed in their entirety. one-at-a-time. A typical scheduler does 
its n-ork by maintaining locks on certain pieces of the database. These 
locks prevent t ~ w  transactions from accessing the same piece of data in 
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The ACID Properties of Transactions 

Properly implemented transactions are commonly said to meet the ".\CID 
test," where: 

"A" stands for "atomicity," the all-or-nothing execution of trans- 
actions. 

"I" stands for "isolation," the fact that each transaction must appear 
to be executed as if no other transaction is executing at the same 
time. 

"D" stands for "durability," the condition that the effect on the 
database of a transaction must never be lost, once the transaction 
has completed. 

The remaining letter, "C," stands for "consistency." That is, all databases ' 

have consistency constraints, or expectations about relationships among 
data elements (e.g., account balances may not be negative). Transactions 
are expected to preserve the consistency of the database. We discuss the 
expression of consistency constraints in a database scherna in Chapter 7, 
while Section 18.1 begins a discussion of how consistency is maintained by 
the DBMS. 

ways that interact badly. Locks are generally stored in a main-memory 
lock table, as suggested by Fig. 1.1. The scheduler affects the esecution of 
queries and other database operations by forbidding the execution engine 
from accessing locked parts of the database. 

3. Deadlock resohtion: As transactions compete for resources through the 
locks that the scheduler grants, they can get into a situation where none 
can proceed because each needs something another transaction has. The 
transaction manager has the responsibility to inter~ene and cancel (-roll- 
back" or "abort") one or more transactions to let the others proceed. 

1.2.5 The Query Processor 

The portion of the DBUS that most affects the performance that the user sees 
is the query processor. In Fig. 1.1 the query processor is represented b!- tn-o 
Components: 

1. The query compiler. which translates the query into an internal form called 
a query plan. The latter is a sequence of operations to be performed on 
the data. Often the operations in a query plan are implementations of 
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"relational algebra" operations, which are discussed in Section 5.2. The 
query compiler consists of three major units: 

(a) A query parser, which builds a tree structure from the textual form 
of the query. 

(b) A query preprocessor, which performs semantic checks on the query 
(e.g.; making sure all relations mentioned by the query actually ex- 
ist), and performing some tree transformations to turn the parse tree 
into a tree of algebraic operators representing the initial query plan. 

(c) -1 query optimizer, which transforxns the initial query plan into the 
best available sequence of operations on the actual data. 

The query compiler uses metadata and statistics about the data to decide 
which sequence of operations is likely to be the fastest. For example, the 
existence of an index, which is a specialized data structure that facilitates 
access to data, given values for one or more components of that data, can 
make one plan much faster than another. 

2. The execution engzne, which has the responsibility for executing each of 
the steps in the chosen query plan. The execution engine interacts with 
most of the other components of the DBMS, either directly or through 
the buffers. It must get the data from the database into buffers in order 
to manipulate that data. It needs to interact with the scheduler to avoid 
accessing data that is locked, and \\-it11 the log manager to make sure that 
all database changes are properly logged. 

1.3 Outline of Database-System Studies 

Ideas related to database systems can be divided into three broad categories: 

1. Design of databases. How does one develop a useful database? What kinds 
of information go into the database? How is the information structured? 
What assumptions arc made about types or values of data items? How 
do data items connect? 

2. Database progrcsm~ning. Ho\v does one espress queries and other opera- 
tions on the database? How does one use other capabilities of a DBMS, 
such as transactions or constraints, in an application? How is database 
progran~ming combined xith conventional programming? 

3. Database system implementation. How does one build a DBMS, including 
such matters as query processing. transaction processing and organizing 
storage for efficient access? 
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I 1 

I How Indexes Are Implemented I 
The reader may have learned in a course on data structures that a hash 
table is a very efficient way to build an index. Early DBMS's did use 
hash tables extensively. Today, the most common data structure is called 
a B-tree; the "B" stands for "balanced." A B-tree is a generalization of 
a balanced binary search tree. However, while each node of a binary tree 
has up to two children, the B-tree nodes have a large number of children. 
Given that B-trees normally reside on disk rather than in main memory, 
the B-tree is designed so that each node occupies a full disk block. Since 
typical systems use disk blocks on the order of 212 bytes (4096 bytes), 
there can be hundreds of pointers to children in a single block of a B-tree. 
Thus, search of a B-tree rarely involves more than a few levels. 

The true cost of disk operations generally is proportional to the num- 
ber of disk blocks accessed. Thus, searches of a B-tree, which typically 
examine only a few disk blocks, are much more efficient than would be a 
binary-tree search, which t,ypically visits nodes found on many different 
disk blocks. This distinction, between B-trees and binary search trees. is 
but one of many examples where the most appropriate data structure for 
data stored on disk is different from the data structures used for algorithms 
that run in main memory. 

1.3.1 Database Design 

Chapter 2 begins with a high-level notation for expressing database designs. 
called the entity-relationship model. We introduce in Chapter 3 the relational 
model, which is the model used by the most widely adopted DBhIS's, and which 
we touched upon briefly in Section 1.1.2. We show how to translate entity- 
relationship designs into relational designs, or "relational database schemas." 
Later, in Section 6.6, we show how to render relational database schemas for- 
mally in the data-definition portion of the SQL language. 

Chapter 3 also introduces the reader to the notion of "dependencies." which 
are formally stated assumptions about relationships among tuples in a relation. 
Dependencies allow us to improve relational database designs, through a process 
known as "normalization" of relations. 

In Chapter 4 we look at  object-oriented approaches to database design. 
There, we cover the language ODL, which allows one to describe databases in 
a high-level, object-oriented fashion. \Ye also look at ways in whicl~ object- 
oriented design has been combined with relational modeling, to yield the so- 
called "object-relational" model. Finally, Chapter 4 also introduces "semistruc- 
tured data" as an especially flexible database model, and we see its modern 
embodiment in the document language SML. 
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1.3.2 Database Programming 

Chapters 5 through 10 cover database programming. We start in Chapter 5 
with an abstract treatment of queries in the relational model, introducing the 
fanlily of operators on relations that form "relational algebra." 

Chapters 6 through 8 are devoted to SQL programming. As u-e mentionecl, 
SQL is the dominant query language of the day. Chapter 6 introduces basic 
ideas regarding queries in SQL and the expression of database schemas in SQL. 
Chapter 7 covers aspects of SQL concerning constraints and triggers on the 
data. 

Chapter 8 covers certain advanced aspects of SQL programming. First, 
while the simplest model of SQL programming is a stand-alone, generic query 
interface, in practice most SQL programming is embedded in a larger program 
that is written in a conventional language, such as C .  In Chapter 8 we learn 
how to connect SQL statements with a surrounding program and to pass data 
from the database to the program's variables and vice versa. This chapter also 
covers how one uses SQL features that specify transactions. connect clients to 
servers, and authorize access to databases by nonowners. 

In Chapter 9 we turn our attention to standards for object-oriented database 
programming. Here, we consider two directions. The first. OQL (Object 
Query Language), can be seen as an attempt to make C++, or other object- 
oriented programming languages, compatible with the demands of high-level 
database programming. The second, which is the object-oriented features re- 
cently adopted in the SQL standard. can be vial-ed as an attempt to make 
relational databases and SQL compatible with object-oriented programming. 

Finally, in Chapter 10, we return to the study of abstract query languages 
that we began in Chapter 5. Here, we study logic-based languages and see how 
they have been used to extend the capabilities of modern SQL. 

1.3.3 Database System Implementation 

The third part of the book concerns how one can implement a DBhlS. The 
subject of database system implementation in turn can be divided roughly into 
three parts: 

1. Storage management: how secondary storage is used effectively to hold 
data and allow it to be accessed quickly. 

2. Query processing: how queries expressed in a very high-level language 
such as SQL can be executed efficiently. 

3. Zkansaction management: how to support transactions with the ACID 
properties discussed in Section 1.2.4. 

Each of these topics is covered by several chapters of the book. 
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Storage-Management Overview 

Chapter 11 introduces the memory hierarchy. However, since secondary stor- 
age, especially disk, is so central to the way a DBMS manages data, we examine 
in the greatest detail the way data is stored and accessed on disk. The "block 
model" for disk-based data is introduced; it influences the way almost every- 
thing is done in a database system. 

Chapter 12 relates the storage of data elements - relations, tuples, attrib- 
ute-values, and their equivalents in other data models - to the requirements 
of the block model of data. Then we look a t  the important data structures 
that are used for the construction of indexes. Recall that an index is a data 
structure that supports efficient access to data. Chapter 13 covers the important 
one-dimensional index structures - indexed-sequential files, B-trees, and hash 
tables. These indexes are commonly used in a DBMS to support queries in 
which a value for an attribute is given and the tuples with that value are 
desired. B-trees also are used for access to a relation sorted by a given attribute. 
Chapter 14 discusses multidimensional indexes, which are data structures for 
specialized applications such as geographic databases, where queries typically 
ask for the contents of some region. These index structures can also support 
colnplex SQL queries that limit the values of two or more attributes, and some 
of these structures are beginning to appear in commercial DBMS's. 

Query-Processing Overview 

Chapter 15 covers the basics of query execution. IVe learn a number of al- 
gorithms for efficient implementation of the operations of relational algebra. 
These algorithms are designed to be efficient when data is stored on disk and 
are in some cases rather different from analogous main-memory algorithms. 

In Chapter 16 we consider the architecture of the query compiler'and opti- 
mizer. We begin with the parsing of queries and their semantic checking. Sext, 
we consider the conversion of queries from SQL to relational algebra and the 
selection of a logical query plan, that is, an algebraic expression that represents 
the particular operations to be performed on data and the necessary constraints 
regarding order of operations. Finally, we explore the selection of a physical 
query plan, in which the particular order of operations and the algorithm used 
to implement each operation have been specified. 

Transaction-Processing Overview 

In Chapter 17 we see how a DBMS supports durability of transactions. The 
central idea is that a log of all changes to the database is made. .Inything that 
is in main-memory but not on disk can be lost in a crash (say. if the power 
supply is interrupted). Therefore 1%-e have to be careful to move from buffer to 
disk, in the proper order, both the database changes themselves and the log of 
what changes were made. There are several log strategies available, but each 
limits our freedom of action in some ways. 
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Then, we take up the matter of concurrency control - assuring atomicity 
and isolation - in Chapter 18. We view transactions as sequences of operations 
that read or write database elements. The major topic of the chapter is how 
to manage locks on database elements: the different types of locks that may 
be used, and the ways that transactions may be allowed to acquire locks and 
release their locks on elements. Also studied are a number of ways to assure 
atomicity and isolation without using locks. 

Chapter 19 concludes our study of transaction processing. \Ye consider the 
interaction between the requirements of logging, as discussed in Chapter 17, and 
the requirements of concurrency that were discussed in Chapter 18. Handling 
of deadlocks, another important function of the transaction manager, is covered 
here as well. The extension of concurrency control to a distributed environment 
is also considered in Chapter 19. Finally, lve introduce the possibility that 
transactions are "long,' taking hours or days rather than milliseconds. X long 
transaction cannot lock data without causing chaos among other potential users 
of that data, which forces us to rethink concurrency control for applications that 
involve long transactions. 

1.3.4 Information Integration Overview 

Much of the recent evolution of database systems has been to~vard capabilities 
that allow different data sources. which may be databases and/or information 
resources that are not managed by a DBlIS. to n-ork together in a larger whole. 
K e  introduced you to these issues briefly. in S<,ction 1.1.7. Thus, in the final 
Chapter 20. we study important aspects of inforniation integration. n'e discuss 
the principal  nodes of integration. including translated and integrated copies 
of sources called a "data I\-arebouse." and ~ i r t u a l  '.viervs" of a collection of 
sources, through what is called a .'mediator." 

1.4 Summary of Chapter 1 

+ Database Management Systems: h DBlIS is characterized by the ability 
to support efficient access to large alnouIlts of data. which persists ox-er 
time. It is also cliaracterized by support for powerful query languages and 
for durable trarisactions that can execute concurrelltly in a manner that 
appears atolnic and independent of other transactions. 

+ Comparison TVtth File Systems: Con~cntional file systenis are inadequate 
as database systcms. bccausc they fail to support efficient search. efficient 
modifications to slnall pieces of data. colnplcs queries. controlled buffering 
of useful data in main memory. or atolnic and independent execution of 
transactions. 

+ Relational Database Systems: Today. most database systems are based 
on the relational model of data. ~vhich organizes information into tables. 
SQL is the language most often used in these systems. 
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+ Secondaq and Tertiary Storage: Large databases are stored on secondary 
storage devices, usually disks. The largest databases require tertiary stor- 
age devices, which are several orders of magnitude more capacious than 
disks, but also several orders of magnitude slower. 

+ Client-Seruer Systems: Database management systems usually support a 
client-server architecture, with major database components at  the server 
and the client used to interface with the user. 

+ Future Systems: Major trends in database systems include support for 
very large "multimedia" objects such as videos or images and the integra- 
tion of information from many separate information sources into a single 
database. 

+ Database Languages: There are languages or language components for 
defining the structure of data (data-definition languages) and for querying . 
and modification of the data (data-manipulation languages). 

+ Components of a DBMS: The major components of a database man- 
agement system are the storage manager, the query processor, and the 
transaction manager. 

+ The Storage Manager: This component is responsible for storing data, 
metadata (information about the schema or structure of the data), indeses 
(data structures to speed the access to data), and logs (records of changes 
to the database). This material is kept on disk. An important storage- 
management component is the buffer manager, which keeps portions of 
the disk contents in main memory. 

+ The Query Processor: This component parses queries, optiinizes them by 
selecting a query plan, and executes the plan on the stored data. 

+ The Transaction Manager: This component is responsible for logging 
database changes to support recovery after a system crashes. It also sup- 
ports concurrent execution of transactions in a way that assures atomicity 
(a transaction is performed either completely or not at  all), and isolation 
(transactions are executed as if there were no other concurrently esecuting 
transactions). 

1.5 References for Chapter 1 

Today, on-line searchable bibliographies coyer essentially all recent papers con- 
cerning database systems. Thus, in this book, we shall not try to be exhaustiye 
in our citations, but rather shall mention only the papers of historical impor- 
tance and major secondary sources or useful surveys. One searchable indes 

of database research papers has been constructed by Michael Ley [5]. Alf- 
Christian Achilles maintains a searchable directory of many indexes relevant to 
the database field [I]. 

While many prototype implementations of database systems contributed to 
the technology of the field, two of the most widely known are the System R 
project at IBAI Almaden Research Center [3] and the INGRES project at Berke- 
ley [7]. Each was an early relational system and helped establish this type of 
system as the dominant database technology. Many of the research papers that 
shaped the database field are found in [6]. 

The 1998 "Asilomar report" [4] is the most recent in a series of reports on 
database-system research and directions. It also has references to earlier reports 
of this type. 

You can find more about the theory of database systems than is covered 
here from [2], [8], and [9]. 

2. -1bitebou1, S., R. Hull, and V. Vianu, Foundations of Databases, Addison- 
\Vesley, Reading, M.4, 1995. 

3. 31. ?of. Astrahan et al., "System R: a relational approach to database 
management," ACM Tkans. on Database Systems 1:2, pp. 97-137, 1976. 

4. P. A. Bernstein et al., "The Asilomar report on database research," 
http://www.acm.org/sigmod/record/issues/9812/asilomar.html. 

5. http://~ww.informatik.uni-trier.de/'ley/db/index.html. A mir- 
ror site is found at http://www. acm. org/sigmod/dblp/db/index. html . 

6. Stonebraker, 11. and J. M. Hellerstein (eds.), Readings in Database Sys- 
tems, hforgan-Kaufmann. San Francisco, 1998. 

7. hi. Stonebraker, E. Wong, P. Kreps, and G. Held, "The design and imple- 
mentation of INGRES," ACM Trans. on Databme Systems 1:3, pp. 189- 
222, 1976. 

8. Ullman, J. D., Principles of Database and Knowledge-Base Systems, Vol- 
ume I, Computer Science Press, New l'ork, 1988. 

9. Ullman, J .  D.? Principles of Database and Knowledge-Base Systems, Vol- 
ume II, Computer Science Press, S e a  York, 1989. 



Chapter 2 

The Ent ity-Relat ionship 
Data Model 

The process of designing a database begins with an analysis of what informa- 
tion the database must hold and what are the relationships among components 
of that information. Often, the structure of the database, called the database 
schema, is specified in one of several languages or notations suitable for ex- 
pressing designs. After due consideration, the design is committed to a form in 
which it can be input to a DBMS, and the database takes on physical existence. 

In this book, we shall use several design notations. We begin in this chapter 
with a traditional and popular approach called the "entity-relationship" (E/R) 
model. This model is graphical in nature, with boxes and arrows representing 
the essential data elements and their connections. 

In Chapter 3 we turn our attention to the relational model, where the world 
is represented by a collection of tables. The relational model is somewhat 
restricted in the structures it can represent. However, the model is extremely 
simple and useful, and it is the model on which the major conlmercial DBMS's 
depend today. Often, database designers begin by developing a schema using 
the E/R or an object-based model, then translate the schema to the relational 
model for implementation. 

Other models are covered in Chapter 4.' In Section 4.2, we shall introduce 
ODL (Object Definition Language), the standard for object-oriented databases. 
Next, we see how object-oriented ideas have affected relational DBlfS's, yielding 
a niodel often called "object-relational." 

Section 4.6 introduces another modeling approach, called .'semistructured 
data." This model has an unusual amount of flexibility in the structures that the 
data may form. We also discuss, in Section 4.7, the XML standard for modeling 
data as a hierarchically structured document, using "tags" (like HTXIL tags) 
to indicate the role played by text elements. XML is an important embodiment 
of the semistructured data model. 

Figure 2.1 suggests how the E/R model is used in database design. We 
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Ideas - design schema 

Figure 2.1: The database modeling and implementation process 

start with ideas about the information we want to model and render them in 
the E/R model. The abstract E/R design is then converted to a schema in the 
data-specification language of some DBMS. Most commonly, this DBMS uses 
the relational model. If so, then by a fairly mechanical process that we shall 
discuss in Section 3.2, the abstract design is converted to a concrete, relational 
design, called a "relational database schema." 

It is worth noting that, while DBhlS's sometimes use a model other than 
relational or object-relational, there are no DBhlS's that use the E/R model 
directly. The reason is that this model is not a sufficiently good match for the 
efficient data structures that must underlie the database. 

2.1 Elements of the E/R Model 

The most common model for abstract representation of the structure of a 
database is the entity-relationship model (or E/R model). In the E/R model, 
the structure of data is represented graphically, as an "entity-relationship dia- 
gram," using three principal element types: 

1. Entity sets, 

2. Attributes, and 

3. Relationships. 

\.Ire shall cover each in turn. 

2.1.1 Entity Sets 

An entity is an abstract object of some sort, and a collection of similar entities 
forms an entity set. There is some similarity between the entity and an "object" 
in the sense of object-oriented programming. Likenise, an entity set bears some 
resemblance to a class of objects. However, the E/R model is a static concept. 
involving the structure of data and not the operations on data. Thus, one I\-ould 
not expect to find methods associated with an entity set as one would with a 
class. 

Example 2.1 : We shall use as a running example a database about movies, 
their stars, the studios that produce them, and other aspects of movies. Each 
movie is an entity, and the set of all movies constitutes an entity set. Likewise: 
the stars are entities, and the set of stars is an entity set. A studio is another 
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E/R Model Variations 

In some versions of the E/R model, the type of an attribute can be either: 

1. Atomic, as in the version presented here. 

2. A "struct," as in C, or tuple with a fixed number of atomic compo- 
nents. 

3. A set of values of one type: either atomic or a "struct" type. 

For example, the type of an attribute in such a model could be a set of 
pairs, each pair consisting of an integer and a string. 

kind of entity, and the set of studios is a third entity set that will appear in our 
examples. 

2.1.2 Attributes 

Entity sets have associated attributes, which are properties of the entities in 
that set. For instance, the entity set hfovies might be given attributes such 
as title (the name of the movie) or length, the number of minutes the movie 
runs. In our version of the E/R model, we shall assume that attributes are 
atomic values, such as strings, integers, or reals. There are other variations of 
this model in which attributes can have some limited structure; see the box on 
"E/R Model Variations." 

2.1.3 Relationships 

Relationships are connections among tn-o or more entity sets. For instance, 
if Movies and Stars are two entity sets, we could have a relationship Stars-in 
that connects movies and stars. The intent is that a movie entity m is related 
to a star entity s by the relationship Stars-in if s appears in movie rn. While 
binary relationships, those between two entity sets, are by far the most common 
type of relationship, the E/R model allos-s relationships to involve any number 
of entity sets. n'e shall defer discussion of these multiway relationships until 
Section 2.1.7. 

2.1.4 Entity-Relationship Diagrams 

An E/R diagram is a graph representing entity sets, attributes, and relation- 
ships. Elements of each of these kinds are represented by nodes of the graph, 
and we use a special shape of node to indicate the kind, as follo~vs: 
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Entity sets are represented by rectangles. 

Attributes are represented by ovals. 

Relationships are represented by diamonds. 

Edges connect an entity set to its attributes and also connect a relationship to 
its entity sets. 

Example 2.2 : In Fig. 2.2 is an E/R diagram that represents a simple database 
about movies. The entity sets are Movies, Stars, and Studios. 

Movies Stars 

/ \ 

rlorne 
o&,rls 

Studios 

oddress (3 
Figure 2.2: .In entity-relationship diagram for the movie database 

The Movies entity set has four attributes: title. year (in which the movie n-as 
made). length, and filmType (either .bcolor" or *'black.ind\\*hite"). The other 
two entity sets Stars and Studios happen to have the same two attributes: name 
and address, each with an obvious meaning. We also see two relationships in 
the diagram: 

1. Stars-in is a relationship connecting each movie to the stars of that movie. 
This relationship consequently also connects stars to the movies in which 
they appeared. 

2. Owns connects each movie to the studio that o m s  the movie. The arrow 
pointing to entity set Studios in Fig. 2.2 indicates that each niovie is 
owned by a unique studio. We shall discuss uniqueness constraints such 
as this one in Section 2.1.6. 
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2.1.5 Instances of an E/R Diagram 

E/R diagrams are a notation for describing the schema of databases, that is, 
their structure. A database described by an E/R diagram will contain particular 
data, which we call the database instance. Specifically, for each entity set, the 
database instance will have a particular finite set of entities. Each of these 
entities has particular values for each attribute. Remember, this data is abstract 
only; we do not store E/R data directly in a database. Rather, imagining this 
data exists helps us to think about our design, before we convert to relations 
and the data takes on physical existence. 

The database instance also includes specific choices for the relationships of 
the diagram. .A relationship R that connects n entity sets El, &, . . . ,En has 
an instance that consists of a finite set of lists (el, ez, . . . ,en), where each ei is 
chosen from the entities that are in the current instance of entity set Ei. \Ve 
regard each of these lists of n entities as "connected" by relationship R. 

This set of lists is called the relationship set for the current instance of R. 
It is often helpful to visualize a relationship set as a table. The columns of the 
table are headed by the names of the entity sets involved in the relationship, 
and each list of connected entities occupies one row of the table. 

Example 2.3 : An instance of the Stars-in relationship could be visualized as 
a table xvith pairs such as: 

Movies Stars 
Basic Ins t inc t  Sharon Stone 
Total Recall Arnold Schwarzenegger 
Total Recall Sharon Stone 

f The members of the relationship set are the rows of the table. For instance, 

(Basic Instinct, Sharon Stone) 

is a tuple in the relationship set for the current instance of relationship Stars-in. 

1 2.1.6 Multiplicity of Binary E/R Relationships 

In general: a binary relationship can connect any member of one of its entity 
sets to any number of members of the other entity set. However, it is common 
for there to be a restriction on the "multiplicity" of a relationship. Suppose R 
is a relationship connecting entity sets E and F. Then: 

If each member of E can be connected by R to at  most one member of F, 
then we say that R is many-one from E to F. Note that in a many-one 
relationship from E to F, each entity in F can be connected to many 
members of E. Similarly, if instead a member of F can be connected by 
R to at  most one member of E, then we say R is many-one from F to E 
(or equivalently, one-many from E to F). 
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If R is both many-one from E to F and many-one from F to E, then we 
say that R is one-one. In a one-one relationship an entity of either entity 
set can be connected to at  most one entity of the other set. 

If R is neither many-one from E to F or from F to E ,  then we say R is 
many-many. 

As we mentioned in Example 2.2, arrows can be used to indicate the multi- 
plicity of a relationship in an E/R diagram. If a relationship is many-one from 
entity set E to entity set F, then we place an arrow entering F.  The arrow 
indicates that each entity in set E is related to at  most one entity in set F. 
Unless there is also an arrow on the edge to E ,  an entity in F may be related 
to many entities in E. 

Example 2.4 : Following this principle, a one-one relationship between entity 
sets E and F is represented by arrows pointing to both E and F. For insbance, 
Fig. 2.3 shows two entity sets, Studios and Presidents, and the relationship 
Runs between them (attributes are omitted). We assume that a president can 
run only one studio and a studio has only one president, so this relationship is 
one-one, as indicated by the two arrows, one entering each entity set. 

Studios Presidertrs 

Figure 2.3: A one-one relationship 

Remember that the arrow means "at most one"; it does not guarantee es- 
istence of an entity of the set pointed to. Thus, in Fig. 2.3, we would expect 
that a "president" is surely associated with some studio; how could they be a 
"president" otherwise? However, a studio might not have a president at some 
particular time, so the arrow from Runs to Presidents truly means "at most one" 
and not "exactly one." \Ire shall discuss the distinction further in Section 2.3.6. 

2.1.7 Multiway Relationships 

The E/R model makes it convenient to define relationships involving more than 
two entity sets. In practice, ternary (three-way) or higher-degree relationships 
are rare, but they are occasionally necessary to reflect the true state of affairs. 
A multiway relationship in an E/R diagram is represented by lines from the 
relationship diamond to each of the involved entity sets. 

Example 2.5 : In Fig. 2.4 is a relationship Contracts that involves a studio, 
a star, and a movie. This relationship represents that a studio has contracted 
with a particular star to act in a particular movie. In general, the value of 
an E/R relationship can be thought of as a relationship set of tuples whose 
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- 
Implications Among Relationship Types 

We should be anrare that a many-one relationship is a special case of a 
many-many relationship, and a one-one relationship is a special case of a 
many-one relatior~ship. That is, any useful property of many-many rela- 
tionships applies to many-one relationships as well, and a useful property 
of many-one relationships holds for one-one relationships too. For exam- 
ple, a data structure for representing many-one relationships will work for 
one-one relationships, although it might not work for many-many relation- 
ships. 

Stars El Movies 

Studios ci: 
Figure 2.4: A three-way relationship 

components are the entities participating in the relationship, as we discussed in 
Section 2.1.5. Thus, relationship Contracts can be described by triples of the 
form 

(studio, star, movie) 

In multiway relationships, an arrow pointing to an &tity set E means that if 
rye select one entity from each of the other entity sets in the relationship, those 
entities are related to at most one entity in E. (Note that this rule generalizes 
the notation used for many-one, binary relationships.) In Fig. 2.4 we have an 
arrow pointing to entity set Studios, indicating that for a particular star and 
movie, there is only one studio with which the star has contracted for that 
movie. However, there are no arrows pointing to entity sets Stars or Movies. 
A studio may contract with several stars for a movie, and a star may contract 
with one studio for more than one movie. 

2.1.8 Roles in Relationships 
It is possible that one entity set appears two or more times in a single relation- 
ship. If so, we draw as many lines from the relationship to the entity set as the 
entity set appears in the relationship. Each line to the entity set represents a 
different role that the entity set plays in the relationship. J e  therefore label the 
edges between the entity set and relationship by names, which we call "roles." 
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Limits on Arrow Notation in Multiway Relationships 

There are not enough choices of arrow or no-arrow on the lines attached to 
a relationship with three or more participants. Thus, we cannot describe 
every possible situation with arrows. For instance, in Fig. 2.4, the studio 
is really a function of the movie alone, not the star and movie jointly, 
since only one studio produces a movie. However, our notation does not 
distinguish this situation from the case of a three-way relationship where 
the entity set pointed to by the arrow is truly a function of both other 
entity sets. In Section 3.4 we shall take up a formal notation - func- 
tional dependencies - that has the capability to describe all possibilities 
regarding how one entity set can be determined uniquely by others. 

Sequel 

Figure 2.5: X relationship with roles 

Example 2.6: In Fig. 2.5 is a relationship Sequel-of between the entity set 
Movies and itself. Each relationship is between two movies, one of which is 
the sequel of the other. To differentiate the two movies in a relationship, one 
line is labeled by the role Original and one by the role Sequel, indicating the 
original movie and its sequel, respectively. We assume that a movie may h a ~ e  
many sequels, but for each sequel there is only one original movie. Thus, the 
relationship is many-one from Sequel movies to Original movies. as indicated 
by the arrow in the E/R diagram of Fig. 2.5. 

Example 2.7: As a final example that includes both a multiway relationship 
and an entity set with multiple roles, in Fig. 2.6 is a more complex version of 
the Contracts relationship introduced earlier in Example 2.5. Xow, relationship 
Contracts involves two studios, a star, and a movie. The intent is that one 
studio, having a certain star under contract (in general, not for a particular 
movie), may further contract with a second studio to allow that star to act in 
a particular movie. Thus, the relationship is described by Ctuples of the form 

(studiol, studio2, star, movie)> 

meaning that studio2 contracts with studiol for the use of studiol's star by 
studio2 for the movie. 
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Movies El Stars u 
Studio Producing 
of star studio 

Figure 2.6: A four-may relationship 

Mre see in Fig. 2.6 arrows pointing to Studios in both of its roles, as "owner" 
of the star and as producer of the movie. However, there are not arrows pointing 
to Stars or Movies. The rationale is as follows. Given a star, a movie, and a 
studio producing the movie, there can be only one studio that "owns" the 
star. (We assume a star is under contract to exactly one studio.) Similarly, 
only one studio produces a given movie, so given a star, a movie, and the 
star's studio, we can determine a unique producing studio. Ncte that in both 
cases Ive actually needed only one of the other entities to determine the unique 
entity-for example, we need only know the movie to determine the bnique 
producing studio-but this fact does not change the multiplicity specification 
for the multiway relationship. 

There are no arrows pointing to Stars or Movies. Given a star, the star's 
studio, and a producing studio, there could be several different contracts allow- 
ing the star to act in several movies. Thus, the other three components in a 
relationship Ctuple do not necessarily determine a unique movie. Similarly, a 
producing studio might contract with some other studio to use more than one 
of their stars in one movie. Thus, a star is not determined by the three other 
components of the relationship. 

2.1.9 ~ttr ibutes  on Relationships 

Sometimes it is convenient, or even essential. to associate attributes with a 
relationship. rather than 11-ith any one of the entity sets that the relationship 
connects. For example, consider the relationship of Fig. 2.4, which represents 
contracts between a star and studio for a movie.' We might wish to record the 
salary associated with this contract. Ho~vever, we cannot associate it with the 
star; a star might get different salaries for different movies. Similarly, it does 
not make sense to associate the salary with a studio (they may pay different 

'Here, we h a ~ e  reverted to the earlier notion of three-way contracts in Example 2.5, not 
the four-way relationship of Example 2.7. 
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IvIUvleJ stars 1 
Corltracts 

Studios 

Figure 2.7: A relationship with an attribute 

salaries to different stars) or with a movie (different stars in a movie may receive 
different salaries). 

However, it is appropriate to associate a salary with the 

(star, movie, studio) 

triple in the relationship set for the Contracts relationship. In Fig. 2.7 n-e see 
Fig. 2.4 fleshed out with attributes. The relationship has attribute salary, n-hile 
the entity sets have the same attributes that we showed for them in Fig. 2.2. 

It is never necessary to place attributes on relationships. We can instead 
invent a new entity set, whose entities have the attributes ascribed to the rela- 
tionship. If we then include this entity set in the relationship, we can omit the 
attributes on the relationship itself. However, attributes on a relationship are 
a useful convention, which we shall continue to use where appropriate. 

Example 2.8: Let us revise the E/R diagram of Fig. 2.7, which has the 
salary attribute on the Contracts relationship. Instead, we create an entity 
set Salaries, with attribute salary. Salaries becomes the fourth entity set of 
relationship Contracts. The whole diagram is shown in Fig. 2.8. 

2.1.10 Converting Multiway Relationships to Binary 
There are some data models, such as ODL (Object Definition Language). ~vhich 
we introduce in Section 4.2, that limit relationships to be binary. Thus, while 
the E/R model does not require binary relationships, it is useful to observe that 
any relationship connecting more than two entity sets can be converted to a 
collection of binary, many-one relationships. n'e can introduce a new entity set 
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name address 223 
Figure 2.8: Moving the attribute to an entity set 

whose entities 1-e may think of as tuples of the relationship set for the multiway 
relationship. Ke call this entity set a cortnecting entity set. We then introduce 
many-one relationships from the connecting entity set to each of the entity sets 
that provide components of tuples in the original, multiway relationship. If an 
entity set plays more than one role, then it is the target of one relationship for 
each role. 

Example 2.9 : The four-way Contracts relationship in Fig. 2.6 can be replaced 
by an entity set that we may also call Contracts. As seen in Fig. 2.9, it partici- 
pates in four relationships. If the relationship set for the relationship Contracts 
has a 4-tuple 

(studiol, studio2, star, movie) 

then the entity set Contracts has an entity e. This entity is linked by relationship 
Star-of to the entity star in entity set Stars. It is linked by relationship Movie- 
of t o  the entity movie in Movies. It is linked to entities studiol and studio2 of 
Studios by 'relationships Studio-of-star and Producing-studio, respectively. 

Sote that we hare assumed there are no attributes of entity set Contracts, 
although the other entity sets in Fig. 2.9 have unseen attributes. Holyever, it is 
possible to add attributes. such as the date of signing, to entity set Contracts. 

2.1.11 Subclasses in the E/R Model 
Often, an entity set contains certain entities that have special properties not 
associated with all members of the set. If so, we find it useful to define certain 



34 C H A P T E R  2. T H E  ENTITY-RELATIONSHIP DATA iMODEL 

Stars 9 Movies P 

Figure 2.9: Replacing a multiway relationship by an entity set and binary 
relationships 

special-case entity sets, or subclasses, each with its own special attributes and/or 
relationships. We connect an entity set to its subclasses using a relationship 
called isa (i.e., "an A is a B" expresses an "isa" relationship from entity set .4 
to entity set B). 

.An isa relationship is a special kind of relationship, and to emphasize that 
it is unlike other relationships, we use for it a special notation. Each isa re- 
lationship is represented by a triangle. One side of the triangle is attached to 
the subclass, and the opposite point is connected to the superclass. Every isa 
relationship is one-one, although we shall not draw the two arrows that are 
associated with other one-one relationships. 

Example 2.10: Among the kinds of movies we might store in our example 
database are cartoons, murder mysteries, adventures, comedies, and many other 
special types of movies. For each of these movie types, we could define a 
subclass of the entity set Movies. For instance, let us postulate two subclasses: 
Cartoons and Murder-Mysteries. A cartoon has, in addition to the attributes 
and relationships of Movies an additional relationship called Votces that gives 
us a set of stars who speak, but do not appear in the movie. hifovies that are not 
cartoons do not have such stars. h~furder-mysteries h a ~ e  an additional attribute 
weapon. The connections among the three entity sets Movies, Cartoons, and 
Murder-Mysteries is shown in Fig. 2.10. 

While, in principle, a collection of entity sets connected by isa relationships 
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Parallel Relationships Can Be Different 

Figure 2.9 illustrates a subtle point about relationships. There are two dif- 
ferent relationships, Studio-of-Star and Producing-Studio, that each con- 
nect entity sets Contracts and Studios. We should not presume that these 
relationships therefore have the same relationship sets. In fact, in this 
case, it is unlikely that both relationships would ever relate the same con- 
tract to the same studios, since a studio would then be contracting with 
itself. 

hifore generally, there is nothing wrong with an E/R diagram having 
several relationships that connect the same entity sets. In the database, 
the instances of these relationships will normally be different, reflecting 
the different meanings of the relationships. In fact, if the relationship sets 
for two relationships are expected to be the same, then they are really the 
same relationship and should not be given distinct names. 

could have any structure, we shall limit isa-structures to trees, in which there 
is one root entity set (e.g., Movies in Fig. 2.10) that is the most general, with 
progressively more specialized entity sets extending below the root in a tree. 

Suppose we have a tree of entity sets, connected by isa relationships. A 
single entity consists of components from one or more of these entity sets, as 
long as those components are in a subtrce including the root. That is, if an 
entity e has a component c in entity set E,  and the parent of E in the tree is 
F, then entity e also has a component d in F. Further, c and d must be paired 
in the relationship set for the isa relationship from E to F. The entity e has 
rvhatever attributes any of its components has, and it participates in whatever 
relationships any of its components participate in. 

Example 2.11 : The typical movie; being neither a cartoon nor a murder- 
mystery, xvill have a component only in the root entity set Movies in Fig. 2.10. 
These entities have only the four attributes of Movies (and the two relationships 
of Movies - Stars-in and Owns - that are not shown in Fig. 2.10). 

X cartoon that is not a murder-mystery will have two components, one in 
Movies and one in Cartoons. Its entity ~vill therefore have not only the four 
attributes of dfovzes. but the relationship Voices. Likewise, a murder-mystery 
11-ill have two components for its en tit^ one in Movies and one in Murder- 
Mysteries and thus will have five attributes. including weapon. 

Finally. a movie like Roger Rabbit. which is both a cartoon and a murder- 
mnyster? will have components in all three of the entity sets Movies, Cartoons, 
and Murder-Mysteries. The three components are connected into one entity by 
the isa relationships. Together, these components give the Roger Rabbit entity 
all four attributes of Movies plus the attribute weapon of entity set Murder- 
Mysteries and the relationship Vozces of entity set Cartoons. 
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Figure 2.10: Isa relationships in an E/R diagram 

2.1.12 Exercises for Section 2.1 

* Exercise 2.1.1: Let us design a database for a bank, including information 
about customers and their accounts. Information about a customer includes 
their name, address, phone, and Social Security number. Accounts have num- 
bers, types (e.g., savings, checking) and balances. We also need to record the 
customer(s) who own an account. Draw the E/R diagram for this database. 
Be sure to include arrows where appropriate, to indicate the multiplicity of a 
relationship. 

Exercise 2.1.2: Modify your solution to Exercise 2.1.1 as follows: 

a) Change your diagram so an account can have only one customer. 

b) Further change your diagram so a customer can have only one account. 

! c) Change your original diagram of Exercise 2.1.1 so that a customer can 
have a set of addresses (which are street-city-state triples) and a set of 
phones. Remember that we do not allow attributes to have nonatomic 
types, such as sets, in the E/R model. 

! d) Further modify your diagram so that customers can have a set of ad- 
dresses, and at each address there is a set of phones. 

Exercise 2.1.3: Give an E/R diagram for a database recording information 
about teams, players, and their fans, including: 

1. For each team, its name, its players, its team captain (one of its players), 
and the colors of its uniform. 

2. For each player, his/her name. 

3. For each fan, his/her name, favorite teams, favorite players, and favorite 
color. 
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Subclasses in Object-Oriented Systems 

There is a significant resemblance between "isa" in the E/R model and 
subclasses in object-oriented languages. In a sense, "isan relates a subclass 
to its superclass. However, there is also a fundamental difference between 
the conventional E/R view and the object-oriented approach: entities are 
allowed to have representatives in a tree of entity sets, while objects are 
assumed to exist in exactly one class or subclass. 

The difference becomes apparent when we consider how the movie 
Roger Rabbit was handled in Example 2.11. In an object-oriented ap- 
proach, we would need for this movie a fourth entity set, "cartoon-rnurder- 
mystery," which inherited all the attributes and relationships of Movies, 
Cartoons, and Murder-Mysteries. However, in the E/R model, the effect 
of this fourth subclass is obtained by putting components of the movie 
Roger Rabbit in both the Cartoons and Murder-Mysteries entity sets. 

Remember that a set of colors is not a suitable attribute type for teams. How 
can you get around this restriction? 

Exercise 2.1.4: Suppose we wish to add to the schema of Exercise 2.1.3 a 
relationship Led-by among two players and a team. The intention is that this 
relationship set consists of triples 

(playerl, player2, team) 

such that player 1 played on the team at  a time when some other player 2 was 
the team captain. 

a) Draw the modification to the E/R diagram. 

b) Replace your ternary relationship with a new entity set and binary rela- 
tionships. 

! c) -4re your new binary relationships the same as any of the previously ex- 
isting relationships? Xote that me assume the two players are different, 
i.e., the team captain is not self-led. 

Exercise 2.1.5 : Modify Exercise 2.1.3 to record for each player the history of 
teams on which they have played, including the start date and ending date (if 
they were traded) for each such team. 

! Exerciss2.1.6: Suppose we wish to keep a genealogy We shall have one 
entity set, People. The information we wish to record about persons includes 
their name (an attribute) and the following relationships: mother, father, and 
children. Give an E/R diagram involving the People entity set and all the 
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in which it is involved. Include relationships for mother, father, 2.2 Design Principles 
and children. Do not forget to indicate roles when an entity set is used more 
than once in a relationship. ?Ve have yet to learn many of the details of the E/R model; but we have enough 

to begin study of the crucial issue of what constitutes a good design and what 
! Exercise 2.1.7: Modify your "people" database design of Exercise 2.1.6 to should be avoided. In this section, we offer some useful design principles. 

include the following special types of people: 

1. Females. 
2.2.1 Faithfulness 

First and foremost, the design should be faithful to the specifications of the 
2. Males. application. That is, entity sets and their attributes should reflect reality. You 

3. People who are parents. can't attach an attribute number-of-cylnders to Stars, although that attribute 
would make sense for an entity set Anrtomob~les. Whatever relationships are 

You may wish to distinguish certain other kinds of people as well, so relation- asserted should make sense given what we know about the part of the real 
ships connect appropriate subclasses of people. world being modeled. 

Exercise 2.1.8: An alternative way to represent the information of Exer- Example 2.12 : If we define a relationship Stars-in between Stars and Movies, 
cise 2.1.6 is to have a ternary relationship Famzly with the intent that a triple it should be a many-many relationship. The reason is that an observation of the 
in the relationship set for Family real world tells us that stars can appear in more than one movie, and movies 

can have more than one star. It is incorrect t o  declare the relationship Stars-in 
(person, mother, father) to be many-one in either direction or to be one-one. 0 

is a person, their mother, and their father; all three are in the People entity set, 
of course. 

* a) Draw this diagram, placing arrows on edges where appropriate. 

b) Replace the ternary relationship Family by an entity set and binary rela- 
tionships. Again place arrows to indicate the nlultiplicity of relationships. 

Exercise 2.1.9: Design a database suitable for a university registrar. This 
database should include information about students, departments, professors, 
courses, which students are enrolled in which courses, which professors are 
teaching which courses, student grades, TA's for a course (TA's are students), 
which courses a department offers, and any other information you deenl appro- 
priate. Note that this question is more free-form than the questions above, and 
you need to make some decisions about multiplicities of relationships, appro- 
priate types, and even what information needs to be represented. 

! Exercise 2.1.10: Informally, we can say that tx-o E/R diagrams "have the 
same information" if, given a real-morld situation. the instances of these t~vo di- 
agrams that reflect this situation can be computed from one another. Consider 
the E/R diagram of Fig. 2.6. This four-way relationship can be decomposed 
into a three-way relationship and a binary relationship by taking advantage 
of the fact that for each movie, there is a unique studio that produces that 
movie. Give an E/R diagram without a four-way relatioliship that has the 
same information as Fig. 2.6. 

Example 2.13: On the other hand, sometimes it is less obvious what the 
real world requires us to do in our E/R model. Consider, for instance, entity 
sets Courses and Instructcirs, with a relationship Teaches between them. Is 
Teaches many-one from Courses to Instructors? The answer lies in the policy 
and intentions of the organization creating the database. I t  is possible that 
the school has a policy that there can be only one instructor for any course. 
Even if several instructors may "team-teach" a course, the school may require 
that exactly one of them be listed in the database as the instructor responsible 
for the course. In either of these cases, we would make Teaches a many-one 
relationship from Courses to Instructors. 

Alternatively, the school may use teams of instructors regularly and wish 
its database to allow several instructors to be associated with a course. Or, 
the intent of the Teaches relationship may not be to reflect the current teacher 
of a course, but rather those who have ever taught the course, or those who 
are capable of teaching the course; we cannot tell simply from the name of the 
relationship. In either of these cases, it would be proper to make Teaches be 
many-many. 

2.2.2 Avoiding Redundancy 

We should be careful to say everything once only. For instance, we have used a 
relationship Owns between movies and studios. Ifre might also choose to have 
an attribute studdoName of entity set Movies. While there is nothing illegal 
about doing so, it is dangerous for several reasons. 
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1. The two representations of the same owning-studio fact take more space, 
when the data is stored, than either representation alone. 

2. If a movie were sold, we might change the owning studio to which it 
is related by relationship Oms but forget to change the value of its 
studioNarne attribute, or vice versa. Of course one could argue that one 
should never do such careless things, but in practice, errors are frequent, 
and by trying to say the same thing in two different ways, we are inviting 
trouble. 

These problems will be described more formally in Section 3.6, and we shall 
also learn there some tools for redesigning database schemas so the redundancy 
and its attendant problems go away. 

2.2.3 Simplicity Counts 

Avoid introducing more elements into your design than is absolutely necessary. 

Example 2.14: Suppose that instead of a relationship between Movtes and 
Studios we postulated the existence of "movie-holdings," the ownership of a 
single movie. We might then create another entity set Holdings. A one-one 
relationship Represents could be established between each movie and the unique 
holding that represents the movie. A many-one relationship from Holdings to 
Studios completes the picture shown in Fig. 2.11. 

Movies Studios 

Figure 2.11: A poor design with an unnecessary entity set 

Technically, the structure of Fig. 2.11 truly represents the real world, since 
it is possible to go from a movie to its unique owning studio via Holdings. 
However, Holdings serves no useful purpose, and we are better off without it. 
It makes programs that use the movie-studio relationship more complicated, 
wastes space, and encourages errors. 0 

2.2.4 Choosing the Right Relationships 
Entity sets can be connected in various ways by relationships. However, adding 
to our design every possible relationship is not often a good idea. First, it 
can lead to redundancy, where the connectcd pairs or sets of entities for one 
relationship can be deduced from one or more other relationships. Second, the 

, resulting database could require much more space to store redundant elements, 
\ and modifying the database could become too complex, because one change in 

the data could require many changes to the stored relationships. The problems 

2.2. DESIGN PRIiVCIPLES 

are essentially the same as those discussed in Section 2.2.2, although the cause 
of the problem is different from the problems we discussed there. 

We shall illustrate the problem and what to do about it with two examples. 
In the first example, several relationships could represent the same information; 
in the second, one relationship could be deduced from several others. 

Example 2.15: Let us review Fig. 2.7, where we connected movies, stars, 
and studios with a three-way relationship Contracts. We omitted from that 
figure the two binary relationships Stars-in and Owns from Fig. 2.2. Do we 
also need these relationships, between Movies and Stars, and bet~veen &vies 
and Studios, respectively? The answer is: "we don't know; it depends on our 
assumptions regarding the three relationships in question.'' 

I t  might be possible to deduce the relationship Stars-in from Contracts. If 
a star can appear in a movie only if there is a contract involving that star, that 
movie, and the owning studio for the movie, then there truly is no need for 
relationship Stars-in. ?Ve could figure out all the star-movie pairs by looking 
at  the star-movie-studio triples in the relationship set for Contracts and taking 
only the star and movie components. However. if a star can work on a movie 
without there being a contract - or what is mire likely, without there being a 
contract that we know about in our database - then there could be star-movie 
pairs in Stars-in that are not part of star-movie-studio triples in Contracts. In 
that case, we need to retain the Stars-dn relationship. 

A similar observation applies to relationship Owns. If for every movie, there 
is at least one contract involving that movie, its owning studio, and some star for 
that movie, then we can dispense with Owns. However, if there is the possibility 
that a studio owns a movie, yet has no stars under contract for that movie, or 
no such contract is known to our database, then we must retain Owns. 

In summary, we cannot tell you whether a given relationship will be redun- 
dant. You must find out from those who wish the database created what to 
expect. Only then can you make a rational decision about whether or not to 
include relationships such as Stars-in or Owns. 0 

Example 2.16: Kow, consider Fig. 2.2 again. In this diagram, there is no 
relationship between stars and studios. Yet we can use the two relationships 
Stars-in and Owns to build a connection by the process of composing those 
two relationships. That is, a star is connected to some movies by Stars-in, and 
those movies are connected to studios by Owns. Thus, we could say that a star 
is connected to the studios that own movies in which the star has appeared. 

nbuld it make sense to hare a relationship Works-for. as suggested in 
Fig. 2.12, between Stars and Studios too? Again, we cannot tell without knotv- 
ing more. First, what would the meaning of this relationship be? If it is to 
mean "the star appeared in at  least one movie of this studio," then probably 
there is no good reason to include it in the diagram. We could deduce this 
information from Stars-in and Owns instead. 

However, it is conceivable that we have other information about stars work- 
ing for studios that is not entailed by the connection through a movie. In that 
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Movies 

1 Studios 1 
Figure 222: Adding a relationship between Stars and Studios 

case, a relationship connecting stars directly to studios might be useful and 
would not be redundant. Alternatively, we might use a relationship between 
stars and studios to mean something entirely different. For example, it might 
represent the fact that the star is under contract to the studio, in a manner 
unrelated to any movie. As we suggested in Example 2.7, it is possible for a star 
to be under contract to one studio and yet work on a movie owned by another 
studio. In this case, the information found in the new Works-for relation would 
be independent of the Stars-in and Owns relationships, and uyould surely be 
nonredundant. 

2.2.5 Picking the Right Kind of Element 

Sometimes we have options regarding the type of design element used to repre- 
sent a real-world concept. Many of these choices are between using attributes 
and using entity set/relationship combinations. In general, an attribute is sim- 
pler to implement than either an entity set or a relationship. Ho~l-ever, making 
everything an attribute will usually get us into trouble. 

Example 2.17: Let us consider a specific problem. 111 Fig. 2.2, were we wise 
to make studios an entity set? Should we instead have made the name and 
address of the studio be attributes of movies and eliminated the Studio entity 
set? One problem with doing so is that we repeat the address of the studio for 
each movie. This situation is another instance of redundancy, similar to those 
seen in Sections 2.2.2 and 2.2.4. In addition to the disadvantages of redundancy 
discussed there, we also face the risk that, should we not have any movies owned 
by a given studio, we lose the studio's address. 

On the other hand, if we did not record addresses of studios, then there is 
no harm in making the studio name an attribute of movies. M7e do not have 
redundancy due to repeating addresses. The fact that we have to say the name 
of a studio like Disney for each movie owned by Disney is not true redundancy, 
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since we must represent the owner of each movie somehow, and saying the name 
is a reasonable way to do so. 

?Ve can abstract what we have observed in Example 2.17 to give the condi- 
tions under which we prefer to use an attribute instead of an entity set. Suppose 
E is an entity set. Here are conditions that E must obey, in order for us to 
replace E by an attribute or attributes of several other entity sets. 

1. All relationships in which E is involved must have arrows entering E. 
That is, E must be the LLone" in many-one relationships, or its general- 
ization for the case of multiway relationships. 

2. The attributes for E must collectively identify an entity. Typically, there 
will be only one attribute, in which case this condition is surely met. 
However, if there are several attributes, then no attribute must depend 
on the other attributes, the way address depends on name for Studios. 

3. No relationship involves E more than once. 

If these conditions are met, then we can replace entity set E as follows: 

a) If there is a many-one relationship R from some entity set F to E, then 
remove R and make the attributes of E be attributes of F, suitably re- 
named if they conflict 6 t h  attribute names for F. In effect, each F-entity 
takes, as attributes, the name of the unique, related E-entity: as movie 
objects could take their studio name as an attribute, should we dispense 
with studio addresses. 

b) If there is a multiway relationship R with an arrow to E, make the at- 
tributes of E be attributes of R and delete the arc from R to E. An 
example of transformation is replacing Fig. 2.8, where we had introduced 
a new entity set Salaries, with a number as its lone attribute, by its 
original diagram, in Fig. 2.7. 

Example 2.18 : Let us consider a point where there is a tradeoff between using 
a multiway relationship and using a connecting entity set with several binary 
relationships. 'Me saw a four-way relationship Contracts among a star, a movie, 
and two studios in Fig. 2.6. In Fig. 2.9: we mechanicall>r converted it to an 
entity set Contracts. Does it matter which we choose? 

As the problem was stated, either is appropriate. Hol~-e\-er, should we change 
the problem just slightly, then we arc almost forced to choose a connecting entity 
set. Let us suppose that contracts involve one star, one movie, but any set of 
studios. This situation is more complex than the one in Fig. 2.6, where we 
had two studios playing two roles. In this case, we can have any number of 

'In a situation where an F-entity is not related to any E-entity, the new attributes of F 
would be given special "nulln values to indicate the absence of a related E-entity. A similar 
arrangement would be used for the new attributes of R in case (b). 
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studios involved, perhaps one to do production, one for special effects, one for 
distribution, and so on. Thus, we cannot assign roles for studios. - 

It appears that a relationship set for the relationship Contracts must contain 
triples of the form 

(star, movie, set-of-studios) 

and the relationship Contracts itself involves not only the usual Stars and 
Movies entity sets, but a new entity set whose entities are sets ofstudios. While 
this approach is unpreventable, it seems unnatural to think of sets of studios 
as basic entities, and we do not recommend it. 

A better approach is to think of contracts as an entity set. As in Fig. 2.9, a 
contract entity connects a star, a movie and a set of studios, but now there must 
be no limit on the number of studios. Thus, the relationship between contracts 
and studios is many-many, rather than many-one as it would be if contracts 
were a true "connecting" entity set. Figure 2.13 sketches the E/R diagram. 
Note that a contract is associated with a single star and a single movie, but 
any number of studios. 

Studios I 
Figure 2.13: Contracts connecting a star, a movie, and a set of studios 

2.2.6 Exercises for Section 2.2 

* Exercise 2.2.1: In Fig. 2.14 is an E/R diagram for a bank database involr- 
ing custoincrs and accounts. Since customers may have several accounts, and 
accounts may be held jointly by several customers, we associate with each cus- 
tomer an "account set," and accounts are members of one or more account sets. 
Assuming the meaning of the various relationships and attributes are as ex- 
pected given their names, criticize the design. What design rules are violated? 
lvhy? What modifications would you suggest? 
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AcctSets Customers 

Member 0 Lives 0 
[zm Addresses 

Figure 2.14: A poor design for a bank database 

* Exercise 2.2.2: Under what circumstances (regarding the unseen attributes 
of Studios and Presidents) would you recommend combining the two entity sets 
and relationship in Fig. 2.3 into a single entity set and attributes? 

Exercise 2.2.3: Suppose we delete the attribute address from Studios in 
Fig. 2.7. Show how we could then replace an entity set by an attribute. Where 
would that attribute appear? 

Exercise 2.2.4: Give clioices of attributes for the folloiving entity sets in 
Fig. 2.13 that will allow the entity set to be replaced by an attribute: 

a) Stars. 

b) Movies. 

! c) Studios. 

!! Exercise 2.2.5: In this and following exercises we shall consider two design 
options in the E/R model for describing births. At a birth, there is one baby 
(twins would be represented by two births), one mother, any number of nurses, 
and any number of doctors. Suppose, therefore, that we have entity sets Babies, 
Mothers, Nurses, and Doctors. Suppose we also use a relationship Births, which 
connects these four entity sets, as suggested in Fig. 2.13. Note that a tuple of 
the relationship set for Births has the form 

(baby, mother, nurse, doctor) 

If there is more than one nurse and/or doctor attending a birth, then there will 
be several tuples with the same baby and mother, one for each combination of 
nurse and doctor. 
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Mothers '7 
Babies Nurses 

Doctors +1 
Figure 2.15: Representing births by a multiway relationship 

There are cc in assumptions that we might wish to incorporate into our 
design. For each, rcii how to add arrows or other elements to the E/R d' lagram 
in order to express the assumption. 

a) For every baby, there is a unique mother. 

b) For every combination of a baby, nurse, and doctor, there is a unique 
mother. 

c) For every combination of a baby and a mother there is a unique doctor. 

Figure 2.16: Representing births by an entity set 

! Exercise 2.2.6: Another approach to the problem of Exercise 2.2.5 is to co&- 
nect the four entity sets Babies, Mothers, Nurses, and Doctors by an entity set 
Births, :th four relationships, one between Births and each of the other entity 
sets, as - ;,rested in Fig. 2.16. Use arrows (indicating that certain of these 
I :  .lip. re many-one) to represent the followving conditions: 

a) Every baLx is the result of a unique birth, and every birth is of a unique 
baby. 

( b) In addition to (a), every baby has a unique mother. 
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C) In addition to (a) and (b), for every birth there is a unique doctor. 

In each case, what design flaws do you see? 

Exercise 2.2.7: Suppose we change our viewpoint to allow a birth to involve 
more than one baby born to one mother. How would you represent the fact 
that every baby still has a unique mother using the approaches of Exercises 
2.2.5 and 2.2.6? 

2.3 The Modeling of Constraints 

?Ye have seen so far how to model a slice of the real world using entity sets and 
relationships. However, there are some other important aspects of the real world 
that we cannot model with the tools seen so far. This additional information 
often takes the form of constraints on the data that go beyond the structural 
and type constraints imposed by the definitions of entity sets, attributes, and 
relationships. 

2.3.1 Classification of Constraints 

The following is a rough classification of commonly used constraints. We shall 
not cover all of these constraint types here. Additional material on constraints 
is found in Section 5.5 in the context of relational algebra and in Chapter 7 in 
the context of SQL programming. 

1. Keys are attributes or sets of attributes that uniquely identify an entity 
within its entity set. No two entities may agree in their values for all of 
the attributes that constitute a key. It is permissible, however, for two 
entities to agree on some, but not all, of the key attributes. 

2. Single-value constraints are requirements that the value in a certain con- 
text be unique. Keys are a major source of single-value constraints, since 
they require that each entity in an entity set has unique value(s) for the 
key attribute(s). However, there are other sources of single-value con- 
straints, such as many-one relationships. 

3. Referential integrity constraints are requirements that a value referred to 
by some object actually exists in the database. Referential integrity is 
analogous to a prohibition against dangling pointers, or other kinds of 
dangling references, in conventional programs. 

1. Domain constraints require that the value of an attribute must be drawn 
from a specific set of values or lie within a specific range. 

5. General constraints are arbitrary assertions that are required to hold in 
the database. For example, we might wish to require that no more than 
ten stars be listed for any one movie. We shall see general constraint- 
expression languages in Sections 5.5 and 7.4. 
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There are several ways these constraints are important. They tell us some- 
thing about the structure of those aspects of the real world that we are modeling. 
For example, keys allow the user to identify entities without confusion. If we 
know that attribute name is a key for entity set Studios, then when we refer 
to a studio entity by its name we know we are referring to a unique entity. In 
addition, knowing a unique value exists saves space and time, since storing a 
single value is easier than storing a set, even when that set has exactly one 
member.3 Referential integrity and keys also support certain storage structures 
that allow faster access to data, as we shall discuss in Chapter 13. 

2.3.2 Keys in the E/R Model 

A key for an entity set E is a set K of one or more attributes such that, given 
any two distinct entities el and e2 in E, el and ez cannot have identical values 
for each of the attributes in the key K.  If I< consists of more than one attribute, 
then it is possible for el and ez to agree in some of these attributes, but never 
in all attributes. Some important points to remember are: 

Every entity set must have a key. 

A key can consist of more than one attribute; see Example 2.19. 

There can also be more than one possible key for an entity set, as 1%-e 
shall see in Example 2.20. However, it is customary to pick one key as 
the "primary key," and to act as if that were the only key. 

When an entity set is involved in an isa-hierarchy, we require that the root 
entity set have all the attributes needed for a key, and that the key for 
each entity is found from its component in the root entity set, regardless 
of how many entity sets in the hierarchy have conlponents for the entity. 

Example 2.19 : Let us consider the entity set Movies from Example 2.1. One 
might first assume that the attribute title by itself is a key. Horn-ever, there are 
several titles that have been used for two or even more movies, for example. 
King Kong. Thus, it would be unwise to declare that title by itself is a key. If 
we did so, then we would not be able to include information about both King 
Kong movies in our database. 

A better choice would be to take the set of tn-o attributes title and year as 
a key. We still run the risk that there are two movies made in the same year 
with the same title (and thus both could not be stored in our database), hut 
that is unlikely. 

For the other two entity sets, Stars and Studios, introduced in Example 2.1: 
we must again think carefully about what can serve as a key. For studios, it is 
reasonable to assume that there would not be two movie studios with the same 

31n analogy, note that in a C program it is simpler to represent an integer than it is to 
represent a linked list of integers, even when that list contains only one integer. 
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Constraints Are Part of the Schema 

We could look at the database as it exists a t  a certain time and decide 
erroneously that an attribute forms a key because no two entities have 
identical values for this attribute. For example, as we create our i~iovie 
database we might not enter two movies with the same title for some time. 
Thus! it might look as if title were a key for entity set Movies. However, 
if we decided on the basis of this preliminary evidence that title is a key, 
and we designed a storage structure for our database that assumed title is 
a key, then we might find ourselves unable to enter a second King Kong 
movie into the database. 

Thus, key constraints, and constraints in general, are part of the 
database schema. They are declared by the database designer along with 
the structural design (e.g., entities and relationships). Once a constraint 
is declared, insertions or modifications to the database that violate the 
constraint are disallo~ved. 

Hence, although a particular instance of the database may satisfy 
certain constraints, the only "true" constraints are those identified by the 
designer as holding for all instances of the database that correctly model 
the real-world. These are the constraints that may be assumed by users 
and by the structures used to store the database. 

name, so \ye shall take name to be a key for entity set Studios. However, it is 
less clear that stars are uniquely identified by their name. Surely name does 
not distinguish among people in general. However, since stars have traditionally 
chosen "stage names" at will, we might hope to find that name serves as a key 
for Stars too. If not, we might choose the pair of attributes name and address 
as a key, which would be satisfactory unless there were two stars with the same 
name living at  the same address. 

Example 2.20: Our experience in Example 2.19 might lead us to believe that 
it is difficult to find keys or to be sure that a set of attributes forms a key. 
In practice the matter is usually much simpler. In the real-world situatioils 
commonly modeled by databases, people often go out of their way to create 
keys for entity sets. For example, companies generally assign employee ID'S to 
all employees. and these ID's are carefully chosen to be unique numbers. One 
purpose of these ID's is to make sure that in the company database each em- 
ployee can be distinguished from all others, even if there are several employees 
with the same name. Thus, the employee-ID attribute can serve as a key for 
employees in the database. 

In US corporations, it is normal for every employee to also hare a Social 
Security number. If the database has an attribute that is the Social Security 
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number, then this attribute can also serve as a key for employees. Note that 
there is nothing wrong with there being several choices of key for an entity set, 
as there would be for employees having both employee ID'S and Social Security 
numbers. 

The idea of creating an attribute whose purpose is to serve as a key is quite 
widespread. In addition to employee ID'S, we find student ID'S to distinguish 
students in a university. \Ve find drivers' license numbers and automobile reg- 
istration numbers to distinguish drivers and automobiles, respectively, in the 
Department of Motor Vehicles. The reader can undoubtedly find more examples 
of attributes created for the primary purpose of serving as keys. 

2.3.3 Representing Keys in the E/R Model 

In our E/R diagram notation, we underline the attributes belonging to a key 
for an entity set. For example, Fig. 2.17 reproduces our E/R diagram for 
movies, stars, and studios from Fig. 2.2, but with key attributes underlined. 
Attribute name is the key for Stars. Likewise, Studios has a key consisting of 

' 

only its own attribute name. These choices are consistent with the discussion 
in Example 2.19. 

address z 
Figure 2.17: E/R diagram; keys are indicated by underlines 

The attributes title and year together form the key for Movies, as we dis- 
cussed in Example 2.19. Note that when several attributes are underlined, as 
in Fig. 2.17, then they are each members of the key. There is no notation for 
representing the situation where there are several keys for an entity set; we 
underline only the primary key. You should also be aware that in some unusual 
situations, the attributes forming the key for an entity set do not all belong to 
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the entity set itself. We shall defer this matter, called "weak entity sets," until 
Section 2.4. 

2.3.4 Single-Value Constraints 

Often, an important property of a database design is that there is at  most one 
value playing a particular role. For example, we assume that a movie entity 
has a unique title, year, length, and film type, and that a movie is owned by a 
unique studio. 

There are several ways in which single-value constraints are expressed in the 
E/R model. 

1. Each attribute of an entity set has a single value. Sometimes it is permis- 
sible for an attribute's value to be missing for some entities, in which case 
we have to invent a "null value" to serve as the value of that attribute. For 
example, we might suppose that there are some movies in our database 
for which the length is not known. We could use a value such as -1 for 
the length of a movie whose true length is unknown. On the other hand, 
we would not want the key attributes title or year to be null for any movie 
entity. A requirement that a certain attribute not have a null value does 
not have any special representation in the E/R model. We could place a 
notation beside the attribute stating this requirement if we wished. 

2. A relationship R that is many-one from entity set E to entity set F 
implies a single-value constraint. That is, for each entity e in E, there is 
at most one associated entity f in F. More generally, if R is a multiway 
relationship, then each arrow out of R indicates a single value constraint. 
Specifically, if there is an arrow from R to entity set E ,  then there is a t  
most one entity of set E associated with a choice of entities from each of 
the other related entity sets. 

2.3.5 Referential Integrity 

\Vhile single-value constraints assert that at  most one value exists in a given 
role, a referential integrity constmint asserts that exactly one value exists in 
that role. We could see a constraint that an attribute h a ~ e  a non-null, single 
value as a kind of referential integrity requirement, but "referential integrity" 
is more commonly used to refer to relationships among entity sets. 

Let us consider the many-one relationship Owns from Movies to Stvdios in 
Fig. 2.2. The many-one requirement simply says that no movie can be owned 
by more than one studio. It does not say that a movie must surely be owned 
by a studio, or that, even if it is owned by some studio, that the studio must 
be present in the Studios entity set, as stored in our database. 

A referential integrity constraint on relationship Owns would require that for 
each movie, the owning studio (the entity "referenced" by the relationship for 
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this movie) must exist in our database. There are several ways this constraint 
could be enforced. 

1. We could forbid the deletion of a referenced entity (a studio in our ex- 
ample). That is, we could not delete a studio from the database unless it 
did not own any movies. 

2. We could require that if a referenced entity is deleted, then all entities 
that reference it are deleted as well. In our example, this approach would 
require that if we delete a studio, we also delete from the database all 
movies owned by that studio. 

In addition to one of these policies about deletion, we require that when a 
movie entity is inserted into the database, it is given an existing studio entity 
to which it is connected by relationship Owns. Further, if the value of that 
relationship changes, then the new value must also be an existing Studios entity. 
Enforcing these policies to assure referential integrity of a relationship is a 
matter for the implementation of the database, and we shall not discuss the 
details here. 

2.3.6 Referential Integrity in E/R Diagrams 

We can extend the arrow notation in E/R diagrams to indicate whether a 
relationship is expected to support referential integrity in one or more directions. 
Suppose R is a relationship from entity set E to entity set F. We shall use a 
rounded arrowhead pointing to F to indicate not only that the relationship is 
many-one or one-one from E to F, but that the entity of set F related to a 
given entity of set E is required to exist. The same idea applies when R is a 
relationship among more than two entity sets. 

Example 2.21 : Figure 2.18 shows some appropriate referential integrity con- 
straints among the entity sets Movies, Studios, and Presidents. These entity sets 
and relationships were first introduced in Figs. 2.2 and 2.3. We see a rounded 
arrow entering Studios from relationship Owns. That arrow expresses the refer- 
ential integrity constraint that every movie must be owned by one studio, and 
this studio is present in the Studios entity set. 

Movies Studios Presidetlrs 

Figure 2.18: E/R diagram showing referential integrity constraints 

Similarly, we see a rounded arrow entering Studios from Runs. That arrow 
expresses the referential integrity constraint that every president runs a studio 
that exists in the Studios entity set. 

Note that the arrow to Presidents from Runs remains a pointed arrow. That 
choice reflects a reasonable assumption about the relationship between studios 
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their presidents. If a studio ceases to exist, its president can no longer be 
a (studio) president, so we would expect the president of the studio to 

be deleted from the entity set Presidents. Hence there is a rounded arrow to 
Studios. On the other hand, if a president were deleted from the database, the 
studio would continue to exist. Thus, we place an ordinary, pointed arrow to 
Presidents, indicating that each studio has at  most one president, but might 
have no president at  some time. 

2.3.7 Other Kinds of Constraints 

As mentioned at  the beginning of this section, there are other kinds of con- 
straints one could wish to enforce in a database. We shall only touch briefly on 
thewhere, with the meat of the subject appearing in Chapter 7. 

Domain constraints restrict the value of an attribute to be in a limited set. 
A simple example would be declaring the type of an attribute. A stronger 
domain constraint would be to declare an enumerated type for an attribute or 
a range of values, e.g., the length attribute for a movie must be an intener in - 
the range 0 to 240. There is no specific notation for domain constraints in the 
E/R model, but you may place a notation stating a desired constraint next to 
the attribute, if you wish. 

There are also more general kinds of constraints that do not fall into any 
of the categories mentioned in this section. For example, we could choose to 
place a constraint on the degree of a relationship, such as that a movie entity 
cannot be connected by relationship Stars-in to more than 10 star entities. In 
the E/R model, we can attach a bounding number to the edges that connect 
a relationship to an entity set, indicating limits on the number of entities that 
can be connected to any one entity of the related entity set. 

<= 10 
Movies Stars 

Figure 2.19: Representing a constraint on the number of stars per movie 

Example 2.22 : Figure 2.19 shows how we can represent the constraint that 
no movie has more than 10 stars in the E/R model. .iZs another example, we 
can think of the arrow as a synonym for the constraint "5 1,'' and we can think 
of the rounded arrow of Fig. 2.18 as standing for the constraint ''= 1." 

2.3.8 Exercises for Section 2.3 

Exercise 2.3.1 : For your E/R diagrams of: 

* a) Exercise 2.1.1. 

b) Exercise 2.1.3. 
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c) Exercise 2.1.6. 

( i )  Select and specify keys, and (ii) Indicate appropriate referential integrity 
constraints. 

! Exercise 2.3.2: We may think of relationships in the E/R model as having 
keys, just as entity sets do. Let R be a relationship among the entity sets 
El,  E2,. . . ,En  Then a key for R is a set K of attributes chosen from the 
attributes of El, &, . . . , E n  such that if (el, e2,. . . :en) and (fl, f2,. . . , fa )  are 
two different tuples in the relationship set for R, then it is not possible that 
these tuples agree in all the attributes of K. Now, suppose n = 2; that is, R 
is a binary relationship. Also, for each i ,  let Ki be a set of attributes that is a 
key for entity set Ei. In terms of El and E2, give a smallest possible key for R 
under the assumption that: 

a) R is many-many. 

* b) R is many-one from El to E2. 

c) R is many-one from Ez to El. 

d) R is one-one. 

!! Exercise 2.3.3: Consider again the problem of Exercise 2.3.2, but with n 
dlolk-ed to be any number, not just 2. Using only the information about which 
arcs from R to the E,'s have arrows, show how to find a smallest possible key 
# for R in terms of the Ki's. 

! Exercise 2.3.4: Give examples (other than those of Example 2.20) from real 
life of attributes created for the primary purpose of being keys. 

2.4 Weak Entity Sets 

There is an occasional condition in which an entity set's key is composed of 
attributes some or all, of which belong to another entity set. Such an entity set 
is called a weak entity set. 

2.4.1 Causes of Weak Entity Sets 

There are two principal sources of weak entity sets. First, sometimes entity sets 
fall into a hierarchy based on classifications unrelated to the "isa hierarchy" of 
Section 2.1.11. If entities of set E are subunits of entities in set F, then it is 
possible that the names of E entities are not unique until we take into account 
the name of the F entity to which the E entity is subordinate. Several examples 
nil1 illustrate the problem. 
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Example 2.23: A movie studio might have several film crews. The crews 
might be designated by a given studio as crew 1, crew 2, and so on. However, 
other studios might use the same designations for crews, so the attribute number 
is not a key for crews. Rather, to name a crew uniquely, we need to give both 
the name of the studio to which it belongs and the number of the crew. The 
situation is suggested by Fig. 2.20. The key for weak entity set Crews is its 
own ,lumber attribute and the name attribute of the unique studio to which the 
crew is related by the many-one Unit-of relations hi^.^ 

Figure 2.20: A weak entity set for crews, and its connections 

Example 2.24 : .% species is designated by its genus atid species names. For 
example, humans are of the species Homo sapiens; Homo is the genus name 
and sapiens the species name. In general, a genus consists of several species, 
each of which has a name beginning with the genus name and continuing with 
the species name. CTnfortunatel~; species names, by themselves, are not unique. 
Two or more genera may have species with the same species name. Thus, to 
designate a species uniquely we need both the species name and the name of the 
genus to which the species is related by the Belorzgs-to relationship, as suggested 
in Fig. 2.21. Species is a weak entity set whose key comes partially from its 
genus. 0 

Figure 2.21: Another weak entity set. for species 

The second coinlnon source of w a k  entity sets is the connecting entity 
sets that we introduced in Section 2.1.10 as a way to eliminate a mul t i t~aj~  
re1ationship.j These entity sets often have no attributes of their own. Their 

4 ~ h e  double diamond and double rectangle will be explained in Section 2.4.3. 
5Remember that there is no particular requirement in the E/R model that multi\vay re- 

lationships be eliminated, although this requirement exists in some other database design 
models. 
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key is formed from the attributes that are the key attributes for the entity sets 
they connect. 

Example 2.25: In Fig. 2.22 we see a connecting entity set Contracts that 
replaces the ternary relationship Contracts of Example 2.5. Contracts has an 
attribute salary, but this attribute does not contribute to the key. Rather, the 
key for a contract consists of the nanie of the studio and the star involved, plus 
the title and year of the movie involved. 

salary 9 
Contracts I r T I  

Figure 2.22: Connecting entity sets are weak 

2.4.2 Requirements for Weak Entity Sets 

We cannot obtain key attributes for a weak entity set indiscriminately. Rather, 
if E is a weak entity set then its key consists of: 

1. Zero or more of its own attributes, and 
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R must have referential integrity from E to F. That is, for every E-entity, 
the F-entity related to it by R must actually exist in the database. Put 
another way, a rounded arrow from R to F must be justified. 

c) The attributes that F supplies for the key of E must be key attributes of 

d) However, if F is itself weak, then some or all of the key attributes of F 
supplied to E will be key attributes of one or more entity sets G to which 
F is connected by a support.ing relationship. Recursively, if G is weak, 
some key attributes of G will be supplied from elsewhere, and so on. 

e) If there are several different supporting relationships from E to F,  then 
each relationship is used to supply a copy of the key attributes of F to 
help form the key of E. Note that an entity e from E may be related to 
different entities in F through different supporting relationships from E. 
Thus, the keys of several different entities from F may appear in the key 
values identifying a particular entity e from E. 

The intuitive reason why these conditions are needed is as follows. Consider 
an entity in a weak entity set, say a crew in Example 2.23. Each crew is unique, 
abstractly. In principle we can tell one crew from another, even if they have 
the same number but belong to different studios. It is only the data about 

2. Key attributes from entity sets that are reached by certain many-one 
relationships from E to other entity sets. These many-one relationships 
are called supportzng relation.ships for E. 

In order for R, a many-one relationship from E to some entity set F, to be a 
supporting relationship for E, the following conditions must be obeyed: I 

a) R must be a binary, many-one relationship6 from E to F. 

GRemember that a one-one relationship is a special case of a many-one relationship. \Vhen 
use say a relationship must be many-one, we always include one-one relationships a s  well. 

\ 

crews that makes it hard to distinguish crews, because the number alone is not 
sufficient. The only way we can associate additional information with a crew 
is if there is some deterministic process leading to additional values that make 
the designation of a crew unique. But the only unique values associated with 
an abstract crew entity are: 

1. 1:alues of attributes of the Crews entity set, and 

2. Values obtained by following a relationship from a crew entity to a unique 
entity of some other entity set, where that other entity has a unique 
associated value of some kind. That is, the relationship follo~ved must be 
many-one (or one-one as a special case) to the other entity set F, and the 
associated value must be part of a key for F. 

2.4.3 Weak Entity Set Notation 

\ITe shall adopt the following conventions to indicate that an entity set is weak 
and to declare its key attributes. 

1. If an entity set is weak, it will be shown as a rectangle with a double 
border. Examples of this convention are Crews in Fig. 2.20 and Contracts 
in Fig. 2.22. 

2. Its supporting many-one relationships will be shown as diamonds with a 
double border. Examples of this conyention are Unit-of in Fig. 2.20 and 
all three relationships in Fig. 2.22. 
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3. If an entity set supplies any attributes for its own key, then those at- 
tributes will be underlined. An example is in Fig. 2.20, where the number 
of a crew participates in its own key, although it is not the complete key 
for Crews. 

\fle can summarize these conventions with the following rule: 

TVhenever we use an entity set E with a double border, it is weak. E's 
attributes that are underlined, if any, plus the key attributes of those 

sets to which E is connected by many-one relationships with a 
double border, must be unique for the entities of E. 

\re should remember that the double-diamond is used only for supporting 
relationships. It is possible for there to be many-one relationships from a .weak 
entity set that are not supporting relationships, and therefore do not get a 
double diamond. 

Example 2.26 : In Fig. 2.22, the relationship Studio-of need not be a support- 
ing relationship for Contracts. The reason is that each movie has a unique own- 
ing studio, determined by the (not shown) many-one relationship from Movies 
to Studios. Thus, if we are told the name of a star and a movie, there is a t  most 
one contract n':+ ally s ~ i . ~ ~ . a  IVL the work of that star in that movie. In terms 
of our notatic~ . it would be appropriate to use an ordinary single diamond, 
rather than the double diamond, for Studio-of in Fig. 2.22. 

2.4.4 Exercises for Section 2.4 

* Exercise 2.4.1: One way to represent students and the grades they get in 
courses is to use entity sets corresponding to students, to courses, and to "en- 
rollments." Enrollment entities form a "connecting" entity set between students 
and courses and can be used to represent not only the fact that a student is 
taking a certain course, but the grade of the student in the course. Draw an 
E/R diagram for this situation, indicating weak entity sets and the keys for the 
entity sets. Is the grade part of the key for enrollments? 

Exercise 2.4.2 : Modify your solution to Exercise 2.4.1 so that we can record 
grades of the student for each of several assignments within a course. Again, 
indicate weak entity sets and keys. 

Exercise 2.4.3 : For your E/R diagrams of Exercise 2.2.6f a)-(c) , indicate weak 
entit: ''? supporting relationships, and keys. 

I3xercise 2.1.4: Draw E/R diagrams for the following situations involving 
wts. In each case indicate keys for entity sets. 

a )  sets Courses and Departments. A course is given by a unique 
department, bl:t its only attribute is its number. Different departments 
can Wer courses with the same number. Each department has a unique 
nafle, 

Entity sets Leagues, Teams, and Players. League names are unique. No 
league has two teams with the same name. No team has two players with 
the same number. However, there can be players with the same number 
on different teams, and there can be teams with the same name in different 
leagues. 

Summary of Chapter 2 

The Entity-Relationship Model: In the E/R model we describe entity 
sets, relationships among entity sets, and attributes of entity sets and 
relationships. Members of entity sets are called entities. 

Entity-Relationship Diagrams: U7e use rectangles, diamonds, and ovals to 
draw entity sets, relationships; and attributes, respectively. 

Multiplicity of Relationships: Binary relationships can be one-one, many- 
one, or many-many. In a one-one relationship, an entity of either set can 
be associated with at  most one entity of the other set. In a many-one 
relationship, each entity of the "many" side is associated with at most 
one entity of the other side. Many-many relationships place no restriction 
on multiplicity. 

Keys: A set of attributes that uniquely determines an entity in a given 
entity set is a key for that entity set. 

Good Design: Designing databases effectively requires that we represent 
the real world faithfully, that we select appropriate elements (e.g., rela- 
tionships, attributes), and that we avoid redundancy - saying the same 
thing twice or saying something in an indirect or overly complex manner. 

Referential Integrity: A requirement that an entity be connected, through 
a given relationship, to an entity of some other entity set, and that the 
latter entity exists in the database, is called a referential integrity con- 
straint. 

Subclasses: The E/R model uses a special relationship isa to represent 
the fact that one entity set is a special case of another. Entity sets may be 
connected in a hierarchy with each child node a special case of its parent. 
Entities may have components belonging to any subtree of the hierarchy, 
as long as the subtree includes the root. 

Weak Entity Sets: .An occasional complication that arises in the E/R 
model is a weak entity set that requires attributes of some related entity 
set(s) to identify its own entities. A special notation involving diamonds 
and rectangles with double borders is used to distinguish weak entity sets. 
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*' 5, - Chapter 3 

The Relational Data Model 

*"* - 
555 > While the entity-relationship approach to data modeling that we discussed in . - .  Chapter 2 is asimple and appropriate way to descrlbe the structure of data, to- 

day's database implementations are almost always based on another approach, 

p *: callcd the relational model. The relational model is extremely useful because 
it has but a single data-modeling concept: the "relation," a two-dimensional 
table in ahich data is arranged. We shall see in Chapter 6 how the relational 
model supports a very high-level programming language called SQL (structured 
query language). SQL lets us write simple programs that manipulate in pow- 
crful vays the data stored in relations. In contrast, the E/R model generally is 
not considered suitable as the basis of a data manipulation language. 

On the other hand, it is oftcn easier to design databases using the E/R 
notation. Thus, our first goal is to see how to translate designs from E/R 
notation into rclations. We shall then find that the relational model has a design 
theory of its own. This theory, often called "normalization" of relations, is based 
primarily on "functional dependencies," which embody and expand the concept 
of "key" discussed informally in Section 2.3.2. Using normalization theory, 
we often improve our choice of relations with which to represent a particular 
database design. 

3.1 Basics of the Relational Model 

The relational model gives us a singlc JT-ay to represent data: as a two-dimm- 
sional table callcd a relation. Figure 3.1 is an example of a relation. The name of 
the relation is Movies, and it is intended to hold information about the cntities 
in the entity set Movies of our running design cxample. Each row corresponds 
to one movie entity, and each column corresponds to one of the attributes of 
the entity set. Ho~wver, relations can do much more than represent entity sets, 
as we shall see. 

61 
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title I year I length ( filmType 

Sta r  Wars 1 1977 1 124 1 color 
Mighty Ducks 1 1991 1 104 / color 
Wayne's World 1992 95 color 

Figure 3.1: The relation Movies 

3.1.1 Attributes 

Across the top of a relation we see attributes; in Fig. 3.1 the attributes are 
t i t l e ,  year, length, and f ilmType. Attributes of a relation serve as names 
for the columns of the relation. Usually, an attribute describes the meaning of 
entries in the column below. For instance, the column with attribute length 
holds the length in minutes of each movie. 

Notice that the attributes of the relation Movies in Fig. 3.1 are the same as 
the attributes of the entity set Movies. We shall see that turning one entity set 
into a relation with the same set of attributes is a common step. However, in 
general there is no requirement that attributes of a relation correspond to any 
particular components of an E/R description of data. 

3.1.2 Schemas 

The name of a relation and the set of attributes for a relation is called the 
schema for that relation. We show the schema for the relation with the relation 
name followed by a parenthesized list of its attributes. Thus, the schema for 
relation Movies of Fig. 3.1 is 

Movies(t i t le ,  year,  length,  filmType) 

The attributes in a relation schema are a set, not a list. However, in order to 
talk about relations Ire often must specify a "standard" order for the attributes. 
Thus, whenever we introduce a relation schema with a list of attributes. as 
above, we shall take this ordering to be the standard order whenever nre display 
the relation or any of its rows.. 

In the relational model, a design consists of one or more relatioil schemas. 
The set of schemas for the relations in a design is called a relational database 
schema, or just a database schema. 

3.1.3 Tuples 

The rows of a relation, other than the header row containing the attribute 
names, are called tuples. A tuple has one component for each attribute of 
the relation. For instance, the first of the three tuples in Fig. 3.1 has the 
four components S t a r  Wars, 1977, 124, and color for attributes t i t l e ,  year, 
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th ,  and f ilmType, respectively. When we wish to write a tuple in isolation, 
part of a relation, we normally use commas to separate components, and 
parelltheses to surround the tuple. For example, 

(Star Wars, 1977, 124, color) 

is the first tuple of Fig. 3.1. Notice that when a tuple appears in isolation, the 
attributes do not appear, so some-indication of the relation to which the tuple 
belongs must be given. We shall always use the order in which the attributes 
were listed in the relation schema. 

3.1.4 Domains 

The relational model requires that each component of each tuple be atomic; 
that is, it must be of some elementary type such as integer or string. It is not 
permitted for a value to be a record structure, set, list, array, or any other type 
that can reasonably have its values broken into smaller components. 

It is further assumed that associated with each &tribute of a relation is a 
domain, that is, a particular elementary type. The components of any tuple of 
the relation must have, in each component, a value that belongs to the domain of 
the corresponding column. For example, tuples of the Movies relation of Fig. 3.1 
must have a first component that is a string, second and third components that 
are integers, and a fourth component whose value is one of the constants color 
and blackAndWhite. Domains are part of a relation's schema, although we 
shall not develop a notation for specifying domains until we reach Section 6.6.2. 

3.1.5 Equivalent Representations of a Relation 

Relations are sets of tuples, not lists of tuples. Thus the order in which the 
tuples of a relation are presented is immaterial. For example, we can list the 
three tuples of Fig. 3.1 in any of their sis possible orders, and the relation is 
"the same" as Fig. 3.1. 

IIoreover, we can reorder the attributes of the relation as we choose, without 
changing the relation. However, when we reorder the relation schema, we must 
be careful to remember that the attributes are column headers. Thus, when we 
change the order of the attributes, we also change the order of their columns. 
When the colunlns more, the compo~lents of tuples change their order as well. 
The result is that each tuple has its components permuted in the same way as 
the attributes are permuted. 

For example, Fig. 3.2 shows one of the many relations that could be obtained 
from Fig. 3.1 by permuting rows and columns. These two relations are consid- 
ered "the same." More precisely, these two tables are different presentations of 
the same relation. 
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Figure 3.2: Another presentation of the relation Movies 

3.1.6 Relation Instances 

length 
104 
95 
124 

year 
1991 
1992 
1977 

A relation about movies is not static; rather, relations change over time. We 
expect that these changes involve the tuples of the relation, such as insertion 
of new tuples as movies are added to the database, changes to existing tuples 
if we get revised or corrected information about a movie, and perhaps deletion 
of tuples for movies that are expelled from the database for some reason. 

It is less common for the schema of a relation to change. However, there are 
situations where we might want to add or delete attributes. Schema changes, 
while possible in commercial database systems, are very expensive, because each 
of perhaps millions of tuples needs to be rewritten to add or delete components. 
If we add an attribute, it may be difficult or even impossible to find the correct 
values for the new component in the existing tuples. 

We shall call a set of tuples for a given relation an instance of that relation. 
For example, the three tuples shown in Fig. 3.1 form an instance of relation 
Movies. Presumably, the relation Movies has changed over time and will con- 
tinue to change over time. For instance, in 1980, Movies did not contain the 
tuples for Mighty Ducks or Wayne's World. However, a conventional database 
system maintains only one version of any relation: the set of tuples that are in 
the relation "now." This instance of the relation is called the current instance. 

3.1.7 Exercises for Section 3.1 

title 
Highty Ducks 
Wayne's World 
Star Wars 

Exercise 3.1.1 : In Fig. 3.3 are instances of two relations that might constitute 
part of a banking database. Indicate the following: 

a) 'The attributes of each relation. 

b) The tuples of each relation. 

c) The components of one tuple from each relation. 

d) The relation schema for each relation. 

e) The database schema. 

f) A suitable domain for each attribute. 

g) Another equivalent way to present each relation. 

filmType 
color 
color 
color 

FROM E / R  DIAGRAMS TO RELATIONAL DESIGiVS 

acctNo I type I balance 

The relation Accounts 

The relation Customers 

Figure 3.3: Two relations of a banking database 

firstName 
Robbie 
Lena 
Lena 

1.2 : How many different ways (considering orders 

idNo 
901-222 
805-333 
805-333 

IastName 
Banks 
Hand 
Hand 

ICE ., attributes) are there to represent a relation instance if that instance 

account 
12345 
12345 
23456 

;uples 
has: 

and 

* a) Three attributes and three tuples, like the relation Accounts of Fig. 3.3? 

b) Four attributes and five tuples? 

c) n attributes and m tuples? 

3.2 From E/R Diagrams to Relational Designs 

Let us considcr the process whereby a new database, such as our movie database, 
is created. We begin with a design phase, in which we address and answer 
questions about what information will be stored, how information elements will 
be related to one another, what constraints such as keys or referential integrity 
may be assumed, and so on. This phase may last for a long time, 11-hile options 
are evaluated and opinions are reconciled. 

The design phase is followed by an implementation phase using a real 
database system. Since the great majority of commercial database systems 
use the relational model, we might suppose that the design phase should use 
this model too, rather than the E/R model or another model oriented toward 
design. 

However, in practice it is often easier to start with a model like E/R, make 
our design, and then convert it to the relational model. The primary reason for 
doing so is that the relational model, having only one concept - the relation - 
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Schemas and Instances 

Let us not forget the important distinction between the schema of a re- 
lation and an instance of that relation. The schema is the name and 
attributes for the relation and is relatively immutable. An instance is a 
set of tuples for that relation, and the instance may change frequently. 

The schema/instance distinction is common in data modeling. For 
instance, entity set and relationship descriptions are the E/R model's way 
of describing a schema, while sets of entities and relationship sets form an 
instance of an E/R schema. Remember, however, that when designing a 
datalase, a database instance is not part of the design. We only imagine 
what typical instances would look like, as we develop our design. 

rather than several complementary concepts (e.g., entity sets and relationships . 
in the E/R model) has certain inflexibilities that are best handled after a design 
has been selected. 

To a first approximation, converting an E/R design to a relational database 
schema is straightforward: 

Turn each entity set into a relation wit,h the same set of attributes, and 

Replxe a relationship by a relation whose attributes are the keys for the 
connected entity sets. 

While these two rules cover much of the ground, there are also several special 
situations that we need to deal with, including: 

1. Weak entity sets cannot be translated straightforwardly to relations. 

2. "Isan relationships and subclasses require careful treatment. 

3. Sometimes, we do well to combine two relations, especially the relation for 
an entity set E and the relation that comes from a many-one relationship 
from E to some other entity set. 

3.2.1 From Entity Sets to  Relations 

Let us first consider entity sets that are not weak. UTe shall take up the mod- 
ifications needed to accommodate \\-eak entity sets in Section 3.2.4. For each 
non-weak entity set, we shall create a relation of the same name and with the 
same set of attributes. This relation will not have any indication of the rela- 
tionships in which the entity set participates; we'll handle relationships with 

\ separate relations, as discussed in Section 3.2.2. 
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a m ~ l e  3.1 : Consider the three entity sets Movies, Stars and Studios from 
Fig. 2.17, which we reproduce here as Fig. 3.4. The attributes for the Movies 
entity set are title, year, length, and filmType. As a result, the relation Movies 
looks just like the relation Movies of Fig. 3.1 with which we began Section 3.1. 

&&&kI9, Owns 

Studios v 
Figure 3.4: E/R diagram for the movie database 

Next, consider the entity set Stars from Fig. 3.4. There are two attributes, 
narne and address. Thus, we would expect the corresponding Stars relation to 
have schema Stars(name, address) and for a typical instance of the relation 
to look like: 

name uddress 
Carrie Fisher 123 Maple S t . ,  Hollywood 
Mark Hamill 456 Oak Rd., Brentwood 
Harrison Ford 789 Palm Dr., Beverly H i l l s  

3.2.2 From E/R Relationships to Relations 

Relationships in the E/R model are also represented by relations. The relation 
for a gi\-en relationship R has the following attributes: 

1. For each entity set involved in relationship R, we take its key attribute 
or attributes as part of the schema of the relation for R. 

2. If the relationship has attributes, then these are also attributes of relation 
R. 
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A Note About Data Quality :-1 

While we have endeavored to make example data as accurate as possible, 
we have used bogus values for addresses and other personal information 
about movie stars, in order to protect the privacy of members of the acting 
profession, many of whom are shy individuals who shun publicity. 

If one entity set is involved several times in a relationship, in different roles, 
then its key attributes each appear as many times as there are roles. We must 
rename the attributes to avoid name duplication. More generally, should the 
same attribute name appear twice or more among the attributes of R itself and 
the keys of the entity sets involved in relationship R ,  then we need to rename 
to avoid duplication. 

Example 3.2 : Consider the relationship Owns of Fig. 3.4. This relationship 
connects entity sets Movies and Studios. Thus, for the schema of relation Owns 
we use the key for Movies, which is title and year, and the key of Studios, which 
is name. That is, the schema for relation Owns is: 

Ovns(t i t le,  year, studiolame) 

A sample instance of this relation is: 

title I year I studioName 
Star  Wars 1 1977 1 Fox 
Mighty Ducks 1991 Disney 
Wayne's World 1992 Paramount I I 

We have chosen the attribute studioName for clarity; it corresponds to the 
attribute name of Studios. 

Example 3.3: Similarly, the relationship Stars-In of Fig. 3.4 can be trans- 
formed into a relation with the attributes t i t l e  and year (the key for Movies) 
and attribute starlame, which is the key for entity set Stars. Figure 3.5 shows 
a sample relation Stars-In. 

Because these movie titles are unique. it seems that the year is redundant in 
Fig. 3.5. Holvever, had there been several movies of the same title, like "King 
Kong," we would see that the year was essential to sort out which stars appear 
in which version of the movie. 

Example 3.4: Multiway relationships are also easy to convert to relations. 
Consider the four-way relationship Contracts of Fig. 2.6, reproduced here as 
Fig. 3.6, involving a star, a movie, and two studios - the first holding the 

3.2. FROM E/R DIAGRAMS TO RELATIONAL DESIGNS 

title 
Sta r  Wars 
S ta r  Wars 
S t a r  Wars 
Mighty Ducks 
Wayne's World 
Wayne's World 

year I starName 

Figure 3.5: A relation For relationship Stars-In 

Movies E l  Stars El 

Studio Producing 
of star studio 

Studios 

Figure 3.6: The relationship Contracts 

star's contract and the second contracting for that star's services in that movie. 
Ifre represent this relationship by a relation Contracts whose schema consists 
of the attributes from the keys of the following four entity sets: 

1. The key starName for the star. 

2. The key consisting of attributes t i t l e  and year for the movie. 

3. The key studioof S t a r  indicating the name of the first studio; recall we 
assume the studio name is a key for the entity set Studios. 

4. The key producingstudio indicating the name of the studio that will 
produce the movie using that star. 

That is, the schema is: 

Contracts(starName, t i t l e ,  year,  studioOfStar, producingstudio) 

Notice that we have been inventive in choosing attribute names for our relation 
schema, avoiding "name" for any attribute, since it would be unobvious whether 
that referred to a star's name or studio's name, and in the latter case, which 
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studio. Also, were there attributes attached to entity set Contracts, such as 
salary, these attributes would be added to the schema of relation Contracts. 

3.2.3 Combining Relations 

Sometimes, the relations that we get from converting entity sets and relation- 
ships to relations are not the best possible choice of relations for the given data. 
One common situation occurs when there is an entity set E with a many-one 
relatio~lship R from E to F. The relations from E and R will each have the 
key for E in their relation schema. In addition, the relation for E will have in 
its schema the attributes of E that are not in the key, and the relation for R 
will have the key attributes of F and any attributes of R itself. Because R is 
many-one, all these attributes have values that are determined uniquely by the 
key for E, and we can combine them into one relation with a schema consisting 
of: 

1. All attributes of E. 

2. The key attributes of F.  

3. Any attributes belonging to relationship R. 

For an ent' a e of E that is not related to any entity of F, the attributes of types 
(2) and (3) will have null values in the tuple for e. Null values were introduced 
informally in Section 2.3.4, in order to represent a situation where a value is 
missing or unknown. Nulls are not a formal part of the relational model, but a 
null value, denoted NULL, is available in SQL, and we shall use it where needed 
in our discussions of representing E/R designs as relational database schema. 

Example 3.5 : In our running movie example, Owns is a many-one relationship 
from Movies to Studios, which we converted to a relation in Example 3.2. The 
relation obtained from entity set Movies was discussed in Example 3.1. \ire can 
combine these relations by taking all their attributes and forming one relation 
schema. If we do, the relation looks like that in Fig. 3.7. 0 

Figure 3.7: Combining relation Movies with relation Owns 

title 
S t a r  Wars 
Mighty Ducks 
Wayne's World 

Whether or not we choose to combine relations in this manner is a matter 

, of judgement. However, there are some advantages to having all the attributes 
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that are dependent on t.he key of entity set E together in one relation, elren 
f there are a number of many-one relationships from E to other entity sets. 

r example, it is often more efficient to answer queries involving attributes 
one relation than to answer queries involving attributes of several relations. 
fact, some design systems based on the E/R model combine these relations 
tomatically for the user. 
On the other hand, one might wonder if it made sense to combine the 

lation for E with the relation of a relationship R that involved E but was not 
any-one from E to some other entity set. Doing so is risky, because it often 

eads to redundancy, an issue we shall take up in Section 3.6. 

le 3.6 : To get a sense of what can go wrong, suppose we combined the 
of Fig. 3.7 with the relation that we get for the many-many relationship 

ars-an; recall this relation was suggested by Fig. 3.5. Then the combined 
relation would look like Fig. 3.8. 

year 
1977 
1991 
1992 

title I year ( length I filmQpe I studioName I starName 
Star Wars 1 1977 1 124 1 color 1 Fox I Carrie Fisher 
Stax Wars 1977 124 color Fox Mark H a m i l l  
S t a r  Wars 1977 124 color Fox Harrison Ford 
Mighty Ducks 1991 104 color Disney Emilio Estevez 
Wayne's World 1992 95 color Paramount Dana Carvey 
Wayne's World 1992 95 color Paramount Mike Meyers 

f Figure 3.8: The relation Movies with star information 

studioName 
Fox 
Disney 
Paramount 

length 

124 
104 
95 

Because a movie can have several stars, we are forced to repeat all the 
information about a movie, once for each star. For instance, we see in Fig. 3.8 
that the length of Star Wars is repeated three times - once for each star - 
as is the fact that the movie is owned by FOX. This redundancy is undesirable, 
and the purpose of the relational-database design theory of Section 3.6 is to 
split relations such as that of Fig. 3.8 and thereby remove the redundancy. 

filmType 
color  
color 
color 

f 3.2.4 Handling Weak Entity Sets 

When a weak entity set appears in an E/R diagram, we need to do three things 
differently. 

1. The relation for the weak entity set 1V it,self must include not only the 
attributes of 1V but also the key attributes of the other entity sets that 
help form the key of 1.17. These helping entity sets are easily recognized 
because they are reached by supporting (double-diamond) relationships 
from W. 



72 CHAPTER 3. THE RELATIONAL DATA MODEL 

2. The relation for any relationship in which the weak entity set W appears 
must use as a key for W all of its key attributes, including those of other 
entity sets that contribute to W's key. 

3. However, a supporting relationship R, from the weak entity set W to an- 
other entity set that helps provide the key for W, need not be converted to 
a relation a t  all. The justification is that, as discussed in Section 3.2.3, the 
attributes of many-one relationship R's relation will either be attributes 
of the relation for W, or (in the case of attributes on R) can be combined 
with the schema for W's relation. 

Of course, when introducing additional attributes to build the key of a weak 
entity set, we must be careful not to use the same name twice. If necessary, we 
rename some or all of these attributes. 

Example 3.7: Let us consider the weak entity set Crews from Fig. 2.20, which 
we reproduce here as Fig. 3.9. Rorn this diagram we get three relations, whose 
schemas are: 

Studios(name, addr) 
Crews (number, studiolame) 
Unit-of (number, studioName, name) 

The first relation, Studios, is constructed in a straightforward manner from 
the entity set of the same name. The second, Crews, comes from the weak entity 
set Crews. The attributes of this relation are the key attributes of Crews; if there 
were any nonkey attributes for Crews, they would be included in the relation 
schema as well. We have chosen studioName as the attribute in relation Crews 
that corresponds to the attribute name in the entity set Studios. 

Figure 3.9: The crews example of a weak entity set 

The third relation, Unit-of, comes from the relationship of the same name. 
As always, we represent an E/R relationship in the relational model by a relation 
whose schema has the key attributes of the related entity sets. In this case, 
Unit-of has attributes number and studioName, the key for weak entity set 
Crews, and attribute name, the key for entity set Studios. However, notice that 
since Unit-of is a many-one relationship, the studio studioName is surely the 
same as the studio name. 

For instance, suppose Disney crew #3 is one of the crews of the Disney 
studio. Then the relationship set for E/R relationship Unit-of includes the pair 
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Relations With Subset Schemas 

You might imagine from Example 3.7 that whenever one relation R has a 
set of attributes that is a subset of the attributes of another relation S, we 
can eliminate R. That is not exactly true. R might hold information that 
doesn't appear in S because the additional attributes of S do not allow us 
to extend a tuple from R to S. 

For instance, the Internal Revenue Service tries to maintain a relation 
People (name, ss#) of potential taxpayers and their social-security num- 
bers, even if the person had no income and did not file a tax return. They 
might also maintain a relation Taxpayers (name, ss# ,  amount) indicat- 
ing the amount of tax paid by each person who filed a return in the current 
year. The schema of People is a subset of the schema of Taxpayers, yet 
there may be value in remembering the social-security number of those 
who are mentioned in People but not in Taxpayers. 

In fact, even identical sets of attributes may have different semantics, 
so it is not possible to merge their tuples. An example would be two 
relations S ta r s  (name, addr) and ~tudios(name, addr) . Although the 
schema look alike, we cannot turn star tuples into studio tuples, or vice- 
versa. 

On the other hand, when the two relations come from the weak-entity- 
set construction, then there can be no such additional value to the relation 
with the smaller set of attributes. The reason is that the tuples of the 
relation that comes from the supporting relationship correspond one-for- 
one with the tuples of the relation that comes from the weak entity set. 
Thus, we routinely eliminate the former relation. 

(Disney-crew-#3, Disney) 

This pair gives rise to the tuple 

(3, Disney, Disney) 

for the relation Unit-of. 
Sotice that, as must be the case, the components of this tuple for attributes 

studioName and name are identical. AS a consequence, n-e can "merge" the 
attributes studioName and name of Unit-of: giving us the simpler schema: 

Unit-of (number, name) 

However, now we can dispense with the relation Unit-of altogether, since it is 
now identical to the relation Crews. 
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salary 0 
Contracts m 

- 

Figure 3.10: The weak entity set Contracts 

Example 3.8 : Now consider the weak entity set Contracts from Example 2.25 
and Fig. 2.22 in Section 2.4.1. We reproduce this diagram as Fig. 3.10. The 
schema for relation Contracts is 

Contracts(starName, studioName, t i t l e ,  year, salary) 
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3. For each supporting relationship for W, say a many-one relationship 
from W to entity set E, all the key attributes of E. 

Rename attributes, if necessary, to avoid name conflicts. 

Do not construct a relation for any supporting relationship for W 

3.2.5 Exercises for Section 3.2 

* Exercise 3.2.1 : Convert the E/R diagram of Fig. 3.11 to a relational database 
schema. 

[Bookings) * gjjJi$j~ name 

Figure 3.11: An E/R diagram about airlines 

These attributes are the key for Stars, suitably renamed, the key for Studios, ! Exercise 3-2.2 : There is another E/R diagram that could describe the weak 
suitably renamed, the two attributes that form the key for Movtes, and the entity set Bookings in Fig. 3.11. Notice that a booking call be identified uniquely 
lone attribute, salary, belonging to the entity set Contracts itself. There are no by the flight number, day of the flight, the row, and the seat; the customer is 
relations constructed for the relationships Star-of, Studio-of, or Movie-of. Each not then necessary to help identify the booking. 
\Yould have a schema that is a proper subset of that for Contracts above. 

Incidentally, notice that the relation we obt,ain is exactly the same as what a) Revise the diagram of Fig. 3.11 to reflect this new viewpoint. 
n-e Lvould obtain had we started from the E/R diagram of Fig. 2.7. Recall that 
figure treats contracts as a three-way relationship among stars, movies, and b) Convert Your diagram from (a) into relations. Do you get the same 
studios, with a salary attribute attached to Contracts. database schema as in Exercise 3.2.1? 

The phenomenon observed in Examples 3.7 and 3.8 - that a supporting * Exercise 3.2.3 : The E/R diagram of Fig. 3.12  represent.^ ships. Ships are said 
relationship needs no relation - is universal for weak entity sets. The follo~~ing to be sisters if they were designed from the same plans. Convert this diagram 
is a modified rule for converting to relations entity sets that are weak. to a relational database schema. . If W is a weak entity set, construct for W a relation whose schema consists 

of: Exercise 3.2.4 : Convert the foliowing E/R diagrams to relational database 

1. All attributes of W .  

2. All attributes of supporting relationships for W. a) Figure 2.22. 
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Ships 

sister 

Figure 3.12: An E/R diagram about sister ships 

b) Your answer to Exercise 2.4.1. 

c) Your answer to Exercise 2.4.4(a). 

d) Your answer to Exercise 2.4.4(b). 

3.3 Converting Subclass Structures to Relations 

When we have an isa-hierarchy of entity sets, we are presented with several 
choices of strategy for conversion to relations. Recall we assume that: 

There is a root entity set for the hierarchy, 
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3.3.1 E/R-Style Conversion 
Our first approach is to create a relation for each entity set, as usual. If the 
entity set E is not the root of the hierarchy, then the relation for E will include 
the key attributes at the root, to identify the entity represented by each tuple, 
plus all the attributes of E. In addition, if E is involved in a relationship, then 
we use these key attributes to identify entities of E in the relation corresponding 
to that relationship. 

Note, however, that although we spoke of "isa" as a relationship, it is unlike 
other relationships, in that it connects components of a single entity, not distinct 
entities. Thus, we do not create a relation for "isa." 

I Movies 1 

Cartoons El Mysteries 

Figure 3.13: The movie hierarchy 

This entity set has a key that serves to identify every entity represented 
by the hierarchy, and Example 3.9: Consider the hierarchy of Fig. 2.10, which we reproduce here as 
A given entity may have components that belong to the entity sets of any Fig. 3.13. The relations needed to represent the four different kinds of entities 
subtree of the hierarchy, as long as that subtree includes the root. in this hierarchy are: 

The principal conversion strategies are: 1. Movies (title, year, length, f ilmType). This relation was discussed 
in Example 3.1, and every movie is represented by a tuple here. 

1. Follow the E/R viewpoint. For each entity set E in the hierarchy, create a 
plation that includes the key attributes from the root and any attributes 2. MurderMysteries(title, year, weapon). The first two attributes are 

belonging to E. the key for all movies, and the last is the lone attribute for the corre- 
spondi~~g entity set. Those movies that are murder mysteries have a tuple 

2. Treat entities as objects belonging to a sin,gle class. For each possible here as well as in Movies. 
subtree including the root, create one relation, whose schema includes all 
the attributes of all the entity sets in the subtree. 3. Cartoons(title, year). This relation is the set of cartoons. It has 

no attributes other than the key for movies, since the extra information 
3. Use null values. Create one relation with all the attributes of all the entity about cartoons is contained in the relationship Voices. Movies that are 

sets in the hierarchy. Each entity is represented by one tuple, and that cartoons have a tuple here as well as in Movies. 
tuple has a null value for whatever attributes the entity does not have. 

Sote that the fourth kind of movie - those that are both cartoons and murder 
We shall consider each approach in turn. mysteries - have tuples in all three relations. 
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In addition, we shall need the relation Voices( t i t le ,  year,  starlame) 
that corresponds to the relationship Voices between Stars and Cartoons. The 
last attribute is the key for Stars and the first two form the key for Cartoons. 

For instance, the movie Roger Rabbit would have tuples in all four relations. 
Its basic information would be in Movies, the murder weapon would appear 
in MurderMysteries, and the stars that provided voices for the movie would 
appear in Voices. 

Notice that the relation Cartoons has a schema that is a subset of the 
schema for the relation Voices. In many situations, we would be content to 
eliminate a relation such as Cartoons, since it appears not to contain any 
information beyond what is in Voices. However, there may be silent cartoons 
in our database. Those cartoons would have no voices, and we would therefore 
lose the fact that these movies were cartoons. 

3.3.2 An Object-Oriented Approach 

An alternative strategy for converting isa-hierarchies to relations is to enumerate 
all the possible subtrees of the hierarchy. For each, create one relation that 
represents entities that have components in exactly those subtrees; the schema 
for this relation has all the attributes of any entity set in the subtree. We refer 
to this approach as "object-oriented," since it is motivated by the assumption 
that entities are "objects" that belong to one and only one class. 

Example 3.10: Consider the hierarchy of Fig. 3.13. There are four possible 
subtrees including the root: 

1. Movies alone. 

2. Movies and Cartoons only. 

3. Movies and Murder-Mysteries only. 

4. All three entity sets. 

\?'e must construct relations for all four "classes." Since only Murder-Mysteries 
contributes an attribute that is unique to its entities, there is actually some 
repetition, and these four relations are: 

Movies(title, year, length,  f i l m ~ ~ ~ e )  
MoviesC(title, year, length,  f i l m ~ ~ ~ e )  
MoviesMM(title, year, length,  f ilmType, weapon) 
MoviesCMM ( t i t l e ,  year, length,  f ilmType , weapon) 

Had Cartoons had attributes unique to that entity set, then all four rela- 
tions would have different sets of attributes. As that is not the case here, we 
could combine Movies with MoviesC (i.e., create one relation for non-murder- 
mysteries) and combine MoviesMM with MoviesCMM (i.e., create one relation 
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for all murder mysteries), although doing so loses some information - which 
movies are cartoons. 

We also need to consider how to handle the relationship Voices from Car- 
toons to Stars. If Vozces were many-one from Cartoons, then we could add a 
voice attribute to MoviesC and MoviesCMM, which would represent the Voices 
relationship and would have the side-effect of making all four relations different. 
However, Voices is many-many, so we need to create a separate relation for this 
relationship. As always, its schema has the key attributes from the entity sets 
connected; in this case 

Voices ( t i t l e ,  year, s t a r ~ a m e )  

would be an appropriate schema. 
One might consider whether it was necessary to create two such relations, 

one connecting cartoons that are not murder mysteries to their voices, and the 
other for cartoons that are murder mysteries. However, there does not appear 
to be any benefit to doing so in this case. 

3.3.3 Using Null Values to Combine Relations 

There is one more approach to representing information about a hierarchy of 
entity sets. If we are allowed to use NULL (the null value as in SQL) as a 
value in tuples, we can handle a hierarchy of entity sets with a single relation. 
This relation has all the attributes belonging to any entity set of the hierarchy. 
An entity is then represented by a single tuple. This tuple has NULL in each 
attribute that is not defined for that entity. 

Example 3.11: If we applied this approach to the diagram of Fig. 3.13, we 
would create a single relation whose schema is: 

Movie(t i t le,  year, length,  filmType, weapon) 

Those movies that are not murder mysteries mould have NULL in the weapon 
component of their tuple. It would also be necessary to have a relation Voices 
to connect those movies that are cartoons to the stars performing the voices, 
as in Example 3.10. 

3.3.4 Comparison of Approaches 

Each of the three approaches, which we shall refer to as "straight-E/R," "object- 
oriented." and "nulls," respectively, have advantages and disad\~antages. Here 
is a list of the principal issues. 

1. It is expensive to answer queries involving several relations, so Re would 
prefer to find all the attributes we needed to answer a query in one re- 
lation. The nulls approach uses only one relation for all the attributes, 
so it has an advantage in this regard. The other two approaches have 
advantages for different kinds of queries. For instance: 
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(a) A query like "what films of 1999 were longer than 150 minutes?" can 
be answered directly from the relation Movies in the straight-E/R 
approach of Example 3.9. However, in the object-oriented approach 
of Example 3.10, we need to examine Movies, MoviesC, MoviesMM, 
and MoviesCMM, since a long movie may be in any of these four 
relations.' 

(b) On the other hand, a query like "what weapons were used in cartoons 
of over 150 minutes in length?" gives us trouble in the straight- 
E/R approach. We must access Movies to find those movies of over 
150 minutes. We must access Cartoons to verify that a movie is a 
cartoon, and we must access MurderMysteries to find the murder 
weapon. In the object-oriented approach, we have only to access the 
relation MoviesCMM, where all the information we need will be found. 

2. would like not to use too many relations. Here again, the nulls method 
shines, since it requires only one relation. However, there is a difference 
between the other two methods, since in the straight-E/R approach, we 
use only one relation per entity set in the hierarchy. In the object-oriented 
approach, if we have a root and n children (n + 1 entity sets in all), then 
there are 2n different classes of entities, and we need that many relations. 

3. \Ire would like to minimize space and avoid repeating information. Since 
the object-oriented method uses only one tuple per entity, and that tuple 
has components for only those attributes that make sense for the entity, 
this a.pproach offers the minimum possible space usage. The nulls ap- 
proach also has only one tuple per entity, but these tuples are LLlong"; i.e., 
they have components for all attributes, whether or not they are appro- 
priate for a given entity. If there are many entity sets in the hierarchy, and 
there are many attributes among those entity sets, then a large fraction 
of the space could wind up not being used in the nulls approach. The 
straight-E/R method has several tuples for each entity, but only the key 
attributes are repeated. Thus, this method could use either more or less 
space than the nulls method. 

3.3.5 Exercises for Section 3.3 

* Exercise 3.3.1 : Convert the E/R diagram of Fig. 3.14 to a relational database 
schema, using each of the followving approaches: 

a) The straight-E/R method. 

b) The object-oriented method. 

c) The nulls method. 

'Even if we combine the four relations into two, we must still access both relations to 
answr the query. 
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! Exercise 3.3.2: Convert the E/R diagram of Fig. 3.15 to a relational database 3.4.1 Definition of Functional Dependency 
schema, using: il functional dependency (FD) on a relation R is a st,atement of the form " ~ f  

a) The straight-E/R method. two tuples of R agree on attributes A1,A2,. . . ,An (i.e., the tuples have the 
same values in their respective components for each of these attributes), then 

b) The object-oriented method. they must also agree on another attribute, B." We write this FD formally as 
A1 A2 . . - An -+ B and say that "A1 , A2, . . . , A, functionally determine B." 

c) The nulls method. If a set of attributes .41, Az, . . . , A, functionally determines more than one 

Exercise 3.3.3 : Convert your E/R design from Exercise 2.1.7 to a relational 
database schema, using: A1A2.'.An -+ B1 

AlA2..-An -+ BZ 
a) The straight-E/R method. ... 

A1A2.--An + B, 
b) The object-oriented method. 

then we can, as a shorthand, write this set of FD's as  
c) The nulls method. 

A1A2...An -+ BIB2...B, 

! Exercise 3.3.4: Suppose that we have an isa-hierarchy involving e entity sets. 
Each entity set has a attributes, and k of those at  the root form the key for all 
these entity sets. Give fornlulas for (i) the minimum and maximum number of 
relations used, and (ii) the minimum and maximum number of components that 1 I I 

the tuple(s) for a single entity have all together, when the method of conversion 
to relations is: 

* a) The straight-E/R method. 
I I I 

b) The object-oriented method. 

c) The nulls method. Ift and Then they 
u agree must agree 
here. here 

3.4 Functional Dependencies 
Figure 3.16: The effect of a functional dependency on two tuples. 

Sections 3.2 and 3.3 showed us how to convert E/R designs into relational 
schemas. It is also possible for database designers to produce relational schemas 
directly from application requirements, although doing so can be difficult. Re- Example 3.12 : Let us consider the reladon 

gardless of how relational designs are produced, we shall see that frequently it is 
possible to improve designs systematically based on certain types of constraints. Movies(t i t le ,  year, length,  filmType, studioName, starName) 

The most important type of constraint we use for relat,ional schema design is from Fig. 3.8, an instance of which we reproduce here as Fig. 3.17. There are 
a unique- due constraint called a "functional dependency" (often abbreviated 

several FD's that n-e can reasonably assert about the Movies relation. For FD). Knowledge of this type of constraint is vital for the redesign of database instance, we can assert the three FD's: 
schemas to eliminate redundancy, as we shall see in Section 3.6. There are also 
some other kinds of constraints that help us design good databases schemas. For t i t l e  year + length 
instance, multivalued dependencies are covered in Section 3.7, and referential- t i t l e  year + filmType 
integrity constraints are mentioned in Section 5.5. t i t l e  year -+ studioName 
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S ta r  Wars Remember that a FD, like any constraint, is an assertion about the schema 
Harrison Ford of a relation, not about a particular instance. If we look at an instance, y e  S ta r  Wars 
Emilio Estevez cannot tell for certain that a FD holds. For example, looking a t  Fig. 3.17 

we might suppose that a FD like t i t l e  -+ f ilmType holds, because for 
every tuple in this particular instance of the relation Movies it happens 
that any two tuples agreeing on t i t l e  also agree on f ilmType. 

However, we cannot claim this FD for the relation Movies. Were 
Figure 3.17: An instance of the relation Movies(t i t le ,  Ye-, length, our instance to include, for example, tuples for the two versions of King 
f ilmType, studioName, s t a r N a e )  Kong, one of which was in color and the other in black-and-white, then 

the proposed FD would not hold. 

Since the three FD1s each have the same left side, t i t l e  and Ye-, we can 
summarize them in one line by the shorthand 

2. No proper subset of {Al, Az,.. . , An) functionally determines all other 
t i t l e  year + length filmType studioName attributes of R; i.e., a key must be minimal. 

Informally, this set of FD's says that if two tuples have the same value in 
their t i t l e  components, and they also have the same value in their Year corn- 
ponents, then these two tuples must have the same values in their length corn- 
ponents, the same values in their f ilmType components, and the same values Example 3.13: Attributes { t i t l e ,  year, starlame} form a key for the re- 
in their studioName components. This assertion makes Sense if we ~ ~ ~ ~ ~ b e r  

lation Movies of Fig. 3.17. First, we must show that they functionally de- the original design from which this relation schema was developed. Attributes termine all the other attributes. That is, suppose two tuples agree on these 
t i t l e  and year form a key for the Movies entity set. Thus, 1% expect that three attributes: t i t l e ,  year, and starName. Because they agree on t i t l e  
given a title and year, there is a unique movie. Therefore, there is a unique and year, they must agree on the other attributes - length,  f ilmType, and 
length for the movie and a unique film type. Further, there is a many-one rela- 

studioName - as we discussed in Example 3.12. Thus, two different tuples tionship from Movies to Studios. Consequently, we expect that given a mob-ie, cannot agree on all of t i t l e ,  year, and starName; they would in fact be the 
there is only one owning studio. 

On the other hand, we observe that the statement 

t i t l e  y e a r +  starName that t i t l e  and year do not determine starlame, because many movies 
more than one star. Thus, { t i t l e ,  year) is not a key. 

is false; it is not a functional dependency. Given a movie, it is entirely possible 
that there is more than one star for the movie listed in our database. {year, s t a r~ame}  is not a key because we could have a star in two movies 

in the same year; therefore 

year starName + t i t l e  
3.4.2 Keys of Relations 
1% say a set of one or more attributes {Al, A2,. . . ,An} is a key for a relation is not a FD. Also, we claim that { t i t l e ,  starName) is not a key, because two 

movies with the same title, made in different years, occasionally have a star in 

1. Those attributes functionally determine all other attributes of the rela- 2 ~ i n c e  we asserted in an earlier book that there were no known examples of this phe- 
tion. That is, because relations are sets, it is impossible for two distinct nomenon, several people have shown us we were wrong. It's an interesting challenge to 
tuples of R to agree on all of Al,A2, ... ,-An. discover stars that appeared in two versions of the same movie. 
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Minimality of Keys 

The requirement that a key be mininial was not present in the E/R model, 
although in the relational model, n-e do require keys to be minimal. While 
we suppose designers using the E/R model would not add unnecessary 
attributes to the keys they declare, we have no way of knowing whether 
an E/R key is minimal or not. Only when we have a formal representation 
such as FD's can we even ask the question whether a set of attributes is a 
minimal set that can serve as a key for some relation. 

Incidentally, remember the difference between "minimal" - you can't 
throw anything out - and "minimum" - smallest of all possible. A 
minimal key may not have the minimum number of attributes of any key 
for the given relation. For example. we might find that ABC and DE are 
both keys (i.e., minimal), while only DE is of the minimum possible size 
for any key. 

I 

CHAPTER 3. THE RELATIONAL DATA JkfODEL FUNCTIONAL DEPENDENCIES 87 

Al A2 - - . A, -+ B is called a "functionai:' dependency because in prin- 
ciple there is a function that takes a list of values, one for each of at- 
tributes Al ,  A2,. . . , A, and produces a unique value (or no value at  d l )  
for B. For example, in the Hovies relation, we can imagine a function that 
takes a string like "Star W a r s 1 '  and an integer like 1977 and produces the 
unique value of length, namely 124, that appears in the relation Movies. 
However, this function is not the usual sort of function that we meet in 

Sometimes a relation has more t f i , ~  one key. If SO, it is common to desig- 
nate one of the keys as the primary key. In commercial database systems, the 3.4.4 Discovering Keys for Relations 
choice of primary key can influence some implementation issues such as When a relation schema was developed by converting an E/R design to relations, 
the relation is stored on disk. A use?&: callvention we shall follow is: we can often predict the key of the relation. Our first rule about inferring keys . vnderline the attributes of the primary key when displaying its relation 

If the relation comes from an entity set then the key for the relation is 
the key attributes of this entity set. 

3.4.3 Superkeys 
set of attributes that contains a key is called a superkey, short for "superset 

of a key." ~ h ~ s ,  every key is a superkey. However, some superkeys are not 
(minimal) keys. Note that every supez i~y  satisfies the first condition of akeY: it 
functionally determines all other attri3::ies of the relation. However, a superkey Movies (title, y s ,  length, f ilmType) 
need not satisfy the second conditior;: zlinimality. Stars(=, address) 

Example 3-14: In the relation of Esaniple 3.13, there are many superkeys. are the schema of the relations, with keys indicated by underline. 

Sot  only is the key Our second rule concerns binary relat,ionships. If a relation R is constructed 
from a relationship, then the multiplicity of the relationship affects tlle key for 

{ t i t l e .  j - S X .  starName) R. There are three cases: 

a superkey, but any superset of this *T of attributes, such as If the relationship is many-many, then the keys of both connected entity 
sets are the key attributes for R. 

{ t i t l e ,  year, s tarEiz3.  length,  studioName) 
If the relationship is many-one from entity set El to entity set E2, then 

is a superkey. the key attributes of El are key attributes of R, but those of E2 are not. 
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Other Key Terminology 

some books and articles one finds different ternlinology regarding keys. We take the position that a FD can have several attributes on the left 
one can find the term "key" used the way n-e have used the term "su- but only a Single attribute on the right. Moreover, the attribute on the 
perkey; that is, a set of attributes that functionally determine all the right may not appear also on the left. However, we allow several F D ~ ~  
attributes, with no requirement of minimality. These sources typically use with a common left side to be combined as a shorthand, giving us a set 
the term "candidate key'' for a key that is miuimal - that is, a ''key" in of attributes on the right. We shall also find it occasionally convenient to 
the sense we use the term. allow a "trivial" FD whose right side is one of the attributes on the left. 

Other works on the subject often start from the point of view that 
both left and right side are arbitrary sets of attributes, and attributes may . ~f the is one-one, then the key attributes for either of the appear on both left and right. There is no important difference between 

connected entity sets are key attributes of R. Thus, there is not a unique the two approaches, but we Shall maintain the position that, unless stated 
otherwise, there is no attribute on both left and right of a FD. 

key for R. 

~~~~~l~ 3-16 : Example 3.2 discussed the relationship Owns, which is many- . 
one from entity set Movies to entity set Studios. Thus, the key for the relation 
owns is the key t i t l e  and year, which rwme from the key for Movies. 

somethillg about the way these numbers are assigned. For instance, ,-an an area 
code straddle two states? Can a ZIP code straddle two area codes? can two The schema for Owns, with key attributes underbed,  is thus 
people have the same Social Security number? Can they haye the same address 

Owns(-, y s ,  studioName) or phone number? 

contrast, Example 3.3 discussed the many-many relationship Stars-in * Exercise 3.4.2 : Consider a relation representing the present position of mole- 
betwwn ~~~i~~ and Stars. Now, all attributes of .rhe resulting relation cules in a closed container. The attributes are an ID for the molecule, the x, y, 

and zcoordinates of the molecule, and it.s yelocity in the 3, y, and diInensions. 
Stars-in(-, year,  at=Name) What FD's would YOU expect to hold? What are the keys? 

are key attributes, In fact, the only may the re1a;ion from a many-nlany rela- ! Exercise 3.4.3: In Exercise 2.2.5 we discussed three different assumptions 
tionship could not have all its attributes be part c.;i the key is if the relationship about the relationship Births. For each of these, indicate the key or keys of the 
itself has an attribute. Those attributes are omit-ed from the key- relation constructed from this relationship. 

~ i ~ ~ l l ~ ,  let us consider multiway relationships- Since we cannot describe all * Exercise 3.4.4 : In your database schema constructed for Exercise 3.2.1, in&- 
possible dependencies by the arrows conling Our of the relationship, t,llere are cate the keys you would expect for each relation. 
situatiol,s where the key or keys will not be obvieirs without thinking in detail 
about ,vhich sets ,of entity sets functionally dete- line which other entity sets. Exercise 3.4-5: For each of the four parts of Exercise 3.2.4, indicate the 
One guarantee we can make, however, is expected keys of your relations. . l fa  multiway relationship R has an arroa- entity set E ,  then there is at 

!! Exercise 3.4.6: Suppose R is a relation with attributes .Al,  . . : ;l,l. A~ a 
least key for the corresponding relatior rhat excludes the key of E- function of n: tell how many superkeys R has, ifi 

* a) The only key is -41. 
3.4.5 Exercises for Section 3.4 

b) The only keys are .a1 and A2. 
Exercise 3.4.1 : Consider a relation about peop'Le in the United States, includ- 
ing tlleir name, Social Security number, street zddress, city, state, ZIP code: c) *he only keys are {A1, Az) and {A3 ,  Ad).  
area code, and phone number (7 digits). What m ' s  would you expect to hold? 
jf?hat are the keys for the relation? To answer question, you need to kn0'~. dl The only keys are {A1, . 4 ~ )  and (.41, .&I. 
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3.5.2 Trivial Functional Dependencies 

FD AIAz 0 .  . An -+ B is said to be trivial if B is one of the A's. For example, 

t i t l e  year -+ t i t l e  

is a trivial FD. 
Every trivial FD holds in every relation, since it says that "two tuples that 

agree in all of A1, A2, . . . , A, agree in one of them." Thus, we may assume any 
trivial FD, without having to justify it on the basis of what FD's are asserted 
for the relation. 

In our original definition of FD's, we did not allow a FD to be trivial. --- u 

However, there is no harm in including them, since they are always true, and 
they sometimes simplify the statement of rules. 

When we allow trivial FD's, then we also allow (as shorthands) FD's in 
which some of the attributes on the right are dso on the left. We say that a 
FD A1A2...An -+ B1B2...Bm is 

Trivial if the B's are a subset of the A's. 

Nontrivial if at least one of the B's is not among the A's. 

Completely nontrivial if none of the B's is also one of the A's. 

Thus 

t i t l e  year -+ year length 

is nontrivial, but not completely nontrivial. By eliminating year from the right 
side we would get a completely nontrivial FD. 

We can always remove from the right side of a FD those attributes that 
appear on the left. That is: 

The FD .A1& . . . An -+ BlB2 . - .  B, is equivalent to 

where the C's are all those B's that are not also A's. 

Ke call this rule, illustrated in Fig. 3.18, the trivial-dependency rule. 

3.5.3 Computing the Closure of Attributes 

3.5. RULES ABOUT FUNCTIONAL DEPENDENCIES 

I I I I 
I I I I 
I t I I 
I I I 

I I 1 
U I I I 

, , 
If t and Then they 
u agree must agree 
onthe As onthe 5s 

. So surely 
they agree 
on the Cs 

Figure 3.18: The trivial-dependency rule 

{Al, A2,. . . ,An)+. To simplify the discussion of computing closures, we shall 
allow trivial FD's, so Al,  A2,. . . ,=In are always in {AI, Az, . . . ,An)+. 

Figure 3.19 illustrates the closure process. Starting with the given set of 
attributes, we repeatedly expand the set by adding the right sides of FD's as 
soon as we have included their left sides. Eventually, we cannot expand the 
set any more, and the resulting set is the closure. The following steps are a 
more detailed rendition of the algorithm for computing the closure of a set of 
attributes {.41.;12,. . . ,An)  ~i-ith respect to a set of FD's. 

1. Let S be a set of attributes that eventually will become the closure. First, 
we initialize .Y to be {dl ,  d 2 , .  - . ,An). 

2. Now, we repeatedly search for some FD B1B2. . -  Bm -+ C such that all 
of B1, B2,.  . . ; B, are in the set of attributes X, but C is not. \Ve then 
add C to the set X. 

3. Repeat step 2 as many times as necessary until no more attributes can be 
added to X. Since .Y can only grow, and the number of attributes of any 
relation schema must be finite, eventually nothing more can be added to 
S. 

Before proceeding to other rules, we shall give a general principle from which 4. The set -Y, after no more attributes can be added to it, is the correct 
all rules follow. Suppose {Al, A2,. . . ,An) is a set of attributes and S is a value of {.41; . . ,An)+. 
set of FD's. The closure of {AI, Az, . . . ,An) under the FD's in S is the set 
of attributes B such that every relation that satisfies all the FD's in set S Example 3.19: Let us consider a relation with attributes A, B, C, D, E, and 
also satisfies A1.42 - . . An + B. That is, ALA2 . - . An -+ B follours from F. Suppose that this relation has the FD's AB -+ C, B C  -+ .-ID? D -+ E, 
the FD's of S. \Ye denote the closure of a set of attributes A1& .. .*An by and C F  -+ B. What is the closure of { A , B ) ,  that is, ('4, B)+? 
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3.5 Rules About Functional Dependencies 

In this section, we shall learn how to reason about ED'S. That is, suppose we 
are told of a set of FD1s that a relation satisfies. Often, we can deduce that the 
relation must satisfy certain other FD's. This ability to discover additional FD's 
is essential when we discuss the design of good relation schemas in Section 3.6. 

Example 3.17: If we are told that a relation R with attributes A, B, and C, 
satisfies the FD's A + B and B + C, then we can deduce that R also satisfies 
the FD A -+ C. How does that reasoning go? To prove that A -+ C, we must 
consider two tuples of R that agree on A and prove they also agree on C. 

Let the tuples agreeing on attribute A be (a, bl,cl) and (a, b2,cz). We 
assume the order of attributes in tuples is A, B, C. Since R satisfies A -+ B, 
and these tuples agree on A, they must also agree on B. That is, bl = b2, and 
the tuples are really (a, b, cl) and (a, b, c2), where b is both bl  and bz. Similarly, 
since R satisfies B -+ C, and the tuples agree on B, they agree on C. Thus, 
cl = c2; i.e., the tuples do agree on C. We have proved that any two tuples of 
R that agree on A also agree on C,  and that is the FD A -+ C. 

FD's often can be presented in several different ways, without changing the 
set of legal instances of the relation. We say: 

Two sets of FD's S and T are equivalent if the set of relation instances 
satisfying S is exactly the same as the set of relation instances satisfying 
T. 

More generally, a set of ED'S S follows from a set of FD1s T if every 
relation instance that satisfies all the ED'S in T also satisfies all the ED'S 
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AlA2...An + BL 
A1A2...An -+ B2 

. . . 
AlA2.-..4, -+ B, 

That is, we may split attributes on the right side so that only one attribute 
appears on the right of each FD. Likewise, we can replace a collection of FD's 
with a common left side by a single FD with the same left side and all the right 
sides combined into one set of attributes. In either event, the new set of FD's 
is equivalent to the old. The equivalence noted above can be used in two ways. 

1% can replace a FD A1 A2 . - -An + Bl B2 . . . B,,, by a set of ED'S 
Ax-& . . . A, -+ Bi for i = 1,2,. . . , m. This transformation we call the 
splitting rule. 

We can replace a set of FD's A1 A2 . - .  An -t Bj for i = 1,2, . . . , m by 
the single FD AIAz. . . A, -+ BlB2 . . B,. We call this transformation 
the combining rule. 

For instance, we mentioned in Example 3.12 how the set of FD's: 

t i t l e  year -+ length 
t i t l e  year*  filmType 
t i t l e  year -+ studioName 

is equivalent to the single FD: 

t i t l e  year -+ length filmType studioName 

in S. 
One might imagine that splitting could be applied to t.he left sides of F D ' ~  

Xote then that tm-o sets of ED'S S and T are equivalent if and only if S follo~vs as well as to right sides. However, there is no splitting rule for left sides, as the 

from T ,  and T follows from S. following example shows. 

In this section we shall see several useful rules about ED'S. In general, these 
rules let us replace,one set of ED'S by an equivalent set, or to add to a set of Example 3.18: Consider one of the FD's such as: 
FD's others that follow from the original set. An example is the transitive rule 
that lets us follow chains of FD's. as in Exam~le  3.17. \Ire shall also give an 

t i t l e  year + length 

algorithm for answering the general question of whether one ED follows from 
one or more other FD1s. 

for the relation Movies in Example 3.12. If we try to split the left side into 

3.5.1 The Splitting/Combining Rule 1 .  t i t l e  -+ length 
year -+ length 

Recall that in Section 3.4.1 we defined the ED: then we get two false FD's. That is, t i t l e  does not functionally determine 
length, since there can be two movies with the same title (e.g., King Kong) 

AlA2-..A, -+ B ~ B . L - . . B ~  but of different lengths. Similarly, year does not functionally determine length, 
because there are certainly movies of different lengths made in any one year. 

to be a shorthand for the set of FD's: 
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we are stuck. cannot find any other FD whose left side is contained 
= {D:E), so {Dl+ = {D,E).  Since A is not a member of {D, E), we 

s section, we shall show why the closure algorithm correctly decides 
er or not a FD Ai442.-.An -+ B follows from a given set of F D ~ ~  S. 

e are two parts to the proof: 

1. we must prove that the closure algorithm does not claim too much. ~ h ~ t  
is1 we must show that if Ai A2 . .. A, -+ B is asserted by the closure test 
(i.e.7 B is in {Al,A2,. . . ,An)+), then A1A2.. .An -+ B holds in any 
relation that satisfies all the ED'S in S. 

2- we must Prove that the closure algorithm does not fail to discover a FD 
Figure 3-19: Computing the closure of a Set of attributes that truly follows from the set of ED'S S. 

Why t h e  Closure Algorithm Claims only True F D ~ ~  \ve start with x = {A, B). First, notice that both attributes on the left 
side of FD AB -+ c are in X ,  so we may add the attribute C l  which is on the MJe can Prove by induction on the number of times that we apply the 
right side of that ED. ~ h u s ,  after one iteration of step 2, x becomes {A, B, el .  operation of step 2 that for every attribute D in X ,  the FD jlls12 . . .A, -+ D 

lqext, we see that the left, side of B C  -+ AD is now contained in X ,  we holds (in the special case where D is among the A's, this FD is trivial). ~ h ~ t  is, 

may add to x the ,4 and D . ~  A is already there, but D is not, so every relation R satisfying all of the FD's in S also satisfies -Alr12 . . . A ,  -, D. 

x next becomes {A, B, C, D). At this point, we may use the 
to 

BASIS: The basis case is when there' are zero steps. Thel, D must be one of 
add E to X, which is now {A, B, C, D, E). NO more changes to X are possible. 

A1, -1.2, . . - , An; and surely -4iAz . . . A, + D holds in any relation, because it 
ln particular, the FD C F  -, B can not be used, because its left side is a trivial FD. 
becomes contained in X. Thus, {A, B)' = {A,B, C, D, 

INDUCTION: For the induction, suppose D was added when ,ye used the FD 
~f we know how to compute the closure of any set of attributes, then BlB2 ' .  .Bin -+ D. We know by the inductive hypothesis that R satisfies 

can test whether any given FD A1A2.. 'An -t B follows a set of A1.42 .. .An -+ Bi for all i = 1 ,2 , .  . . , m. Put another way, any two tuples of 
S. First compute {,Al, A2,. . . ,An}+ using the set of S. If is that agree on all of -41, .&, . . . ,A, also agree on all of B1, B2,.  . . , B,. since 

in { A ~ ,  , . . ,A,)+, then A1A2.. . A, t B does follow from S, and if is R satisfies B1B2 . . . Bm -+ D, we also know that these two tuples agree on D. 
not in { A ~ ,  A ~ ,  . ., , An)+, then this FD does not follow from S. h'1ol-e general1s Thus, R satisfies AlA2 . . . A, -t D. 
a FD with a set of attributes on the right can be tested if we mnelnber that this 
FD is a shorthand for a set of FD's. Thus, . . . An -$ BIB2 ' ' ' Bm follo'vs Why  the  Closure Algorithm Discovers All True  FDys 
fromsetof F D ' ~  s if andonly ifallofBl,Bz, . . . ,B tn arein {A1,A27...,.4n)+. 

I 
d1=12 . .. 41, -+ B were a FD that the closure algorithm says does not 

~~~~~l~ 3.20 : Consider the relation and FD's of Example 3.19. Suppose lye follow from set S.  That is, the closure of {Al, A 2 , .  . . ,A,) using set of F D ! ~  s 
! to test whether AB D follows from these FD's. We compute {z4. B)': does not include B. We must show that FD .41.42 . . . -4, -+ B really doesn't 

,vllich is i.4; B: C, D, E), lve saw in that example. Since D is a member of follow from S. That is, we must s h o ~  that there is at  least one relation instance 
the closure, we conclude that d B  -+ D does folloxv. that satisfies all the FD's in S, and yet does not satisfy dl .I2 . . . A, -, B. 

On the other hand, consider the FD D -+ A. To test whether this FD This instance I is actually quite simple to construct; it is shown in Fig. 3.20. 
follows from the given ED'S, first compute {Dl+. To do so, lye start with I has only two tuples t and 3. The two tuples agree in all the attributes of 
x = {D). \lr, can use the FD D -+ E to add E to the set .y. HolVever: {-4l, -42,. . . ,-A,}+, and they disagree in all the other attributes. I\'e must 

3Recall that BC -t AD is shorthand for the pair of FD's + A and BC D. 'IJe show first that I satisfies all the FD's of S, and then that it does not satisfy 
could treat each of these FD's separately if we wished. Ai.42 . . . . A ,  -+ B. 
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{Al,Az,...,An)+ Other Attributes Closures and Keys 
t :  1 1  1  ... 1 1  0 0 0  0 0  
3: 1 1 1 . . . 1 1  1 1 1  ... 1 1  Notice that {Al, Aaj - .  ., A,,)+ is the set of all attributes of a relation if 

and if Al, -42, , . . , An is a superkey for the relation. For only then 
d41 7 -42, . - . , An f~nctionally determine all the other attributes. \\re 

Figure 3-20: An instance I satisfying S but not A1A2 ' ' ' A n  can test if Al, -42,. . . ,A, is a key for a relation by checking first that 
{Al, A2,. . . ,An)+ is all attributes, and then checking that, for no set x 

suppose there were some FE) c1 C2. . . Ck -+ D in set S that instance I does f ~ ~ m e d  by removing one attribute from {Al,  A2,. . . , An), is X +  the set of 
all attributes. 

not satisfy. Since I has only two tuples, t and S, those must be the two tuples 
that violate clc2 . . . ck -+ D. That is, t and s agree in all the attributes of 
{c l ,  c2 , .  . . , c k ) ,  yeyet disagree on D. If we examine Fig. 3.20 we see that all 
of c1, c 2 ,  . . . , Ck must, be among the attributes of {A1 , A2, . . . , An)+, because 3.21 : Let us begin with the relation Movies of Fig. 3.7 that was 
those are the only attributes on which t and s agree. Likewise, D must be among constructed in Example 3.5 to represent the four attributes of entity set Movies, 
the other attributes, because only on those attributes do t and 3 disagree. . plus its relationship Owns with Studios. The relation and some sample data is: 

But then we did not compute the closure correctly. C1C2 . . . Ck -i D should 
have been applied when X was {AI, Az, . . . , An) to add D to X .  We conclude Year length *Type studzoName 
that c 1 c 2 . .  . ck j D cannot exist; i.e., instance I satisfies S. Sta r  Wars 1977 124 color  Fox 

Second, we must show that I does not satisfy AiAz . . .A n -+ B. However, Ducks 1991 104 color Disney 
this part is easy. Surely, A1, A2, . . . , A, are among the attributes on which t and Wayne's World 1992 95 color Paramount 
s agree. Also, we know that B is not in {A1 , AP, . - , ,An)+, so B is one of the 
attributes on which t and s disagree. Thus, I does not satisfy AlA2. . . z4n -+ B. Suppose \Ye decided to represent some data about the owning studio in 
1% conclude that the closure algorithm asserts neither too few nor too many t,his same relation. For simplicity, we shall add only a city for the studio, 
FD's; it asserts exactly those FD's that do follow from S. representing its address. The relation might then look like 

title year length filmType studioName studioAddr 
3.5.5 The Transitive Rule Sta r  Wars 1977 124 color Fox Hollywood 
The transitive rule lets us cascade two FD's. Mighty Ducks 1991 104 color Disney Buena Vista 

Wayne's World 1992 95 color Paramount ~ollywood . I ~ A ~ A ~ . . . . ~ ~  -, B1B2...Bm and BlB2.. .Bm + CiC2...Ck hold 
in relation Rt then Ald2 . . - An + Cl Cz . . . Ck also holds in R. Two of the FD's that we might reasonably claim to hold are: 

If some of the C's are among the A's, we may eliminate them from the right t i t l e  year -+ studioName 
studioName-+ studioAddr side by the trivial-dependencies rule. 

To see why the transitive rule holds, apply the test of Section 3.5.3. To test 
whether AlA2 . - . .An + ClC2 . . . Ck holds, we need to compute the closure The first is justified because the Owns relationship is many-one. The second 

{A1, A2,. . . ,A , }+  with respect to the two given FD's. is justified because the address is an attribute of Studios, and the name of tllc 

TheFDdlA2..,.An -+ BlB2...B,,, tellsusthatallofB1,B~,...,B~are 
studio is the key of Studios. 

: 
in {.417 A2:. . . : .A,}+. Then, we can use the FD BlBz . .. Bm -+ CiC2 . . . Ck 

The transitive rule alloxvs us to combine the tn.0 FD'S above to a nelx- 

to add C1, C2:. . . , Ck to {AI,  .&, . . . ,An)+. Since all the C's are in 
FD: 

1 
{ A ~ , A P , .  ..,An)+ t i t l e  year- i  studioAddr 

i we conclude that A1A2 - .. A, -+ C1C2 . . . Ck holds for any relation that sat- This FD says that a title and year (i.e., a movie) determines an address - the i 
isfies both A1A2..-An + BlBz...B, and BlB2..-Bm -i ClC2'.'Ck- 

address of the studio owning the movie. 
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3.5.6 Closing Sets of Functional Dependencies 

AS we have seen, given a set of FD's, we can often infer some other FD's, 
including both trivial and nontrivial FD's. We shall, in later sections, want 
to distinguish between given FD's that are stated initially for a relation and 
dedved FD's that are inferred using one of the rules of this section or by using 
the algorithm for closing a set of attributes. 

Moreover, we sometimes have a choice of which FD's we use to represent 
the full set of FD's for a relation. Any set of given FD's from which we can 
infer all the FD's for a relation will be called a basis for that relation. If no 
proper subset of the FD's in a basis can also derive the complete set of FD's, 
then we say the basis is minimal. 

Example 3.22 : Consider a relation R(A, B, C) such that each attribute func- 
tionally determines the other two attributes. The full set of derived FD's thus 
includes six FD's with one attribute on the left and one on the right; A -+ B, 
A -+ C, B -i A, B -+ C, C -i A, and C -+ B. It  also includes the 
three nontrivial FD's with two attributes on the left: AB -+ C, AC -+ B, 
and B C  -+ A. There are also the shorthands for pairs of FD's such as 
A -+ BC, and we might also include the trivial FD's such as A -+ -4 or 

FD's like AB -+ BC that are not completely nontrivial (although in our strict 
definition of what is a FD we are not required to list trivial or partially trivial 
FD's, or dependencies that have several attributes on the right). 

This relation and its FD's have several minimal bases. One is 

Another is 

There are many other bases, even minimal bases, for this example relation, and 
we leave their discovery as an exercise. 

3.5.7 Projecting Functional Dependencies 

When we study design of relation schema, me shall also have need to ansn-er 
the following question about FD's. Suppose we have a relation R with some 
FD's F, and we "project" R by eliminating certain attributes from the schema. 
Suppose S is the relation that results from R if we eliminate the components 
corresponding to the dropped attributes, in all R's tuples. Since S is a set. 
duplicate tuples are replaced by olie copy. IVhat FD's hold in S? 

The answer is obtained in principle by computing all FD's that: 

a) Follow from F, and 
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we want to know whether one FD follows from some given FD's, the 
osure computation of Section 3.5.3 will always serve. However, it is 
teresting to know that there is a set of rules, called Amstrong's axioms, 
m which it is possible to derive any FD that follows from a given set. 
ese axioms are: 

1. Refiexivity. If 1 ,  2 , .  . . , B }  C {A1,A2,. . . ,An}, then 
A1 A2 - - . An -+ Bl Bz . . . B,. These are what we have called trivial 

2. Ar~gmentation. If AlA2 - . . A, -+ Bl Bz . . - B,, then 

AlA2--.AnClC2---Ck -+ B1B2--.BrnClC2..-Ck 

for any set of attributes Cl,  C2,. . . , Ck. 

3. Transitivity. If 

A1&-..An -+ BlB2.. .Bm a n d B 1 B 2 . e . B ~  -+ ClC2- . .Ck 

then A1A2 ... An -+ C1C2 - - .Ck. 

Since there may be a large number of such FD's, and many of them may be 
redundant (i.e., they follow from ot,her such FD's), we are free to simplify that 
set of FD's if we wish. However, in general, the calculation of the FD's for S is 
hi the worst case exponential in the number of attributes of S. 

Example 3.23: Suppose R(A, B ,  C, D) has FD's A -+ B, B -+ C, and 
C -+ D. Suppose also that me wish to project out the attribute B, leaving a 
relation S (d ,C ,  D). In principle, to find the FD's for S ,  we need to take the 
closure of all eight subsets of {A, C, D), using the full set of FD's, including 
those involving B. Ho~i.ever, there are some obvious simplifications we can 
make. 

Closing the empty set and the set of all attributes cannot yield a nontrivial 
FD. 

I If we already know that the closure of some set X is all attributes, then 
we cannot discover any new FD's by closing supersets of X. 

Thus, we may start with the closures of the singleton sets, and then move 
on to the doubleton sets if necessary. For each closure of a set X ,  we add the b) Involve only attributes of S. 
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FD X -+ E for each attribute E that is in X+ and in the schema of S, but 
not in X .  

First, { A ) +  = {A, B ,  C, D). Thus, A -+ C and A -+ D hold in S. 
Note that A + B is true in R, but makes no sense in S because B is not an 
attribute of S. 

Next, we consider {C)+ = {C, D), from which we get the additional FD 
C -i D for S. Since {Dl+ = {D), we can add no more FD's, and are done 
with the singletons. 

Since {A)+ includes all attributes of S ,  there is no point in considering any 
superset of {A). The reason is that whatever ED we could discover, for instance 
AC + D, follours by the rule for augmenting left sides [see Exercise 3.5.3(a)] 
from one of the FD's we already discovered for S by considering A alone as the 
left side. Thus, the only doubleton whose closure we need to take is {C, D)+ = 
{C, D). This observation allows us to  add nothing. We are done with the 
closures, and the FD's we have discovered are A -+ C ,  A -+ D, and C -+ D. 

If we wish, we can observe that A -+ D follows from the other two by 
transitivity. Therefore a simpler, equivalent set of FD's for S is A -+ C and 
C - i D .  

3.5.8 Exercises for Section 3.5 

* Exercise 3.5.1 : Consider a relation with schema R(A, B ,  C, D) and FD's 
AB -+ C , C  -+ D , a n d D  -+ A. 

a) What are all the nontrivial FD's that follow from the given FD's? You 
should restrict yourself to ED'S with single attributes on the right side. 

b) What are all the keys of R? 

c) What are all the superkeys for R that are not keys? 

Exercise 3.5.2: Repeat Exercise 3.5.1 for the following schemas and sets of 
FD's: 

i )  S(A, B,C, D) with FD's A -+ B, B -+ C, and B -+ D. 

ii) T(A ,  B,C, D) with FD's AB + C, B C  -+ D, C D  -+ A, and 
AD -+ B. 

iii) U(A,  B,C, D) with FD's A -t B, B -t C, C -+ D, and D -+ A. 

Exercise 3.5.3 : Show that the following rules hold, by using the closure test 
of Section 3.5.3. 

* a) Augmenting left sides. If Al A2..  . A, -+ B is a FD, and C is another 
attribute, then A1 A2 . . . A,C -+ B follows. 
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1 augmentation. If A1 A2 . . - An + B is a FD, and C is another 
ribute, then AIAZ . - - AnC -+ B C  follows. Note: from this rule, 

the "augmentation" rule mentioned in the box of Section 3.5.6 on "A 
Complete Set of Inference Rules" can easily be proved. 

c) Pseudotransitivity. Suppose FD's Al A2 . . .A,, -+ B1 B2 - . - Bm and 
Cl C2 . . . Ck + D hold, and the B's are each among the C's. Then 
A1 A2 . . . A, El E2 - . . Ej -+ D holds, where the E's are all those of the 
C's that are not found among the B's. 

d) Addition. If FD's A1A2 . - . A, -+ Bl B2 . . . B, and 

CICz...Ck -+ D I D 2 - - . D j  

hold, then FD -41 A2 - - . A,Cl C2 . . . Ck -+ Bl B2 . . . B, Dl D2 . . . Di also 
holds. In the above, we should remove one copy of any attribute that 
appears among both the -4's and C's or among both the B's and D's. 

! Exercise 3.5.4 : Show that each of the following are not valid rules about FD7s 
by giving example relations that satisfy the given FD's (following the "if") but 
not the FD that allegedly follows (after the "then"). 

* a )  If A + B then B + A. 

b) If AB -+ C and A -+ C, then B -+ C. 

c) If AB -+ C, then -4 -+ C or B -+ C. 

! Exercise 3.5.5: Show that if a relation has no attribute that is functionally 
determined by all the other attributes, then the relation has no nontrivial FD's 
at  all. 

! Exercise 3.5.6: Let X and I' be sets of attributes. Show that if .Y Y, then 
Xf E Y+, where the closures are taken with respect to the same set of FD's. 

! Exercise 3.5.7: Prove that (X')+ = X+. 

!! Exercise 3.5.8 : \Ye say a set of attributes X is closed (with respect to a given 
set of FD's) if -Yf = X. Consider a relation with schema R(A, B, C, D) and an 
unknown set of ED'S. If we are told whir11 sets of attributes are closed, we can 
discover the FD's. \Vhat are the FD's if: 

* a) All sets of the four attributes are closed. 

b) The only closed sets are 0 and {.-I, B, C, D). 

c) The closed sets are 0, {.I;B), and { A ,  B, C, D}. 

! Exercise 3.5.9: Find all the minimal bases for the FD's and relation of Ex- 
ample 3.22. 
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! Exercise 3.5.10 : Suppose we haw relation R(A, B,  C, D, E) ,  with some set 
of FD'~,  and STe wish to project those FD's onto relation S(A, Bt C)- Give the 
FD'S that hold in S if the FD's for R are: 

Mark Hamill 
* a) AB -+ DE, C -+ E,  D -+ C, and E -+ A. Harrison Ford 

Emilio Estevez 
b) A -t D, BD -+ El  AC -+ E, and D E  -+ B. 

c) AB -+ D, i lC -+ E, B C  -+ D, D -+ A, and E -+ B. 

d) A -+ B,B -+ C , C  -+ D , D  -+ E , a n d E  -+ A. Figure 3.21: The relation Movies exhibiting anomalies 

each case, it is sufficient to give a minimal basis for the full set of FD's of S- 3.6.1 Anomalies 

!! Exercise 3.5.11: Show that if a FD F follows from some given FD's, then Problelns such as redundancy that occur when we try to cram too much into a 
lve can prove F from the given FD's using Armstrong's axioms (defined in the ' single relation are called anomalies. The principal kinds of anomalies that 
box "A complete Set of ~nference Rules" in Section 3.5.6). Hint: Examine the encounter are: 

algorithm for computing the closure of a set of attributes and show how each 
step of that algorithm can be mimicked by inferring some FD's by Armstrong's 1. Redundancy. Information may be repeated unnecessarily in sel-eral tuples. 

Examples are the length and film type for movies a;s in Fig. 3-21. 
axioms. 

2. Update Anomalies. ifre may change information in one tuple but leave the 
same illformation unchanged in another. For example, if 1.e found that 

3.6 Design of Relational Database Schemas Star Wars $\.as really 125 minutes long, we might carelessly change the 
le~lgth in the first tuple of Fig. 3.21 but not in the second or third tuples. 

careless selection of a relational database schema can lead to problems. For Due, 1-e might argue that one should neyer be so careless. ~ u t  S-e shall 
instance, Example 3.6 showed what happens if we try to combine the relation see that it is possible to redesign relation Movies so that the risk of such 
for a many-many relationship wit.h the relation for one of its entity sets- The mistakes does not exist. 
principal probleln \ve identified is redundancy, where a fact is repeated in more 
than one tuple. This problem is seen in Fig. 3.17, which we reproduce here as 3. Deletion Anomalies. If a set of values becomes empty, 1-e mag lose other 
Fig. 3.21; the length and film-type for Star Wars and Wayne's World are each information as a side effect. For example, should we delete Emilio EsteTrez 

repeated, once for each star of the movie. from the set of stars of Mighty Ducks, then we have no more stars for tllat 

In this section, we shall tackle the problem of design of good relation s~henlas movie in the database. The last tuple for Mighty Duc]cs in the relation 

in the following stages: Movies would disappear, and with it information that it is 104 minutes 
long and in color. 

1. \ve first explore in more detail the problems that arise when our schema 
3.6-2 Decomposing Relations 

2. Then, we introduce the idea of "decomposition," breaking a relation The accepted m y  to eliminate these anomalies is to decompose relations. De- 

schema (set of attributes) into txo  smaller schemas. com130sition of R inmlves splitting the attributes of R to lllake t]le $&ernas of 
two new relations. Our decomposition rule also involyes a Ivay of populatillg 

3. r\'ext, we introduce "BoYce-Codd normal form," or "BCllr'F," a condition those relations with tuples by '"rejecting" the tuples of R. After describing 
on a relation schema that eliminates these problems. the decomposition process, we shall show how to pick a decomposition that 

eliminates anomalies. 
4. These points are tied together when we explain how to assure the BCSF Given a relation R with schema {,41, ilz,. . . ,A,,), we may deconzpose R into 

condition by decomposing relation schemas. relations S and T with schemas {B1, B2,. . . , B,,) and (Cl, C2, .  . . Ck), 
respectively, such that 
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1. The two representations of the same owning-studio fact take more space, 
when the data is stored, than either representation alone. 

2. If a movie were sold, we might change the owning studio to which it 
is related by relationship Oms but forget to change the value of its 
studioNarne attribute, or vice versa. Of course one could argue that one 
should never do such careless things, but in practice, errors are frequent, 
and by trying to say the same thing in two different ways, we are inviting 
trouble. 

These problems will be described more formally in Section 3.6, and we shall 
also learn there some tools for redesigning database schemas so the redundancy 
and its attendant problems go away. 

2.2.3 Simplicity Counts 

Avoid introducing more elements into your design than is absolutely necessary. 

Example 2.14: Suppose that instead of a relationship between Movtes and 
Studios we postulated the existence of "movie-holdings," the ownership of a 
single movie. We might then create another entity set Holdings. A one-one 
relationship Represents could be established between each movie and the unique 
holding that represents the movie. A many-one relationship from Holdings to 
Studios completes the picture shown in Fig. 2.11. 

Movies Studios 

Figure 2.11: A poor design with an unnecessary entity set 

Technically, the structure of Fig. 2.11 truly represents the real world, since 
it is possible to go from a movie to its unique owning studio via Holdings. 
However, Holdings serves no useful purpose, and we are better off without it. 
It makes programs that use the movie-studio relationship more complicated, 
wastes space, and encourages errors. 0 

2.2.4 Choosing the Right Relationships 
Entity sets can be connected in various ways by relationships. However, adding 
to our design every possible relationship is not often a good idea. First, it 
can lead to redundancy, where the connectcd pairs or sets of entities for one 
relationship can be deduced from one or more other relationships. Second, the 

, resulting database could require much more space to store redundant elements, 
\ and modifying the database could become too complex, because one change in 

the data could require many changes to the stored relationships. The problems 

2.2. DESIGN PRIiVCIPLES 

are essentially the same as those discussed in Section 2.2.2, although the cause 
of the problem is different from the problems we discussed there. 

We shall illustrate the problem and what to do about it with two examples. 
In the first example, several relationships could represent the same information; 
in the second, one relationship could be deduced from several others. 

Example 2.15: Let us review Fig. 2.7, where we connected movies, stars, 
and studios with a three-way relationship Contracts. We omitted from that 
figure the two binary relationships Stars-in and Owns from Fig. 2.2. Do we 
also need these relationships, between Movies and Stars, and bet~veen &vies 
and Studios, respectively? The answer is: "we don't know; it depends on our 
assumptions regarding the three relationships in question.'' 

I t  might be possible to deduce the relationship Stars-in from Contracts. If 
a star can appear in a movie only if there is a contract involving that star, that 
movie, and the owning studio for the movie, then there truly is no need for 
relationship Stars-in. ?Ve could figure out all the star-movie pairs by looking 
at  the star-movie-studio triples in the relationship set for Contracts and taking 
only the star and movie components. However. if a star can work on a movie 
without there being a contract - or what is mire likely, without there being a 
contract that we know about in our database - then there could be star-movie 
pairs in Stars-in that are not part of star-movie-studio triples in Contracts. In 
that case, we need to retain the Stars-dn relationship. 

A similar observation applies to relationship Owns. If for every movie, there 
is at least one contract involving that movie, its owning studio, and some star for 
that movie, then we can dispense with Owns. However, if there is the possibility 
that a studio owns a movie, yet has no stars under contract for that movie, or 
no such contract is known to our database, then we must retain Owns. 

In summary, we cannot tell you whether a given relationship will be redun- 
dant. You must find out from those who wish the database created what to 
expect. Only then can you make a rational decision about whether or not to 
include relationships such as Stars-in or Owns. 0 

Example 2.16: Kow, consider Fig. 2.2 again. In this diagram, there is no 
relationship between stars and studios. Yet we can use the two relationships 
Stars-in and Owns to build a connection by the process of composing those 
two relationships. That is, a star is connected to some movies by Stars-in, and 
those movies are connected to studios by Owns. Thus, we could say that a star 
is connected to the studios that own movies in which the star has appeared. 

nbuld it make sense to hare a relationship Works-for. as suggested in 
Fig. 2.12, between Stars and Studios too? Again, we cannot tell without knotv- 
ing more. First, what would the meaning of this relationship be? If it is to 
mean "the star appeared in at  least one movie of this studio," then probably 
there is no good reason to include it in the diagram. We could deduce this 
information from Stars-in and Owns instead. 

However, it is conceivable that we have other information about stars work- 
ing for studios that is not entailed by the connection through a movie. In that 
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3-27: 1% claim that any two-attribute relation is in BCNF. lve 
need examine the possible nontrivial FD's with a single attribute on the 
right. There are not too Inany cases to consider, so let us consider them in 
turn- In what follows, suppose that the attributes are A and B. 

There are no nontrivial FD's. Then surely the BCNF condition must hold, 
because only a nontrivial FD can violate this condition. Incidentally, note 

Relation R is in BCNF if and only if: whenever there is a nontrivial FD that {A, B) is the only key in this case. 

AIAl .A ,  + B ~ B ~  . . . B~ for R, it is the case that {ill A2 , - - , An) 2. ' holds, but B + d does not hold. In this cae ,  A is the only 
key, and each nontrivial F'D contains A on the left (in fact the left can 

*his requirement is equivalent to the original BCNF condition. Recall be A). Thus there is no violation of the BCNF 

that the FD A ~ A ~ .  . . A,., 3 B I B z .  -. Bm is shorthand for the set of FD's 

AlA2 . . .A ,  + B~ for i = 1,2,. . . , m. Since there must be at least one Bi that 

is no+, among the (or elre AI A2 . - - An BIB? - -. Bm would be trivia'), 

. . . A, -+ B~ is a BCNF violation according to our original definition- 4. Both ' * B and B -+ A hold. Then both A and B are keys. swely 
FD has at  least one of these on the left, so there can be no B C ~ F  

~~~~~l~ 3-25: Relation Movies, as in Fig. 3.21, is not in BCNF. To see 
why, we first need to determine what sets of attributes are keys. we argued 
in Example 3-13 why { t i t l e ,  year, starlame) is a key- Thus, an?. set of It is worth notici~lg fromcwe (4) above that there may be more than one 
attributes containing these three is a superkey. The same arguments lye follO'ved key for a Further, the BChT condition only reqllires that some key be 
in Example 3.13 can be used to explain why no set of attributes that does 'Ontained in the left side of any nontrivial FD, not that a,ll keys are contained in 
include all three of t i t l e ,  year, and starName could be a superkey. '" the left side- -41, observe that a relation with two attributes, each functionally 
assert that { t i t l e ,  year, starlame) is the only key for Movies. determining the other, is not completely implausible. For example, a 

However, consider the FD lnay assign its emplo~ees unique employee ID'S and also record their social 
Security numbers- -A relation with attributes empID and s s ~ o  ,vOuld have each 

t i t l e  year + length filmType StudioName attribute functionally determining the other. Put another way, each attribute 
is a key, since we don't expect to find two tuples that agree on either attribute. 

,vhicll holds in Movies according to our discussion in Example 
Unfortunately, the left side of the above FD is not a superkey. In particular$ 
knolv that t i t l e  and year do not functionally determine the sixth attribute$ 3.6-4 Decomposition into BCNF 

starlame. ~ h u s ,  the existence of this FD violates the BCNF condition and 
tells us Movies is not in BCiTF. Moreover, according to the original definition By choosing suitable demmpositions, ,ve can break any relation 
of BCNF, where a single attribute on the right side was required, xe can Offer Ichema a collection of subsets of its attributes with the following imponant 
any of the three FD's, such as t i t l e  year -+ length, as a BCNF 

These subsets are the schema of relations in BCSF. 
~~~~~l~ 3-26 : On the other hand, Movies1 of Fig. 3.22 is in BCxF. Since 2. The data in the original relation is represented faithfully by the data in the 

t i t l e  y e a r - k l e n g t h  filmType studiolame that are the result of the decomposition, in a sense to be 
precise in Section 3.6.5. Roughly, we need to be able to reconstruct tile 

holds in this relation, and we have argued that neither t i t l e  nor Year by itself relation instance exactly from the decomposed relation instances. 
functionally determines any of the other attributes, the only key for 
is {tit-e, year). hforeover, the only nontrivial FD's must have at least title 3.27 suggests that perhaps all we have to do is break a relation schema 
and year on the left side, and therefore their left sides must be superkeys. Thus: twO-attribute subsets, and the result is surely in BCNF. H ~ ~ ~ , . ~ ~ ,  such 
Moviesl is in BCNF. an decomposition will not satisfy condition (2), lye shdl see in 
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Section 3.6.5. In fact, we must be more careful and use the violating FD's to 
guide our decomposition. 

The decomposition strategy we shall follow is to look for a nontrivial FD 
AIAz . . .A, -+ BIBz . . . B, that violates BCNF; i.e., {All Aa, . . . ,A,) is not 
a superkey. As a heuristic, we shall generally add to the right side as many 
attributes as are functionally determined by {Al, Az, . . . , A,). Figure 3.24 il- 
lustrates how the attributes are broken into two overlapping relation schemas. 
One is all the attributes involved in the violating FD, and the other is the 
left side of the FD plus all the attributes not involved in the FD, i.e., all the 
attributes except those B's that are not A's. 

Figure 3.24: Relation schema decomposition based on a BCNF violation 

Example 3.28: Consider our running example, the Movies relation of Fig. 
3.21. We saw in Example 3.25 that 

t i t l e  year -+ length filmType studioName 
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title 1 year I length 1 jilmType I studioNarne I studioAddr 
Sta r  Wars 1 1977 1 124 1 color ( Fox I Hollvwood 
Mighty Ducks 1991 104 color Disney Buena Vista 
Wayne's World 1992 95 Paramount Hollywood 
Addems Family I 1991 / 102 I ::::: 1 Paramount 1 Holl~wood 

Figure 3.25: The relation MovieStudio 

Example 3.29: Let us consider the relation that was introduced in Exam- 
ple 3.21. This relation, which we shall call MovieStudio, stores information 
about movies, their owning studios, and the addresses of those studios. The 
schema and some typical tuples for this relation are shown in Fig. 3.25. 

Note that MovieStudio contains redundant information. Because we added 
to our usual sample data a second movie owned by Paramount, the address of 
Paramount is stated twice. However, the source of this problem is not the same 
as in Example 3.28. In the latter example, the problem was that a many-many 
relationship (the stars of a given movie) was being stored with other information 
about the movie. Here, everything is single-valued: the attributes length and 
f ilmType for a movie, the relationship Owns that relates a movie to its unique 
owning studio, and the attribute studioAddr for studios. 

In this case. the problem is that there is a "transitive dependency." That 
is, as mentioned ill Example 3.21, relation MovieStudio has the FD's: 

t i t l e  year -+ studioName 
studioName -+ studioAddr 

is a BCNF violation. In this case, the right side already includes all the at- we may apply the transitive rule to these to get a new FD: 
tributes functionally determined by t i t l e  and year, so we shall use this BCSF 
violation to decompose Movies into: t i t l e  year -+ studioAddr 

1. The schema with all the attributes of the FD, that is: That is, a title and year (i.e., the key for movies) functionally determine a studio 
address - the address of the studio that owns the movie. Since 

{ t i t l e ,  year, length, f ilmType, s t u d i o ~ m e }  , t i t l e  year-+ length filmType 

2. The schema with all attributes of Movies except the three that appear on is another obvious functional dependency, ~ve conclude that { t i t l e ,  year} is a 

the right of the FD. Thus, we remove length, f ilmType, and studioName. key for Moviestudio: in fact it is the only key. 
leaving the second schema: On the other hand. FD: 

studioNarne + studioAddr 
{ t i t l e ,  year, starName} 

which is one of those used in the application of the transitive rule above, is non- 
Notice that these schemas are the ones selected for relations Movies1 and ti-ivial but its left side is not a superkey. This observation tells us Moviestudio 

~ ~ v i e s 2  in Example 3.24. We observed that these are each in BCSF in Earn -  is not in BCNF. 11-e can fix the problem by following the decomposition rule, 
using the above FD. The first schema of the decomposition is the attributes of 



CHAPTER 3. THE RELATIONAL DATA lVODEL 
111 

the FD itself, that is: {studioName, studioAddr). The second schema is all the xa*~le 3-30 : We could generalize Example 3.29 to have a chain of FDls 
attributes of Moviestudio except for studiohddr, because the latter attribute nger than two. Consider a relation with schema 
is on the right of the FD used in the decomposition. Thus, the other schema is: 

{title, year, length, f ilmType, studioNae) 
{title, Yew, studioName, president, presAddr) 

~h~ projection of Fig. 3.25 onto these schemas gives us the two relations 
~ovie~tudiol and ~ ~ ~ i ~ S t u d i o 2  shown in Figs. 3.26 and 3.27- Each of these 
is in BCNF. Recall from Section 3.5.7 that for each of the relations in the would assume in this relation are 

decomposition, we need to compute its FD's by computing the of each 
title year -+ studioName 

subset of its attributes, using the full set of given FD's- In general, the Process 
studioName -+ president 

is exponential in the number of attributes of the decomposed relations, but we 
president* presAddr 

also saw in Section 3.5.7 that there were some simplifications possible. 
our case, it is easy to determine that a basis for the FD's of MovieStudiol The sole key for this relation is {title, year). Thus the last two F D ' ~  

violate BCNF. Suppose we choose to decompose starting with 

title year -+length filmType studioName 
studioName 3 president 

and for MovieStudio2 the only nontrivial FD is 
First, a'e should add to the right side of this functional dependency any other 

studioName -+ studioAddr attributes in the closure of studioName. By the transitive rule applied to 

~ h ~ ~ ,  the sole key for Moviestudio1 is {title, year), and the sole for studiOName 4 President and president -) presAddr, lve know 

MovieStudio2 is {studio~ame). In each case, there are no nontrivial FD's 
StudioName -+ presAddr 

that do not contain these keys on the left. 

Colnbining the two FD's with studioName on the left, we get: 

year length filmType studioName studioName -+ president presAddr 
Star Wars 1977 124 color Fox 

Mighty ~ u c k s  1991 104 color Disney This FD has a m a x i l a l l ~  expanded right side, so we shall n o r  decompose into 

Wayne's World 1992 95 color Paramount 
the following two relation schemas. 

~ddams Family 1991 102 color Paramount {title, year, studioName) 
{studio~ame, president, presdddr) 

Figure 3.26: The relation MovieStudiol If follow the projection algorithm of Section 3.5.7, we determine that the 
FD's for the first relation has a basis: 

title year+ studioName 

while the second has 
Buena Vista 

studioName + president 
president-+ presAddr 

Figure 3.27: The relation MovieStudio2 Thus, the sole key for the first relation is {title, year), and it is therefore in 
BCNF- Howvever, the second has {studioName) for its only key but also has the 

In each of the previous examples, one judicious application of the decompo- 
sition rule is enough to produce a collection of relations that are in BCNF. In 
general, that is not the case. president3 presAddr 
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which is a BCNF violation. Thus, we must decompose again, this time using 
the above FD. The resulting three relation schema, all in BCNF, are: 

{ t i t l e ,  year, studioName) 
{studio~ame,president)  
{president, presdddr) 

In general, wve must keep applying the decomposition rule as many times as 
needed, until all our relations are in BCNF. We can be sure of ultimate success, 
because every time we apply the decomposition rule to a relation R, the two 
resulting schema each have fewer attributes than that of R. As we saw in 
Example 3.27, when we get down to two attributes, the relation is sure to be 
in BCNF; often relations with larger sets of attributes are also in BCNF. 

3.6.5 Recovering Information from a Decomposition 
Figure 3.28: Joining two tuples from projected relations 

Let us now turn our attention to the quest,ion of why the decomposition al- 
gorithm of Section 3.6.4 preserves the information that was contained in the 
original relation. The idea is that if we follow this algorithm, then the projec- 

Since we assume the FD B -+ C for relation R, the anslver is "no." Recall 

tio~ls of the original tuples can be "joined" again to produce all and only the 
that this says any two tuples of R that agree in their B components must 

original tuples. 
also agree in their C components. Since t and v agree in their B components 

To simplify the situation, let us consider a relation R(A, B,C) and a FD (they both have b there), they also agree on their C components. That, means 

B -, C, which we suppose is a BCNF violation. It is possible, for example, 
c = e; i.e., the tl-0 \ 7 a l ~ e ~  Fe supposed were different are really the same. ~ h ~ ~ ,  

that as in Example 3.29, there is a transitive dependency chain, with another (a, 6, e )  is really (a, b, c); that is, x = t. 

FD A -+ B. In that case, { A )  is the only key, and the left side of B -+ C 
Since t is in R, it must be that x is in R. Put another way, long as FD 

clearly is not a superkey. Another possibility is that B -+ C is the only 
B -+ C holds, the joining of two projected tuples cannot produce a bogus 

nontrivial FD, in which case the only key is {A, B). Again, the left side of Rather, every tuple produced by joining is guaranteed to be a tuple of 

B + C is not a superkey. In either case, the required decomposition based on 
the FD B -+ C separates the attributes into schemas (-4, B) and {B, C). This argument works in general. We assumed .d, B, and C ,yere each 

Let t be a tuple of R. We may write t = (a, b,c), where a, b, and c are single attributes, but the same argument would apply if they Tvere any sets 

the components o f t  for attributes -4, B, and C,  respectively. Tuple t projects of attributes. That is, we take any BCXF-violating FD, let B be the attributes 
as (a, b) for the relation with schema {A, B )  and as (b, c) for the relation with on the left side, let C be the attributes on tlie right but not the left, and let A 

schema {B, C). 
be the attributes on neither side. \Ire may conclude: 

It is possible to join a tuple from {A, B )  with a tuple from {B, C), ~rovided If we decompose a relation according to the method of Section 3.6.4, then 
they agree in the B component. In particular, (a, b) joins with (b, c) to give us the original relation call be recovered exactly by joining the tuples of the 
the original tuple t = (a, b, c )  back again. That is, regardless of what tuple t we new relations in all possible ways. 
started with, we can always join its projections to get t back. 

However, getting back those tuples we started with is not enough to assure If we decompose relations in a way that is not based on a FD, then lye might 

that the original relation R is truly represented by the decomposition. \That not be able to recover the original relat,ion. Here is an example. 

might happen if there were two tuples of R, say t = (a ,  b,c) and v = (d, b, e)? 3.31 : Suppose we have the relation R(.4, B, C)  as above, but that 
When we project t onto { A ,  B) we get u = (a, b), and when we project v onto the FD B -+ C does not hold. Then R might consist of the two tuples 
{B, C) we get w = (b, e), as suggested by Fig. 3.28. 

Tuples u and u, join, since they agree on their B components. The resulting 
tuple is x = (a, b,e). Is it possible that x is a bogus tuple? That is, could 
(a, b, e) not be a tuple of R? 
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The projections of R onto the relations with schemas { A ,  B) and {B, C) 
are 

and 

respectively, Since all four tuples share the same B-value, 2, each tuple of one 
relation joins with both tuples of the other relation. Thus, when we try to 
reconstruct R by joining, we get 

That is, we get "too much"; we get two bogus tuples, (1,2,5) and (4,2,3) that 
were not in the original relation R. U 

3.6.6 Third Normal Form 

Occasionally, one encounters a relation schema and its FD's that are not in 
BCNF but that one doesn't want to decompose further. The following example 
is typical. 

Example 3.32 : Suppose we have a relation Bookings with attributes: 

1. t i t l e ,  the name of a movie. 

2. theater, the name of a theater where the movie is being shown. 

3. ci ty ,  the city where the theater is located. 
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e first says that a theater is located in one city. The second is not obvious 
s based on the assumed practice of not booking a movie into two theaters 

same city. We shall assert this FD if only for the sake of the example. 
t us first find the keys. No single attribute is a key. For example, t i t l e  
a key because a movie can play in several theaters at once and in several 

ies at  once.* Also, theater is not a key, because although theater function- 
determines ci ty ,  there are multiscreen theaters that show many movies 

Thus, theater does not determine t i t l e .  Finally, c i t y  is not a key 
cities usually have more than one theater and more than one movie 

n the other hand, two of the three sets of two attributes are keys. Clearly 
i t l e ,  c i ty)  is a key because of the given FD that says these attributes 
ctionally determine theater. 
It is also true that {theater, t i t l e }  is a key. To see why, start with the 
en FD theater -t ci ty .  By the augmentation rule of Exercise 3.5.3(a), 
ater t i t l e  -+ c i t y  follows. Intuitively, if theater alone functionally de- 

mines ci ty ,  then surely theatre and t i t l e  together will do so. 
The remaining pair of attributes, c i t y  and theater, do not functionally 

termine t i t l e ,  and are therefore not a key. We conclude that the only two 

{ t i t l e ;  c i ty )  
{theater, t i t l e )  

Now we immediately see a BCNF violation. l i e  were given functional de- 
pendency theater -+ ci ty ,  but its left side, theater, is not a superkey. We 
are t,herefore tempted to decompose, using this BCSF-violating FD, into the 
two relation schemas: 

{theater, c i ty )  
{theater, t i t l e )  

There is a proble~n with this decomposition, concerning the FD 

t i t l e  c i t y  + theater 

There could be current relations for the deconiposed schemas that satisfy the 
FD theater -+ c i t y  (which can be checked in the relation {theater, c i ty))  
but that, when joined, yield a relation not satisfying t i t l e  c i t y  -+ theater. 
For instance, the two relations 

The intent behind a tuple (m, t , c )  is that the movie with title m is currently 
being shown at theater t in city c. 

\.Ve might reasonably assert the following FD's: 
"n this example we assume that there are not txm "current" movies with the same title, 

theater -+ ci ty  even though we have previously recognized that there could be two movies with the same 
t i t l e  c i t y  +theater title made in different years. 
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.6.7 Exercises for Section 3.6 
Other Normal Forms 

~f there is a "third normal form," what happened to the first two "normal 
forms"? ~h~~ indeed were defined, but today there is little use for them. a) R(A, B, C,D) with FD's AB -+ C, C -+ D, and D -+ A, 

~ , ~ t  fom is simply the condition that every component of el-ery 

tuple is an atomic Second normal form is less restrictive than 33F. R(-4, B,C, D) with FD's B -+ C and B -+ D. 

permits transitive FD's in a relation but forbids a nontrivial FD with a 

left that is a proper subset of a key. There is also a "fourth normal 
formn that we shall meet in Section 3.7. 

e) R(A, B, C, D, E) with FD's AB -+ C, DE -+ C, and B -, D. 
and 

f )  R(.4, B ,  C, Dl E )  with FD's AB -+ C, C + D, D + B, a d  D -+ E. 

are permissible according to the FD's that apply to each of the above relations: i) Indicate all the BCNF violations. DO not forget to consider FD's that are 
but when we join them we get two tuples not in the given set, but follow from them. However, it is not necessary 

theater city title to give violations that have more than one attribute on the right side. 

Guild Menlo Park The Net ii) Decompose the relations, as necessary, into collections of relations that 
park Menlo Park The Net are in BCNF. 

that violate the FD t i t l e  c i t y  -+ theater.  0 
iii) Indicate all the 3NF violations. 

The solution to the above problem is to relax our BCNF requirement slightl~: 
in order to allow the occasional relation schema, like that of Example 3.32, which iv) Decompose the relations, as necessary, into collections of relations that 
cannot be decomposed into BCNF relations without our losing the ability to are in 3KF. 
check each FD within one relation. This relaxed condition is called the tl1k-d 
normal form condition: Exercise 3.6.2 : 1% mentioned in Section 3.6.4 that we should expand the . X relation R is in third normal f o m  (3NF) if: whenever A1 A2 . . . -4n + B 

right side of a FD that is a BCNF violation if possible. However, it was deemed 

is a nontrivial FD, either {Al, Az, . . . ,A,)  is a superkey, or B is a member 
an optional step. Consider a relation R whose schema is the set of attributes 

of some key. 
{ A ,  B, C, D) with FD's -4 -+ B and A -+ C. Either is a BCNF violation, 
because the only key for R is {A,D}. Suppose we begin by decomposing R 

An attribute that is a member of some key is often said to be prime. Thus, the according to A -+ B. DO we ultimately get the same result as if we first 
3NF condition can be stated as "for each nontrivial FD, either the left side is a expand the BCXF violation to A -+ BC? why or why not? 
superkey, or the 'right side is prime." 

Kate that the difference between this 3NF condition and the BCSF condi- ! Exercise 3.6.3 : Let R be as in Exercise 3.6.2, but let the FD's be A -, B 
tion is the clause "or B is a member of some key (i.e., prime)." This clause B -+ C. Again compare decomposing using A + B first against decomposing 
"escuses" a FD like theater  + c i t y  in Example 3.32, because the right side, by A -+ BC first. 
c i ty ,  is prime. 

It is beyond the scope of this book to prove t,hat 3NF is in fact adequate ! Exercise 3-6.4 : Suppose we have a relation schema R(A, B, C) with FD 

for its purposes. That is, we can always decompose a relation schema in a A -+ B. Suppose also that we decide to decompose this schema into S(A, B) 
n-ay that do- not. lose information, into schemas that are in 3NF and allow all and T(B, C). Give an example of an instance of relation R whose projection 
FD's to be checked. When these relations are not in BCNF, there will be some onto S and T and subsequent rejoining as in Section 3.6.5 does not yield the 

redundailcy left in the schema, however. same relation instance. 
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3.7 Mult ivalued Dependencies 

A "multivalued dependency" is an assertion that two attributes or sets of at- 
tributes are independent of one another. This condition is, as we shall see, a 
generalization of the notion of a functional dependency, in the sense that every 
FD implies a corresponding multivalued dependency. However, there are some 
situations involving independence of attribute sets that cannot be explained as 
FD's. In this section we shall explore the cause of multivalued dependencies 
and see how they can be used in database schema design. 

3.7.1 Attribute Independence and Its Consequent 
Redundancy 

There are occasional situations where we design a relation schema and find it is 
in BCNF, yet the relation has a kind of redundancy that is not related to FD's. 
The most common source of redundancy in BCNF schemas is an attempt to 
put two or more many-many relationships in a single relation. 

Example 3.33 : In this example, we shall suppose that stars may have several 
addresses. We shall also break addresses of stars into street and city compo- 
nents. Along with star names and their addresses, we shall include in a single 
relation the usual Stars-in information about the titles and years of movies in 
which the star appeared. Then Fig. 3.29 is a typical instance of this relation. 

street 
C. Fisher 123 Maple S t .  
C. Fisher 5 Locust Ln. 
C. Fisher 123 Maple S t .  
C. Fisher 5 Locust Ln. 
C. Fisher 123 Maple S t .  
C. Fisher 5 Locust Ln. i 

city 

Hollywood 
Malibu 
Hollywood 
Malibu 
Hollywood 
Ma1 ibu 

title 
Star  Wars 
Star Wars 
Empire St r ikes  Back 
Empire St r ikes  Back 
Return of the  Jedi 
Return of t h e  Jedi  

year 
1977 
1977 
1980 
1980 
1983 
1983 

functionally determined by the other four attributes. There might be a star 
with two homes that had the same street address in different cities. Then there 
would be two tuples that agreed in all attributes but c i t y  and disagreed in 
c i ty .  Thus, 

name s t r e e t  t i t l e  year -+ c i t y  

is not a FD for our relation. We leave it to the reader to  check that none of 
the five attributes is functionally determined by the other four. Since there are 
no nontrivial FD's, it follows that all five attributes form the only key and that 
there are no BCNF violations. O 

3.7.2 Definition of Multivalued Dependencies 
A multivalued dependency (often abbreviated MVD) is a statement about some 
relation R that when you fix the values for one set of attributes, then the 
values in certain other attributes are independent of the values of all the other 
attributes in the relation. More precisely, we say the MVD 

holds for a relation R if when we restrict ourselves to the t u ~ l e s  of R that have 
particular values for each of the attributes among the A's, then the set of values 
we find among the B's is independent of the set of values we find among the 
attributes of R that are not among the A's or B's. Still more precisely, we say 
this MVD holds if 

For each pair of tuples t and u of relation R that agree on all the 
A's, we can find in R some tuple v that agrees: 

1. With both t and u on the A's, 
2. With t on the B's, and 

3. With u on all attributes of R that are not among the A's or 
B's. 

Note that we can use this rule with t and u interchanged, to infer the existence 
Figure 3.29: Sets of addresses independent from movies of a fourth tuple w that agrees with u on the B's and with t on the other 

attributes. As a consequence, for any fixed values of the A's, the associated 
We focus in Fig. 3.29 on Carrie Fisher's two hypothetical addresses and three values of the B's and the other attributes appear in all possible combinations 

best-known movies. There is no reason to associate an address with one movie in different tuples. Figure 3.30 suggests how v relates to t and u when a MVD 
and not another. Thus, the only way to express the fact that addresses and 
movies are independent properties of stars is to have each address appear with In general: we may assume that the -4's and B's (left side and right side) 
each movie. But when we repeat address and movie facts in all combinations, of a MVD are disjoint. However, as with FD's, it is permissible to add some 
there is obvious redundancy. For instance, Fig. 3.29 repeats each of Carrie of the A's t,o the right side if we wish. Also note that unlike FD's, where we 
Fisher's addresses three times (once for each of her movies) and each movie started with single attributes on the right and allowed sets of attributes on the 
twice (once for each address). right as a shorthand, with MVD's, we must consider sets of attributes on the 

Yet there is no BCNF violation in the relation suggested by Fig. 3.29. There right immediately. As we shall see in Example 3.35, it is not always possible to 
are, in fact, no nontrivial FD's at all. For example, attribute c i t y  is not break the right sides of h1VD's into single attributes. 

f 
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holds for some relation, then so does Ax A2 . - . A, -H C1C2 . . - Ck,  where 
the C's are the B's plus one or more of the A's. Conversely, we can also 
remove attributes from the B's if they are among the A's and infer the 
MVD AlA2 . . - A, -t, DlD2 - D, if the D's are those B's that are not 
among the A's. 

The transitive rule, which says that if A1 A2 . . A, -t, BI B2 . . . B, and 
B1 B2 . . . Bm -H C1C2 - . . Ck hold for some relation, then so does 

AlA2...An + ClC:!..-Ck 

However, any C's that are also B's must be deleted from the right side. 

On the other hand, MVD's do not obey the splitting part of the splitting/com- 
bining rule, as the following example shows. 

Example 3.35 : Consider again Fig. 3.29, where we observed the MVD: 

name JS s t r e e t  c i t y  

If the splitting rule applied to MVD's, we would expect 

Figure 3.30: A multivalued dependency guarantees that v exists 

Example 3.34 : In Example 3.33 we encountered a MVD that in our notation 
is expressed: 

name -H s t r e e t  c i t y  

That is 
each of 

, for 
the 

each star's name, the set of addresses appears in 
star's movies. For an example of how the formal 

conjur 
definit 

)n with 
of this 

MVD applies, consider the first and fourth tuples from Fig. 3.29: 1 &!*.. name -t) s t r e e t  

name 
C .  Fi 
- - 
she 

I street city I title 
r 1 123 Maple S t .  Hollywood I S t a r  Wars 

year 
1977 

- .. 

also to be true. This MVD says that each star's street addresses are indepen- 
dent of the other attributes, including ci ty.  However, that statement is false. 
Consider, for instance, the first two tuples of Fig. 3.29. The hypothetical hIVD 
~ o u l d  allow us to infer that the tuples wit,h the streets interchanged: 

name street ca'ty title year 
C .  Fisher  5 Locust Ln. Hollywood S t a r  Wars 1977 
C. F isher  123 Maple S t .  Malibu S t a r  Wars 1977 

were in the relation. But these are not true tuples, because, for instance, the 
home on 5 Locust Ln. is in Malibu, not Hollyuood. O 

However, there are several new rules dealing with MVD's that we can learn. 
First, 

C .  Fisher 1 5 Locust Ln. 1 Malibu I Empire S t r ikes  Back 1 1980 

If we let the first tuple be t and the second be u, then the S,IVD asserts 
that we must also find in R the tuple that has name C.  Fisher, a street and 
city that agree with the first tuple, and other attributes ( t i t l e  and   ear) that 
agree with the second tuple. There is indeed such a tuple; it is the third tuple 
of Fig. 3.29. 

Similarly, we could let t be the second tuple above a ~ i d  u be the first. Then 
the MVD tells us that t,here is a tuple of R that agrees wit11 the second in 
attributes name, s t r e e t ,  and c i t y  and with the first in name, t i t l e ,  and year. 
This tuple also exists; it is the second tuple of Fig. 3.29. 

Every FD is a IIVD. That is, if .41.42.. .A,, -+ B ~ B ~ .  . . B,,; then 
3.7.3 Reasoning About Multivalued Dependencies -41-42...An --+$ BIB2.. .&. 

There are a number of rules about IIVD's that are similar to the rules me To See why, suppose R is some relation for which the FD 
learned for FD's in Section 3.5. For example, MVD's obey 

41A2-..An -+ B1B2...Bm 
The trivial dependencies rule, which says that if MVD 

and Suppose t and u are tuples of R that agree on the A'S. To show 
.AIA2.-.A, -t, BIB2- . .Bm that the MVD AI-42 - .  . -4, -+, B1 B2 - -. Bm holds, we have to show that R 
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also contains a tuple v that agrees with t and u on the A's, with t on the B's, 
and with u on all other attributes. But v can be u. Surely u agrees with t and 
u 011 the A's, because we started by assuming that these two tuples agree on 
the A's. The FD A1 A2 . . . A, + B1B2 . . . Bm assures us that u agrees with t 
on the B's. -4nd of course u agrees with itself on the other attributes. Thus, 
whenever a FD holds, the corresponding hlVD holds. 

Another rule that has no counterpart in the world of FD's is the comple- 
mentation rule: 

If AlAz - . .A, -t, Bl Bz - - .  B, is a MVD for relation R, then R also 
satisfies A1 Az . . . A, -tt Cl C2 . . . Ck, where the C's are all attributes of 
R not among the A's and B's. 

Example 3.36 : Again consider the relation of Fig. 3.29, for which we asserted 
the MVD: 

name ++ street c i t y  

The complementation rule says that 

name + t i t l e  year 

must also hold in this relation, because t i t l e  and year are the attributes not 
mentioned in the first AND. The second MVD intuitively means that each star 
has a set of movies starred in, which are independent of the star's addresses. 
0 

3.7.4 Fourth Normal Form 

The redundancy that we found in Section 3.7.1 to be caused by YIVD's can 
be eliminated if we use these dependencies in a new decomposition algorithm 
for relations. In this section we shall introduce a new normal form, called 
"fourth normal form." In this normal form, all "nontrivial" (in a sense to be 
defined below) MVD's are eliminated, as are all FD's that violate BCSF. As a 
result, the decomposed relations have neither the redundancy from FD's that 
we discussed in Section 3.6.1 nor the redundancy from hlfJD's that we discussed 
in Section 3.7.1. 

A XlVD AlA2 . . - .A,  -+, Bl Bz . . . B, for a relation R is nontrivial if: 

1. Sone of the B's is among the A's. 

3.7. &I ULTIVAL UED D E P E N D E N C B  

is a nontrivial MVD, {A1, Az, . ..,A,) is a superkey. 

That is, if a relation is in 4NF, then every nontrivial MVD is really a FD with 
a superkey on the left. Note that the notions of keys and superkeys depend on 
FD's only; adding MVD's does not change the definition of "key." 

Example 3.37: The relation of Fig. 3.29 violates the 4NF condition. For 
example, 

name -H s t r e e t  c i t y  

is a nontrivial MVD, yet name by itself is not a superkey. In fact, the only key 
for this relation is all the attributes. 

Fourth normal form is truly a generalization of BCNF. Recall from Sec- 
tion 3.7.3 that every FD is also a MVD. Thus, every BCNF violation is also a 
4NF violation. Put another way, every relation that is in 4NF is therefore in 
BCNF. 

However, there are some relations that are in BCNF but not 4NF. Fig- 
ure 3.29 is a good example. The only key for this relation is all five attributes, 
and there are no nontrivial FD's. Thus it is surely in BCNF. However, as we 
observed in Example 3.37, it is not in 4NF. 

3.7.5 Decomposition into Fourth Normal Form 

The 4NF decomposition algorithm is quite analogous to the BCNF decompo- 
sition algorithm. We find a 4NF violation, say -41A2 . - .  A, -+, BIB2 - .  . B,, 
where ( A l ,  Az, . . . , .A,) is not a superkey. Note this MVD could be a true MVD, 
or it could be derived from the corresponding FD A1 A2 . . A, -+ B1 B2 . . . Bm, 
since every FD is a MVD. Then we break the schema for the relation R that 
has the 4NF violation into two schemas: 

1. The A's and the B's. 

2. The A's and all attributes of R that are not among the A's or B's. 

Example 3.38 : Let us continue Example 3.37. We observed that 

name -H s t r e e t  c i t y  
2. Sot  all the attributes of R are among the A's and B's. 

was a 4NF violation. The decomposition rule above tells us to replace the 

The "fourth nornlal form" condition is essentially the BCNF condition, but five-attribute schema by one schema that has only the three attributes in the 
applied to MVD's instead of FD's. Formally: above MVD and another schema that consists of the left side, name, plus the 

attributes that do not appear in the MVD. These attributes are t i t l e  and 
A relation R is in fourth normal form (4NF) if whenever year, so the following two schemas 

\ 

', 



Projecting Multivalued Dependencies 

When we decompose into fourth normal form, we need to find the blVD's 
that hold in the relations that are the result of the decomposition. We wish 
it were easier to find these MVD's. However, there is no simple test analo- 
gous to computing the closure of a set of attributes (as in Section 3.5.3) for 
FD's. In fact, even a complete set of rules for reasoning about collections 
of functional and multivalued dependencies is quite complex and beyond 
the scope of this book. Section 3.9 mentions some places where the subject 
is treated. 

Fortunately, we can often obtain the relevant MVD's for one of the 
products of a decomposition by using the transitive rule, the complemen- 
tation rule, and the intersection rule [Exercise 3.7.7(b)]. We recommend 
that the reader try these in examples and exercises. 
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forms are related as in Fig. 3.31. That is, if a relation with certain dependen- 
cies is in 4NF, it is also in BCNF and 3NF. Also, if a relation with certain 
dependencies is in BCKF, then it is in 3NF. 

{name, s t r e e t ,  c i ty )  Figure 3.31: 4NF implies BCNF implies 3KF 
{name, t i t l e ,  year) 

are the result of the decomposition. In each schema there are no ~lontrivial Another way to compare the normal forms is by the guaantees they make 
multivalued (or functional) dependencies, so they are in 4NF. Note that in the about the set of relations that result from a decomposition into that normal 
relation with schema {name, s t r e e t ,  c i ty) ,  the I\.IVD: form. These observations are summarized in the table of Fig. 3.32. That is, 

BCNF (and therefore 4NF) eliminates the redundancy and other anomalies that 
name --t) s t r e e t  c i t y  are caused by FD's, while only 4NF eliminates the additional redundancy that 

is trivial since it involves all attributes. Likewise, in the relation with schema is caused by the presence of nontrivial I\IIVD's that are not FD's. Often, 3NF is 
{name, t i t l e ,  year), the MVD: enough to eliminate this redundancy, but there are examples where it is not. -4 

decomposition into 3NF can always be chosen so that the FD's are preserved; 
name + t i t l e  year that is, they are enforced in the decomposed relations (although we have not 

discussed the algorithm to do so in this book). BCNF does not guarantee 
is trivial. Should one or both schemas of the decomposition not be in 4SF, we preservation of FD's, and none of the normal forms guarantee preservation of 
~ ~ u l d  have had to decompose the non-4NF schema(s). IJVD's, although in typical cases the dependencies are preserved. 

As for the BCKF decomposition, each decomposition step leaves us xvith 
schemas that have strictly fewer attributes than we started with, so eventual?\- 
we get to schemas that need not be decomposed further; that is, they are in 
4NF. l,loreover, the argument justifying the decomposition that we gave in 
Section 3.6.5 carries over to MVD's as well. When n-e decompose a relation 
because of a lIVD A1 A2 - - - A, + B1 B2 . . . Btnr this dependency is enough to 
justify the claim that \ve can reconstruct the original relation from the relations 
of the decomposition. 

3.7.6 Relationships Among Normal Fbrms 
As we ha~re mentioned, 4NF implies BCNF, which in turn implies 3NF. Thus, Figure 3.32: Properties of normal forms and their decompositions 
the sets of relation schemas (including dependencies) satisfying the three normal 

I 

i 
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3.7.7 Exercises for Section 3.7 ! Exercise 3.7.4: In Exercise 2.2.5 we discussed four different assumptions 
about the relationship Births. For each of these, indicate the M V D , ~  (other * Exercise 3.7.1 : Suppose we have a relation R(A, B, C) with a MVD A -t, B. than FD's) that would be expected to hold in the resulting relation. 

~f we know that the tuples (a, bl, cl), (a, b2, cz), and (a,  b3,~3) are in the current 
instance of R, what other tuples do we know must also be in R? Exercise 3.7.5 : Give informal arguments why we would not expect any of the 

five attributes in Example 3.33 to be functionally determined by the other four. * Exercise 3.7.2: Suppose we have a relation in which we want to record for 
each person their name, Social Security number, and birthdate. Also, for each ! Exercise 3.7.6 : Using the definition of MVD, show why the complementation 
child of the person, the name, Social Security number, and birthdate of the 
child, and for each automobile the person owns, its serial number and make. 
To be more precise, this relation has all tuples ! Exercise 3.7.7: Show the following rules for MVD's: 

(n, S, b, cn, cs, cb, as, am) * a) The union rule. If X, Y ,  and are sets of attributes, X ++ y ,  and 
X -++ 2, then X -+t (Y U 2). 

b) The intersection rule. If X ,  Y, and Z are sets of attributes, x t, y ,  
1. n is the name of the person with Social Security number 3. a n d X  -++ 2, then X -++ (Y n 2). 

2. b is n's birthdate. C) The difle~nce fuze. If X ,  Y, and are sets of attributes, X ++ y, and 
X -++ Z, t h e n X  -t, (Y - 2 ) .  

3. a is the name of one of n's children- 
d) %vial MVD's. If Y S X, then X + Y holds in any relation. 

4. cs is m's Social Security number. 
e) Another source of trivial MVD's. If X U Y is all the attributes of relation 

5. cb is cn's birthdate. R, then -t, Y holds in R. 
6.  as is the serial number of one of n's automobiles. f) Removing attributes shared by left and right side. If x -t, y holds, then 
7. am is the make of the automobile with serial number as. X -* (Y - X) holds. 

For this relation: ! Exercise 3.7.8 : Give counterexample relations to s h o ~ ~  why the following rules 
for MVD's do not hold. 

a) Tell the functional m d  multivalued dependencies we would expect to hold. 
* a )  I fA*  BC, thenA- t ,  B. 

b) Suggest a decomposition of the relation into 4NF. 
b) If A -++ B, then A -+ B. 

Exercise 3.7.3 : For each of the following relation schemas and dependencies 
c) If AB -++ C, then A t, C. 

* a) R(A, B, C, D) with MVD's A -t, B and A -t, C. 

b) R(A, B, C, D) with b ~ ~ ~ ' s  A -t, B and B -t, CD. 3.8 Summary of Chapter 3 

C) R(A, B,  C, D) with MVD AB ++ C and B -+ D. + Relational hfodel: Relations are tables representing information. Columns 

d) R(A, B, C, D, E) with hfVD's A +-+ B and -4B + C and FD's -4 -+ D are headed by attributes; each attribute has an associated domain, or 
data type. Rows are called tuples, and a tuple has one component for 

and AB -+ E. each attribute of the relation. 

do the following: + Schemas: A relation name, together with the attributes of that rela- 

i) Find all the 4NF violations. tion, form the relation schema. A collection of relation schemas forms a 
database schema. Particular data for a relation or collection of relations 

i i)  Decompose the relations into a collection of relation schemas in 43F. is called an instance of that relation schema or database schema. 
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Converting Entity Sets to Relations: The relation for an entity set has one 
attribute for each attribute of the entity set. An exception is a weak entity 
set E, whose relation must also have attributes for the key attributes of 
those other entity sets that help identify entities of E. 

Converting Relationships to Relations: The relation for an E/R relation- 
ship has attributes corresponding to the key attributes of each entity 
set that participates in the relationship. However, if a relationship is a 
supporting relationship for some weak entity set, it is not necessary to 
produce a relation for that relationship. 

Converting Isa Hierurchies to Relations: One approach is to partition en- 
tities among the various entity sets of the hierarchy and create a relation, 
with all necessary attributes, for each such entity set. A second approach 
is to create a relation for each possible subset of the entity sets in the 
hierarchy, and create for each entity one tuple; that tuple is in the rela- 
tion for exactly the set of entity sets to which the entity belongs. A third 
approach is to create only one relation and to use null values for those 
attributes that do not apply to the entity represented by a giren tuple. 

Functional Dependencies: A functional dependency is a statement that 
two tuples of a relation which agree on some particular set of attributes 
must also agree on some other particular attribute. 

Keys of a Relation: .4 superkey for a relation is a set of attributes that 
functionally determines all the attributes of the relation. A key is a 
superkey, no proper subset of which functionally determines all the at- 
tributes. 

Reasoning About Functe'onal Dependencies: There are many rules that let 
us infer that one FD X -+ A holds in any relation instance that satisfies 
some other given set of FD's. The simplest approach to verifying that 
X + .-I holds usually is to compute the closure of X ,  using the given 
FD's to espand X until it includes -4. 
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key. 3NF does not guarantee to  eliminate all redundancy due to FD's, 
but often does so. 

+ Multivalued Dependencies: A multivalued deeendency is a statement that 
two sets of attributes in a relation have sets of values that appear in all 
possible combinations. 

+ Fourth Normal Form: MVD's can also cause redundancy in a relation. 
4NF is like BCNF, but also forbids nontrivial MVD's (unless they are 
actually FD's that are allowed by BCNF). It is possible to decompose a 
relation into 4NF without losing information. 

3.9 References for Chapter 3 

The classic paper by Codd on the relational model is [4]. This paper introduces 
the idea of functional dependencies, as well as the basic relational concept. 
Third normal form was also described there, while Boyce-Codd normal form is 
described by Codd i11 a later paper [ti]. 

Multivalued dependencies and fourth normal form were defined by Fagin in 
[7]. However, the idea of multivalued dependencies also appears independently 

~ r m s t r & ~  was the first to study rules for inferring FD's [I]. The rules for 
FD's that we have covered here (including what we call "Armstrong's axioms") 
and rules for inferring f\/IVD's as well, come from [2]. The technique for t,esting 
a FD by co~nputing the closure for a set of attributes is from [3]. 

There are a number of algorithms and/or proofs that algorithms work which 
have not been given in this book, including how one infers multivalued depen- 
dencies, how one projects multivalued dependencies onto decomposed relations, 
and how one decon~poses into 3NF without losing the ability to check functional 
dependencies. These and other matters concerned with dependencies are ex- 
plained in [8]. 

+ Decomposing Relations: Ure can decompose one relation schenia into two 1. Arnlstrong, IV. W., "Dependency structures of database relationships," 

without losing information as long as the attributes that are common to Proceedings of the 1974 IFIP Congress, pp. 580-583. 

both schemas form a superkey for at least one of the decomposed relations. 
2. Beeri, C., R. Fagin, and J. H. Howard, "A complete axiomatization for 

+ Boyce-Codd Normal Form: A relation is in BCNF if the only nontrivial functional and multivalued dependencies," ACM SIGMOD International 
FD's say that some superkey functionally determines one of the other Conference on Management of Data, pp. 47-61, 1977. 
attributes. It is possible to decompose any relation into a collection of 
BCSF relations without losing information. A major benefit of BCNF is 3. Bernstein, P. A., "Synthesizing third normal b r m  relat,ions from func- 

t,hat it eliminates redundancy caused by the existence of FD's. tional dependencies," ACM Transactions on Database Systems 1:4, pp. 
277-298, 1976. 

+ Third Normal Form: Sometimes decomposition into BCNF can hinder us 
in checking certain FD's. A relaxed form of BCNF, called 3NF, allows a 4. Codd, E. F., "A relational model for large shared data banks," Comrn. 
FD S -+ A even if X is not a superkey, provided A is a member of some ACM 13:6, pp. 377-387, 1970. 

\ 
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5. codd, E. F., lL&rther normalization of the data base relational model," in 
Database Systems (R. Rustin, ed.), Prentice-Hall, Englewood Cliffs, NJ, 
1972. 

6. Delobel, C., "Normalization and hierarchical dependencies in the rela- 
tional data model," ACM Transactions on Database Systems 3:3, pp. 201- 
222, 1978. 

7. Fagin, R., "Multivalued dependencies and a new normal form for rela- 
tional databases," ACM lkansactions on Database Systerns 2:3, pp. 262- 
278, 1977. 

a. Ullman, J. D., Principles of Database and  nowl ledge-~ase Systems, VOG ther Data Models 
ume I, Computer Science Press, New York, 1988. 

9. Zaniolo, C .  and h4. A. Melkanoff, "On the design of relational database 
schemata," ACM Transactions o n  Database Systems 6:1, pp. 1 4 7 ,  1981. The entity-relationship and relational models are just two of the models that 

have importance in database systems today. In this chapter we shall introduce 
you to several other models of rising importance. 

We begin with a discussion of object-oriented data models. One approach 
to object-orientation for a database system is to extend the concepts of object- 
oriented programming languages such as C++ or Java to include persistence. 
That is, the presumption in ordinary programming is that objects go away af- 
ter the program finishes, while an essential requirement of a DBMS is that the 
objects are preserved indefinitely, unless changed by the user, as in a file sys- 
tem. W e  shall study a "pure" object-oriented data model, called ODL (object 
definition language), which has been standardized by the ODMG (object data 
management group). 

Next, we consider a model called object-relational. This model, part of 
t,he most recent SQL standard, called SQL-99 (or SQL:1999, or SQL3), is an 
attempt to extend the relational model, as introduced in Chapter 3, to include 
many of the common object-oriented concepts. This standard forms the basis 
for object-relational DBMS's t,hat are now available from essentially all the 
major vendors, although these vendors differ considerably in the details of how 
the concepts are implemented and made available to users. Chapter 9 includes 
a discussion of the object-relational model of SQL-99. 

Then, we take up the "semistructured" data model. This recent innovation 
is an attempt to deal with a number of database problems, including the need 
to combine databases and other data sources, such as Web pages, that have 
different schemas. While an essential of object-oriented or object-relational 
systems is their insistence on a fixed schema for every class or every relation, 
semistructured data is allowed much more flexibility in what components are 
present. For instance, we could think of movie objects, some of which have a 
director listed, some of which might have several different lengths for several 
different versions, some of which may include textual reviews, and so on. 

The most prominent implenientation of semistructured data is XML (exten- 
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sible markup language). Essentially, XML is a specification for "documents," component has type Ti and is referred to by its field name fi. Record 
which are really collections of nested data elements, each with a role indicated structures are exactly what C or C++ calls "structs," and we shall fie- 
by a tag. \ve believe that XML data will serve as an essential component in quently use that term in what follows. 
systems that mediate among data sources or that transmit data among sources. 
XML may even become an important approach to flexible storage of data in 2. Collection types. Given a type T, one can construct new types by applying 

databases. 
a collection operator to type T. Different languages use different collection 
Operators, but there are several common ones, including arrays, lists, and 
sets. Thus, if T viere the atomic type integer, we might build the collection 

4.1 Review of Object-Oriented Concepts types "array of integers," "list of integers," or "set of integers." 

Before introducing object-oriented database models, let us review the major 3. Reference types. -A reference to a type T is a type whose values are suitable 
object-oriented concepts themselves. Object-oriented programming has been for locating a value of the type T. In C or C++, a reference is a "pointer" 
widely regarded as a tool for better program organization and, ultimately, more to a value, that is, the virtual-memory address of the value pointed to. 
reliable software implementation. First popularized in the language Smallt,alk, 
object-oriented programming received a big boost with the development of C++ Of course, record-structure and collection operators can be applied repeat- 

and the to C++ of much software development that was formerly . e d l ~  to build ever more complex types. For instance, a bank might define a type 

done in C. More recently, the language Java, suitable for sharing Programs that is a record structure with a first component named customer of type string 

across the world Wide Web, has also focused attention on object-oriented Pro- and whose second component is of type set-of-integers and is named accounts. 

gramming. Such a type is suitable for associating bank customers with the set of their 

The database world has likewise been attracted to the object-oriented Para- 
digm, particularly for database design and for extending relational DBMS's 
with new features. In this section we shall review the ideas behind object 4.1.2 Classes and Objects 
orientation: 

class consists of a t.ype and possibly one or more fullctions or procedures 
1. A powerful type system. (called methods; see below) that can be executed on objects of that class. The 

objects of a class are either values of that type (called immutable object.$) or 
2. Classes, which are types associated with an extent, or set of objects belong- variables whose value is of that type (called mutable objects). For example, if lye 

ing to the class. An essential feature of classes, as opposed to conventional define a class C whose type is "set of integers," the11 {2,5,7) is an immutable 
data types is that classes may include methods, which are procedures that object of class C, while variable s could be declared to be a mutable object of 
are applicable to objects belonging to the class. class C and assigned a value such as {2,5,7).  

3. Object Identity, the idea that each object has a unique identity, indepen- 
dent of its value. 4.1.3 Object Identity 

4. Inheritance, which is the organization of classes into hierarchies, where Objects are assumed to have an object identity (OID). No two objects can have 

each class inherits the properties of the classes above it. the same OID, and no object has two different OID's. Object identity has 
some interesting effects on how we model data. For instance, it is essential that 

4.1.1 The Type System 
an entity set have a key formed from values of attributes possessed by it or a 
related entity set (in the case of weak entity sets). However, 13-ithin a class, 

.i\n object-oriented programming language offers the user a rich collection of we assume we can distinguish two objects whose attributes all ha\-e identical 

types. Starting with atomic types, such as integers, real numbers, booleans, values, because the OID's of the two objects are guaranteed to be different. 

and character strings, one may build new types by using type c o n s t r ~ ~ t o r ~ .  
Typically, the type constructors let us build: 4.1.4 Met hods 

1. Record structures. Given a list of types TI, T2, . . . , T, and a corresponding Associated with a class there are usually certain functions, often called methods. 
list of field names (called instance variables in Smalltalk) f i ,  f2,. . . , fn, A method for a class C has at least one argument that is an object of class C; 
one can construct a record type consisting of n components. The ith it may have other arguments of any class, including C. For example, associated 
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with a class whose type is "set of integers," we might have methods to sum the that takes an account a belonging to the subclass TimeDeposit and calculates 
elements of a given set, to take the union of two sets, or to return a boolean the penalty for early withdrawal, as a function of the dueDate field in object a 
indicating whether or not the set is empty. 

In some situations, classes are referred to as "abstract data types," meaning 
that they encapsulate, or restrict access to objects of the class so that only the 
methods defined for the class can modify objects of the class directly. This 
restriction assures that the objects of the class cannot be changed in ways that 
were not anticipated by the designer of the class. Encapsulation is regarded as L (Object Definition Language) is a standardized language for specifying 
one of the key tools for reliable software development. e structure of databases in object-oriented terms. It is an extension of IDL 

terface Description Language), a component of CORBA (Common Object 
4.1.5 Class Hierarchies quest Broker Architecture). The latter is a standard for distributed, object- 

It is possible to declare one class C to be a subclass of another class D. If 
so, then class C inherits all the properties of class D, including the type of D 

4.2.1 Object-Oriented Design and any functions defined for class D. However, C may also have additional 
. properties. For example, new methods may be defined for objects of class C, . In an object-oriented design, the world to be modeled is thought of as composed 

and these methods may be either in addition to or in place of methods of D. of objects, which are observable entities of some sort. For example, people may 
It may even be possible to extend the type of D in certain ways. In particular, 

i 
be thought of as objects; so may bank accounts, airline flights, courses a t  a 

i if the type of D is a record-structure type, then we can add new fields to this college, buildings, and so on. Objects are assumed to have a unique object 
I type that are present only in objects of type C. identity (OID) that distinguishes them from any other object, as we discussed 
I in Section 4.1.3. 

Example 4.1 : Consider a class of bank account objects. We might describe To organize information, we usually want to group objects into classes of ob- 
the type for this class informally as: jects with similar properties. However, when speaking of ODL object-oriented 

designs, we should think of "similar properties" of the objects in a class in two 
CLASS Account = CaccountNo: in teger ;  

balance: r e a l ;  
owner: REF Customer; The real-world concepts represented by the objects of a class should be 

similar. For instance, it makes sense to group all customers of a bank into 
one class and all accounts at the bank into another class. I t  would not 

That is, the type for the Account class is a record structure wit,h three fields: make sense to group customers and accounts together in one class, because 
an integer account number, a real-number balance, and an owner that is a they have little or nothing in common and play essentially different roles 
reference to an object of class Customer (another class that we'd need for a in the world of banking. 
banking database, but whose type we have not introduced here). 

1 

! We could also define some methods for the class. For example. we might 
I have a method 

deposit(a:  Account, m: r e a l )  

that increases the balance for Account object a by amount m. Account 
Finally, 1.c might wish to have several subclasses of the Account subclass. object 

For instance, a time-deposit account could have an additional field dueDate. 
the date at  which the account balance may be withdrawn by the owner. There Figure 4.1: An object representing an account 
might also be an additional method for the subclass TimeDeposit 

The properties of objects in a class must be the same. When programming 
penalty(a: TimeDeposit) in an object-oriented language, we often think of objects as records, like 
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that suggested by Fig. 4.1. Objects have fields or slots in which values are Example 4.2: In Fig. 4.2 is an ODL declaration of the class of movies. I t  
placed. These values may be of common types such as integers, strings, is not a complete declaration; we shall add more to it later. Line (1) declarw 
or arrays, or they may be references to other objects. Movie to be a class. Following line (1) are the declarations of four attributes 

that all Movie objects will have. 
When specifying the design of ODL classes, we describe properties of three 

1) c l a s s  Movie { 

1. Attributes, which are values associated with the object. We discuss the 2) a t t r i b u t e  s t r i n g  t i t l e ;  

legal types of ODL attributes in Section 4.2.8. 3) a t t r i b u t e  in teger  year; 
4) a t t r i b u t e  in teger  length; 

2. Relationships, which are connections between the object at hand and an- 5) a t t r i b u t e  enum Film Ccolor,blackAndMite) filmType; 
other object or objects. 

3. Methods, which are functions that may be applied to objects of the class. 
Figure 4.2: An ODL declaration of the class Movie 

Attributes, relationships, and methods are collectively referred to as properties. 
The first attribute, on line (2), is named t i t l e .  Its type is string-a 

4.2.2 Class Declarations character string of unknown length. U'e expect the value of the t i t l e  attribute 
in any Movie object to be the name of the movie. The next two attributes, year 

A declaration of a class in ODL, in its simplest form, consists of: and length declared on lines (3) and (4), have integer type and represent the 
year in which the movie was made and its length in minutes, respectively. On 

1. The keyword class,  line (5) is another attribute f ilmType, which tells whether the movie was filmed 
in color or black-and-white. Its type is an enumeration, and the name of the 

2. The name of the class, and enumeration is Film. Values of enumeration attributes are chosen from a list 

3. A bracketed list of properties of the class. These properties can be at- of le'terals, color and blackAndWhite in this example. 
tributes, relationships, or methods, mixed in any order. An object in the class Movie as we have defined it so far can be thought of 

as a record or tuple with four components, one for each of the four attributes. 

That is, the simple form of a class declaration is 

c l a s s  <name> { ("Gone With the  Wind", 1939, 231, color)  

<list of properties, is a Movie object. 0 

Example 4.3 : In Example 4.2, all the attributes have atomic types. Here is 

4.2.3 Attributes in ODL an example with a nonatomic type. We can define the class S ta r  by 

The simplest kind of property is the attribute. These properties describe some 1) c las s  S t a r  C 
aspect of an object by associating a value of a fixed type with that object. 2) a t t r i b u t e  s t r i n g  name; 
For example, person objects might each have an attribute name whose type is 3) a t t r i b u t e  St ruct  Addr 
string and whose value is the name of that person. Person objects might also {s t r ing  s t r e e t ,  s t r i n g  c i ty )  address; 
have an attribute b i r thdate  that is a triple of integers (i.e., a record structure) 
representing the year, month, and day of their birth. 

In ODL, unlike the E/R model, attributes need not be of simple types, such Line (2) specifies an attribute name (of the star) that is a string. Line (3) 
as integers and strings. l i e  just mentioned bi r thdate  as an example of an specifies another attribute address. This attribute has a type that is a record 
attribute with a structured type. For another example, an attribute such as structure. The name of this structure is Addr, and the type consists of two 
phones might have a set of strings as its type, and even more complex types fields: s t r e e t  and c i ty .  Both fields are strings. In general, one can define 
are possible. \Ire summarize the type system of ODL in Section 4.2.8. record structure types in ODL by the keyword St ruct  and curly braces around 



Why Name Enumerations and Structures? 

The name Film for the enumeration on line 5 of Fig. 4.2 doesn't seem to 
be necessary. However, by giving it a name, we can refer to it outside the 
scope of the declaration for class Movie. We do so by referring to it by 
the scoped name Movie: :Film. For instance, in a declaration of a class of 
cameras, we could have a line: 

a t t r i b u t e  Movie::Film uses; 

This line declares attribute uses to be of the same enumerated type with 
the values color and blackAndWhite. 

Another reason for giving names to enumerated types (and structures 
as well, which are declared in a manner similar to enumerations) is that we 
can declare them in a Umodule" outside the declaration of any particular 
class, and have that type available to all the classes in the module. 
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4.2.5 Inverse Relationships 

~ u s t  as we might like to access the stars of a given movie, we might like to 
know the movies in which a given star acted. To get this information into S t a r  
objects, we can add the line 

re la t ionship  Set<Movie> s t a r red In ;  

to the declaration of class S t a r  in Example 4.3. However, this line and a similar 
declaration for Movie omits a very important aspect of the relationship between 
movies and stars. We expect that if a star S is in the s t a r s  set for movie M ,  
then movie M is in the s t a r r ed In  set for star S.  We indicate this connection 
between the relationships stars and s t a r red In  by placing in each of their 
declarations the keyword inverse and the name of the other relationship. If 
the other relationship is in some other class, as it usually is, then we refer to 
that relationship by the name of its class, followed by a double colori (: :) and 
the name of the relationship. 

Example 4.5: To define the relationship s t a r red In  of class S ta r  to be the 
inverse of the relationship s t a r s  in class Movie, we revise the declarations of 

the list of field names and their types. Like enumerations, structure types must these classes, as shown in Fig. 4.3 (which also contains a definition of class 
have a name, which can be used ~lsemhere to refer to the same structure type. 
U 

Studio to be discussed later). Line (6) shows the declaration of relationship 
stars of movies, and says that its inverse is Star: : starredIn.  Since relation- 
ship s tar redIn  is defined in another class, the relationship name is. preceded 

4.2.4 Relationships in ODL by the name of that class ( s t a r )  and a double colon. Recall the double colon is 
used whenever we refer to something defined in another class, such as a property 

IQhile we can learn much about an object by examining its attributes, some- or type name. 
times a critical fact about an object is the way it connects to other objects in Similarly, relationship s t a r red In  is declared in line (11). Its inverse is 
the same or another class. declared by that line to be s t a r s  of class Movie, as it must be, because inverses 

always are linked in pairs. 
Example 4.4: Now, suppose we want to add to t.he declaration of the Movie 
class from Example 4.2 a property that is a set of stars. More precisely, we -1s a general rule: if a relationship R for class C associates with object x of 
want each Movie object to connect the set of Star  objects that are its stars. class C with objects yl$ yg, . . . , yn of class Dl then the inverse relationship of R 
The best way to represent this connection between the Movie and S t a r  classes associates with each of the yi's the object x (perhaps along with other objects). 
is with a relationship. We may represent this relationship in Movie by a line: Sometimes, it helps to visualize a relationship R from class C to class D as a 

list of pairs, or tuples, of a relation. The idea is the same as the "relationship 
re la t ionship  Set<Star> s t a r s ;  set" we used to describe E/R relationships in Section 2.1.5. Each pair consists 

of an object x from class C and an associated object y of class D: as: 
in the declaration of class Movie. This line may appear in Fig. 4.2 after any 
of the lines numbered (1) through (5). It says that in each object of class 
Movie there is a set of references to S ta r  objects. The set of references is called 
stars. The keyword re la t ionship  specifies that stars contains references to 
other objects, while the keyword Set preceding <Star> indicates that stars 
rekrences a set of S t a r  objects, rather than a single object, In general, a type 
that  is a Set of elements of some other type T is defined in ODL by the keyword Then the inverse relationship for R is the set of pairs with the components 
S e t  and angle brackets around the type T .  o 
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1. If we have a many-many relationship between classes C and D, then in 
1) c l a s s  Movie C class C the type of the relationship is Set<D>, and in class D the type is 
2) attribute s t r ing  t i t l e ;  
3) attribute integer year; 
4) attr ibute  integer length; 2. If the relationship is many-one from C to D,  then the type of the rela- 

5) attribute enum F i l m  {color,black~ndWhite~ filmType; tionship in C is just D, while the type of the relationship in D is Set<C>. 
6) relationship Set<Star> s tar s  

inverse Star::starredIn; 3. If the relationship is many-one from D to C,  then the roles of C and D 

7)  relationship Studio ownedBy are reversed in (2) above. 

inverse Studio::owns; 4. If the relationship is one-one, then the type of the relationship in C is just 
1; D, and in D it is just C. 

8) c l a s s  Star C Note, that as in the E/R model, we allow a many-one or one-one relationship 
9) at tr ibute  s t r ing  name; to include the case where for some objects the "one" is actually "none." For 
10) attr ibute  Struct Addr instance, a many-one relationship from C to D might have a missing or "null" 

( s tr ing  s t r e e t ,  s t r ing  c i ty )  address; value of the relationship in some of the C objects. Of course, since a D object 
11) relationship Set<Movie> starredIn could be associated with any set of C objects, it is also permissible for that set 

inverse Movie::stars; to be empty for some D objects. 
3 ;  

Example 4.6 : In Fig. 4.3 we have the declaration of three classes, Movie, Star, 

12) c l a s s  Studio i and Studio. The first two of these have already been introduced in Examples 

13) attribute s t r ing  name; 4.2 and 4.3. ?Ve also discussed the relationship pair s tar s  and starredIn. 

14) attribute s tr ing  address; Since each of their types uses Set ,  we see that this pair  represent.^ a many- 

15) re lat ionship  Set<Movie> owns many relationship between Star and Movie. 

inverse Movie::ownedBy; Studio objects have attributes name and address; these appear in lines (13) 

1;  and (14). Notice that the type of addresses here is a string, rather than a 
structure as was used for the address attribute of class Star on line (10). 
There is nothing wrong with using attributes of the same name but different 

Figure 4.3: Some ODL classes and their relationships types in different classes. 
In line (7) we see a relationship ownedBy from movies to studios. Since the 

DIC 
type of the relationship is Studio, and not Set<Studio>, we are declaring that 
for each movie there is one studio that owns it. The inverse of this relationship 
is found on line (15). There we see the relationship owns from studios to movies. 
The type of this relationship is Set<Movie>, indicating that each studio o~vns a 
set of movies-perhaps 0, perhaps 1, or perhaps a large number of movies. 

Notice that this rule works even if C and D are the same class. There are some 4.2.7 Methods in ODL 
relationships that logically run from a class to itself, such as "child of" from 
the class "Persons" to itself. The third kind of property of ODL classes is the method. As in other object- 

oriented languages, a method is a piece of executable code that may be applied 
to the objects of the class. 

4.2.6 Multiplicity of Relationships In ODL, we can declare the names of the methods associated with a class and 
the input /output types of those methods. These declarations, called signatures, 

Like the binary relationships of the E/R model, a pair of inverse relationships ' ~ c t u a l l ~ ,  the Set could be replaced by another "collection type," such as list or bag, 
in ODL can be classified as either many-many, many-one in either direction, or as discussed in Section 4.2.8. We shall assume all collections are sets in our exposition of 
one-one. The type declarations for the pair of relationships tells us which. relationships, however. 



Why Signatures? 

The value of providing signatures is that when we implement the schema 
in a real programming language, we can check automatically that the 
implementation matches the design as was expressed in the schema. We 
cannot check that the implementation correctly implements the "meaning" 
of the operations, but we can at  least check that the input and output 
parameters are of the correct number and of the correct type. 
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Line (8) declares a method 1engthInHours. We might imagine that it pro- 
uces as a return value the length of the movie object to which it is applied, but 

erted from minutes (as in the attribute length) to a floating-point number 
is the equivalent in hours. Note that this method takes no parameters. 
Movie object to which the method is applied is the "hidden" argument, 
it is from this object that a possible implementation of 1engthInHours 

ould obtain the length of the movie in  minute^.^ 
thod 1engthInHours may raise an exception called noLengthFound, Pre- 
ly this exception would be raised if the length attribute of the object 

ue that could not represent a valid length (e.g., a negative number). 

are like function declarations in C or C++ (as opposed to function definitions, 
which are the code to implement the function). The code for a method would 1) c l a s s  Movie { 
be written in the host language; this code is not part of ODL. 2) a t t r i b u t e  s t r i n g  t i t l e ;  

Declarations of methods appear along with the attributes and relationships 3) a t t r i b u t e  integer year; 
in a class declaration. As is normal for object-oriented languages, each method . 4) a t t r i b u t e  in teger  length; 
is associated with a class, and methods are invoked on an object of that class. 5) a t t r i b u t e  enumeration(color,blackAndWhite) filmType; 
Thus, the object is a "hidden" argument of the method. This style allows the 6 )  re la t ionship  Set<Star> stars 
same method name to be used for several different classes, because the object inverse Star : : s tar redIn;  
upon which the operation is performed determines the particular method meant. 7) re la t ionship  Studio ownedBy 
Such a method name is said to be overloaded. inverse Studio::oms; 

The syntax of method declarations is similar to that of function declarations 8) f l o a t  lengthInHours() raises(noLengthF0und); 
in C, with two important additions: 9) void starNames(out Set<String>);  

LO) void otherMovies(in S ta r ,  out Set<Movie>) 
1. Method parameters are specified to be in,  out, or inout, meaning that raises(noSuchStar); 

they are used as input parameters, output parameters, or both, respec- 
tively. The last two types of parameters can be modified by the method; 
i n  parameters cannot be modified. In effect, out and inout parameters 
are passed by reference, while i n  parameters may be passed by value. Figure 4.4: Adding method signatures to the Movie class 
Note that a method may also have a return value, which is a way that a 
result can be produced by a method other than by assigning a value to In line (9) we see another method signature, for a method called starNames. 
an out or inout parameter. This method has no return value but has an output parameter whose type is a 

set of strings. We presume that the value of the output paramet,er is computed 
2. Methods may raise ezceptions, which are special responses that are out- by starNames to be the set of strings that are the values of the attribute name 

side the normal parameter-passing and return-value mechanisms by which for the stars of the movie to which the method is applied. However, as always 
methods communicate. An exception usually indicates an abnormal or there is no guarantee that t,he method definition behaves in this particular way. 
unexpected condition that will be "handled" by some method that called Finally, at  line (10) is a third method, otherMovies. This method has an 
it (perhaps indirectly through a sequence of calls). Division by zero is an input parameter of type Star.  A possible implementation of this method is as 
example of a condition that might be treated as an exception. In ODL: a follows. We may suppose that otherMovies expects this star to be one of the 
method declaration can be follo~ved by the keyword ra ises ,  followed by stars of the movie; if it is not, then the exception nosuchstar is raised. If it is 
a parenthesized list of one or more exceptions that the method can raise. one of the stars of the movie to which the method is applied, then the output 

parameter, whose type is a set of movies, is given as its value the set of all the 
Example 4.7: In Fig. 4.4 we see an evolution of the definition for class Movie, 

the actual definition of the method 1engthInHours a special term such as self would 
last seen in Fig. 4.3. The methods included with the class declaration are as be used to refer to the object to which the method is appUed. This matter is of no concern 
follows. as far as declarations of method signatures is concerned. 
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other movies of this star. 0 

I Sets, Bags, and Lists 
4.2.8 Types in ODL To understand the distinction between sets, bags, and lists, remember that 

i ODL offers the database designer a type system similar to that found in C or a set has unordered elements, and only one occurrence of each element. A 
i 1 other conventional programming languages. A type system is built from a basis bag allows more than one occurrence of an element, but the elements and 

of types that are defined by themselves and certain recursive rules whereby their occurrences are unordered. A list allows more than one occurrence of 

complex types are built from simpler types. In ODL, the basis consists of: an element, but the occurrences are ordered. Thus, {1,2,1) and {2,1,1) 
are the same bag, but (1,2,1) and (2,1,1) are not the same list. 

1. Atomic types: integer, float, character, character string, boolean, and 
enumerations. The latter are lists of names declared to be abstract values. 
We saw an example of an enumeration in line (5) of Fig. 4.3, where the 
names are color  and blackAndWhite. 

S t ruct  N {TI FI , T2 F2,. . . , Tn Fn) 

2. Class names, such as Movie, or Star, which represent types that are denotes the type named N whose elements are structures with n fields. 
actually structures, with components for each of the attributes and rela- The ith field is named F, and has type T,. For example, line (10) of 
tionships of that class. Fig. 4.3 showed a structure type named Addr, with t ~ o  fields. Both fields 

are of type s t r i n g  and have names s t r e e t  and c i t y ,  respectively. 
These basic types are combined into structured types using the follo\ving 

I type constructors: The first five types - set, bag, list, array, and dictionary - are called 
I collection types. There are different rules about which types may be associated 
it 1. Set. If T is any type, then Set<T> denotes the type whose values are finite with attributes and which with relationships. 

" i sets of elements of type T. Examples using the set type-constructor occur 
in lines (6), ( l l ) ,  and (15) of Fig. 4.3. 

$ti The type of a relationship 1s either a class type or a (single use of a) 
?! 2. Bag. If T is any type, then Bag<T> denotes the type whose values are collection type constructor applied to a class type. :/ finite bags or rnultisets of elements of type T. A bag allows an element The type of an attribute is built starting with an atomic type or types. 

to appear more than once. For example, {1,2,1} is a bag but not a set. Class types may also be used, but typically these will be classes that 
because 1 appears more than once. are used as "structures," much as the Addr structure was used in Exam- 

3. List. If T is any type, then L i s t < T >  denotes the type whose values are ple 4.3. We generally prefer to connect classes with relationships, because 
finite lists of zero or more elements of type T. As a special case, the type relationships are two-way, which makes queries about the database easier 
s t r i n g  is a shorthand for the type List<char>. to express. In contrast, we can go from an object to its attributes, but 

not vice-versa. After beginning with atomic or class types. we may then 
4. Array. If T is a type and i is an integer, then Array<T,i> denotes the apply the structure and collection type constructors as we vewsh, as many 

type whose elements are arrays of i elements of type T. For example, times as we wish. 

Array<char, 10> denotes character strings of length 10. 

5. Dictionary. If T and S are types, then Dictionary<T,S> denotes a type Example 4.8: Some of the possible types of attributes are: 
whose values are finite sets of pairs. Each pair consists of a d u e  of the 
key type T and a value of the range type S. The dictionary may not 
contain two pairs with the same key value. Presumably, the dictionary is 
implemented in a way that makes it very efficient, given a value t of the 2. Struct  N {s t r ing  f i e l d l ,  in teger  f i e ld23  
key type T ,  to find the associated value of the range type S. 

3. List<real>.  
6. Stmctures. If T I ,  T2,.  . . , T, are types, and FI, F2,. . . , F,, are names of 

fields, then 4. ArrayCStruct N {s t r ing  f i e l d l  , in teger  f 1eld23, lo>. 
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Example (1) is an atomic type; (2) is a structure of atomic types, (3) a collection this definition. Each modification can be described by mentioning a line or 
of an atomic type, and (4) a collection of structures built from atomic types. es to be changed and giving the replacement, or by inserting one or more 

N ~ ~ ,  suppose the class names Movie and Star are available basic types. 
Th6n we may construct relationship types such as Movie or Bag<Star>. How- 
ever, the following are illegal as relationship types: a) The type of the attribute commander is changed to be a pair of strings, 

the first of which is the rank and the second of which is the name. 
1. Struct N {Novie f i e l d l ,  Star f ield2).  Relationship t y p e  cannot 

involve structures. 
Sister ships are identical ships made from the same plans. We wish to 

2. Set<integer>. Relationship types cannot involve atomic types. represent, for each ship, the set of its sister ships (other than itself). You 

3. Set<Array<Star, lo>>. Relationship types cannot involve two applica- may assume that each ship's sister ships are Ship objects. 

tions of collection types. 

1) c la s s  Ship { 
attribute string name; 

4.2.9 Exercises for Section 4.2 attribute integer yearlaunched; 

* Exercise 4.2.1 : In Exercise 2.1.1 was the informal description of a bank data- 
base. Render this design in ODL. 

5) c la s s  TG { 
Exercise 4.2.2 : Modify your design of Exercise 4.2.1 in the ways enumerated attribute real  number; 
in Exercise 2.1.2. Describe the changes; do not write a complete, new schema. attribute s tr ing commander; 

relationship Set<Ship> unitsOf 
Exercise 4.2.3: Render the teams-players-fans database of Exercise 2.1.3 in inverse Ship::assignedTo; 
ODL. Why does the complication about sets of team colors, which was men- 
tioned in the original exercise, not present a problem in ODL? 

* ! Exercise 4.2.4 : Suppose we wish to keep a genealogy. We shall have one class, Figure 4.5: An ODL description of ships and task groups 
Person. The information we wish to record about persons includes their name 
(an atbribute) and the following relationships: mother, father, and children. 
Give an ODL design for the Person class. Be sure to indicate the inverses of 
the relationships that, like mother, father, and children, are also relationships Hint: Thiik about the relationship as a set of pairs, as discussed in Sec- 

from Person to itself. Is t,he inverse of the mother relationship the children 
relationship? Khy or why not? Describe each of the relationships and their 
inverses as sets of pairs. 4.3 Additional ODL Concepts . 

! Exercise 4.2.5: Let us add to the design of Exercise 4.2.4 the attribute 
education. The value of this attribute is intended to be a collection of the There are a number of othcr features of ODL that we must learn if wve are to 

degrees obtained by each person, including the name of the degree (e.g., B.S.): ex-press in ODL the things that we can express in the E/R or relational models. 

the school. and the date. This collection of structs could be a set, bag, list, In this section, we shall cover: 

or array. Describe the consequences of each of these four choices. What infor- 1. Representing multiway relationships. Notice that all ODL relationships 
mation could be gained or lost by making each choice? Is the information lost are binary, and we have to go to some lengths to represent 3-way or 
likely to be important in practice? higher arity relationships that are simple to represent in E/R diagrams 

or relations. 
Exercise 4.2.6: En Fig. 4.5 is an ODL definition for the classes Ship and TG 
(task group, a collection of ships). We would like to make some modifications 2. Subclasses and inheritance. 
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3. Keys, which are optional in ODL. m each of these to Contract. For instance, the inverse of theMovie might 
named contractsfor. Itre would then replace line (3) of Fig. 4.6 by 

4. Extents, the set of objects of a given class that exist in a database. These 
are the ODL equivalent of entity sets or relations, and must not be con- 3) relat ionship Movie theMovie 
fused with the class itself, which is a schema. inverse Movie::contractsFor; 

4.3.1 Multiway Relationships in ODL nd add to the declaration of Movie the statement: 

ODL supports only binary relationships. There is a trick, which we introduced relat ionship Set<Contract> contractsFor 

in Section 2.1.7, to replace a multiway relationship by several binary, many-one inverse C0ntract::theMovie; 

relationships. Suppose we have a multiway relationship R among classes or tice that in Movie, the relationship contractsFor gives us a set of contracts, 
entity sets Cl, C2, . . . , C,. We may replace R by a class C and n many-one ce there may be several contracts associated with one movie. Each contract 
binary relationships from C to each of the Ci5s. Each object of class C may be the set is essentially a triple consisting of that movie, a star, and a studio, 
thought of as a tuple t in the relationship set for R. Object t is related, by the us the salary that is paid to the star by the studio for acting in that movie. 
n many-one relationships, t o  the objects of the classes Ci that participate in 
the relationship-set tuple t. 

Example 4.9: Let us consider how we would represent in ODL the 3-way 3.2 Subclasses in ODL 
relationship Contracts, whose E/R diag~am was given in Fig. 2.7. We may 
start wid1 the class defiriliions for Novie, Star,  and Studio, the three classes Let us recall the discussion of subclasses in the E/R model from Section 2.1.11. 

There is a similar capability in ODL to declare one class C to be a subclass that are related by Contracts, that we saw in Fig. 4.3. 
of another class D. We follow the name C in its declaration with the keyword We must create a class Contract that corresponds to the 3-way relationship 
extends and the name D. Contracts. The three many-one relationships from Contract to the other three 

classes we shall call thenovie, t hes t a r ,  and thestudio. Figure 4.6 shows the Example 4.10: Recall Example 2.10, where we declared cartoons to be a 
definition of the class Saritract. subclass of movies, with the additional property of a relationship from a cartoon 

t: a set of stars that are its "voices." I r e  can create a subclass Cartoon for 
1) c l a s s  Contract i hlovie with the ODL declaration: 
2) a t t r i b u t e  in teger  sa lary;  
3) r e l a t ionsh ip  Movie theMovie c l a s s  Cartoon extends Movie i 

re la t ionship  Set<Star> voices; inverse ... ; 
4) r e l a t ionsh ip  S t a r  thes t a r  

inverse ... ; ITe have not indicated the name of the inverse of relationship voices, although 
5) r e l a t ionsh ip  Studio thestudio technically we must do so. 

inverse . . . ; A subclass inherits all the properties of its superclass. Thus, each cartoon 
1; object has attributes t i t l e ,  year, length, and f ilmType inherited from ~ o v i e  

(recall Fig. 4.3), and it inherits relationships s t a r s  and ownedBy from Movie, 

Figure 4.6: A class Contract to represent the 3-way relationship Contracts in addition to its own relationship voices. 
Also in that esample. we defined a class of murder mysteries with additional 

attribute weapon. There is one attribute of the class Contract, the salary, since that quantity is 
associated with the contract itself, not with any of the three part,icipants. Recall c l a s s  MurderMystery extends Movie 
that in Fig. 2.7 we made an analogous decision to place the attribute salary on a t t r i b u t e  s t r ing  weapon; 
the relationship Contracts, rather than on one of the participating entity sets. 
The other properties of Contract objects are the three relationships mentioned. 

Note that we have not named the inverses of these relationships. need is a suitable declaration of this subclass. Again, all t,he properties of movies are 
to modify the declarations of Movie, Star,  and Studio to include relationships inherited by MurderMystery. 

\ 

\ 
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4.3.3 Multiple Inheritance in ODL 
sometimes, as in the case of a movie like "Roger Rabbit," we need a class that 
is a subclass of two or more other classes at  the same time. In the E/R model, 
n,e were able to imagine that "Roger Rabbit" was represented by components in 
all three of the Movies, Cartoons, and fdurder-Mysren'es entity sets, which were 
connected in an isa-hierarchy. However, a principle of object-oriented systems e ODL standard does not dictate how such conflicts are to be resolved. 
is that objects belong to one and only one class. Thus, to represent movies ome possible approaches to handling conflicts that arise from multiple inheri- 
that are both cartoons and murder mysteries, we need a fourth class for these 
movies. 

The class CartoonMurderMystery must inherit properties from both Car- . Disallow multiple inheritance altogether. This approach is generally re- 
toon and MurderMystery, as suggested by Fig. 4.7. That is, a ~artoonMurder- garded as too limiting. 
Mystery object has all the properties of a Movie object, plus the relationship 
voices and the attribute weapon. . Indicate which of the candidate definitions of the property applies to the 

subclass. For instance, in Example 4.11 we may decide that in a courtroom 
Movie romance we are more interested in whether the movie has a happy or sad 

ending than we are in the verdict of the courtroom trial. In this case, we 
would specify that class Courtroom-Romance inherits attribute ending 

Cartoon MurderMystery 
from superclass Romance, and not from superclass Courtroom. 

3. Give a new name in the subclass for one of the identically named proper- 
ties in the superclasses. For instance, in Example 4.11, if C ~ u r t ~ o ~ ~ - ~ ~ ~ -  

CartoonMurderMyster~ ance inherits attrihute ending from superclass Romance, then we may 
specify that class Courtroom-Romance has an additional attribute called 

Figure 4.7: Diagram showing multiple inheritance verdict ,  which is a renaming of the attribute ending inherited from class 
Courtroom. 

In ODL, we may follow the keyword extends by several classes, separated 
by colons.3 Thus, we may declare the fourth class by: 4.3.4 Extents 

c las s  CartoonMurderMystery When an ODL class is part of the database being defined, we need to distinguish 

extends MurderMystery : Cartoon; the class definition itself from the set of objects of that class that exist at  a 
given time. The distinction is the same as that between a relation scllema 

When a class C inherits from several classes, there is t,he potential for con- and a relation instance, even though both can be referred to by the name 

fiiets among property names. Two or more of the superclasses of C may have a 
property of the same name, and the types of these properties may differ. Class 
CmoonMurderMystery did not present such a problem, since the only prop- 
erties in common between Cartoon and ~ u r d e r ~ y s t e r y '  are the  ropert ties of In ODL, the distinction is made explicit by giving the class and its eztent, 
Movie, which are the same property in both superclasses of CartoonMurder- or set of existing objects, different names. Thus, the class name is a schema 
Mystery. Here is an example where we are not so lucky. for t,he class, while the extent is the name of the currellt set of objects of that 

class. We provide a name for the extent of a class by follo-~ing the class name 
Example 4.11: Suppose we have subclasses of Movie called Romance and by a parenthesized expression consisting of the keyword extent and the name 
Courtroom. Further suppose that each of these subclasses has an attribute chosen for the extent. 
called ending. h class Romance, attribute ending draws its'values from the 

3Technically, the second and subsequent names must be "interfaces," rather than classes. 
Example 4.12 : In general, we find it a useful convention to name classes by a 

Roughly, an interface in ODL is a class definition without an associated set of objects, or singular noun and name the corresponding extent by the same noun in plural. 
' 'e~tent.~ We discuss the distinction further in Section 4.3.4. Following this convention, we could call the extent for class Movie by the name 
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tributes forming keys. If there is more than one attribute in a key, the 
Interfaces of attributes must be surrounded by parentheses. The key declaration itself 

ears, along with the extent declaration, inside parentheses that may follow 
ODL provides for the definition of interfaces, which are essentially class name of the class itself in the first line of its declaration. 
definitions with no associated extent (and therefore, with no associated 
objects). We first mentioned interfaces in Section 4.3.3, where we pointed mple 4.13 : To declare that the set of two attributes t i t l e  and year form 
out that they could support inheritance by one class from several classes. y for class Movie, we could begin its declaration: 
Interfaces also are useful if we have several classes that have different 
extents, but the same properties; the situation is analogous to several c l a s s  Movie 

relations that have the same schema but different sets of tuples. (extent Movies key ( t i t l e ,  year))  

If we define an interface I, we can then define several classes that 
inherit their properties from I. Each of those classes has a distinct extent, a t t r i b u t e  s t r i n g  t i t l e ;  

so we can maintain in our database several sets of objects that have the 
. . . 

same type, yet belong to distinct classes. could have used keys in place of key, even though only one key is declared. 
Similarly, if name is a key for class Star, then we could begin its declaration: 

c l a s s  S t a r  
Movies. To declare this name for the extent, we would begin the declaration of (extent S ta r s  key name) 
class Movie by: 

a t t r i b u t e  s t r i n g  name; 
c l a s s  Movie (extent Movies) 1 . . .  

a t t r i b u t e  s t r i n g  t i t l e ;  
. . . 

As we sliall see when we study the query language OQL that is designed for It is possible that several sets of attributes are keys. If so, then following 
querying ODL data, we refer to the extent Movies, not to the class Movie, when the word key(s) we may place several keys separated by commas. As usual, a 
we want to examine the movies currently stored in our database. Remember key that consists of more than one attribute must have parentheses around the 
that the choice of a name for the extent of a class is entirely arbitrary, although list of its attributes, so we can disambiguate a key of several attributes from 
we shall follow the "make it plural" convention in this book. 0 several keys of one attribute each. 

Example 4.14 : As an example of a situation where it is appropriate to have 
more than one key, consider a class Employee, whose complete set of attributes 

4.3.5 Declaring Keys in ODL and relationships we shall not describe here. However, suppose that two of its 
attributes are empID, the employee ID, and ssNo, the Social Security number. 

ODL differs from the other models studied so far in that the declaration and Then we can declare each of these attributes to be a key by itself with 
use of keys is optional. That is, in the E/R model, entity sets need keys to 
distinguish members of the entity set from one another. In the relational model, c l a s s  Employee 
where relations are sets, all attributes together form a key unless some proper (extent Employees key empID, ssNo) 
subset of the attributes for a given relat.ion can serve as a key. Either way, there . . . 
must be a t  least one key for a relation. 

However, objects have a unique object identity, as we discussed in Sec- 
Because there are no parentheses around the list of attributes, ODL interprets 

tion 4.1.3. Consequently, in ODL, the declaration of a key or keys is optional. 
the above as saying that each of the two attributes is a key by itself. If we put 

It is entirely appropriate for there to be several objects of a class that are in- 
parentheses around the list (empID, ssNo) , then ODL would interpret the two 

distinguishable by any properties i e  can observe; the system still keeps them 
attributes together as forming one key. That is, the implication of writing 

distinct by their internal object identity. class Employee 
In ODL we may declare one or more attributes to be a key for a class by using (extent Employees key (empID, ssNo)) 

the keyword key or keys (it doesn't matter which) followed by the attribute . . . 
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6 Exercises for Section 4.3 

attributes. .P 

The ODL standard also allows properties other than attributes to appear se  4.3.2: Add suitable extents and keys to your ODL schema from 

in keys. There is no fundamental problem with a method or relationship being 
declared a key or part of a key, since keys are advisory statements that the ercise 4.3.3: Suppose we wish to modify the ODL declarations of Exer- DBMS can take advantage of or not, as it wishes. For instance, one could 
declare a method to be a key, meaning that on distinct objects of the class the 
method is guaranteed to return distinct values. ople who are parents. In addition, we want the relationships mother, 

When we allow many-one relationships to appear in key declarations, we er,  and children to run between the smallest classes for which all pos- 
can get an effect similar to that of weak entity sets in the E/R model. We can 
declare that the object O1 referred to by an object O2 on the "many" side of the 
relationship, perhaps together with other properties of 0 2  that are included in 
the key, is unique for different objects 02. However, we should remember that 
there is no requirement that classes have keys; we are never obliged to handle, 
in some special way, classes that lack attributes of their own to form a key, as ' 
we did for weak entity sets. Exercise 4.3.5: In Exercise 2.4.4 we saw two examples of situations where 

weak entity sets were essential. Render these databases in ODL, including 
Example 4.15: Let us review the example of a weak entity set Crews in declarations for extents and suitable keys. 
Fig. 2.20. Recall that we hypothesized that crews were identified by their 
number, and the studio for which they worked, although two studios might Exercise 4.3.6: Give an ODL design for the registrar's database described in 
have crews with the same number. We might declare the class Crew as in 
Fig. 4.8. Note that we need to modify the declaration of Studio to include the 
relationship crewsOf that is an inverse to the relationship unitof in Crew; we 
omit this change. 4.4 From ODL Designs to Relational Designs 

While the E/R model is intended to be converted into a model such as the 

class Crew relational model when we implement the design as an actual database, ODL 
(extent C r e w s  key (number, unit0f))  was originally intended to be used as the specification language for real, object- 

oriented DBMS's. However ODL, like all object-oriented design systems, can 

a t t r i b u t e  integer number; also be used for preliminary design and converted to relations prior to imple- 
re la t ionship  Studio unitof mentation. In this section we shall consider how to convert ODL designs into 

inverse Studio::crewsOf; relational designs. The process is similar in many ways to  what we introduced 
in Section 3.2 for converting E/R diagrams to relational database schemas. Yet 
some new problems arise for ODL, including: 

Figure 4.8: A ODL declaration for crews 1. Entity sets must have keys, but there is no such guarantee for ODL classes. 
Therefore, in some situations we must in~ent  a new attribute to serve as 
a key when Fe construct a relation for the class. 

What this key declaration asserts is that there cannot be two crews that 
both have the same value for the number attribute and are related to the same 2. While n-e have required E/R attributes and relational attributes to be 
studio by unitof. Notice how this assertion resembles the implication of the atomic, there is no such constraint for ODL attributes. The conversion 
E/R diagram in Fig. 2.20, which is that the number of a crew and the name of of attributes that have collection types to relations is tricky and ad-hoc, 
the related studio (i.e., the key for studios) uniquely determine a crew entity. often resulting in unnormalized relations that must be redesigned by the 

techniques of Section 3.6. 
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3. ODL allows us to  specify methods as part of a design, but there is no .2 Nonatomic Attributes in Classes 
simple way to convert methods directly into a relational schema. We 
shall visit the issue of methods in relational schemas in Section 4.5.5 and fortunately, even when a class' properties are all attributes we may have 

again in Chapter 9 covering the SQG99 standard. For now, let us assume me difficulty converting the class to a relation. The reason is that attributes 

that any ODL design we wish to convert into a relational design does not ODL can have complex types such as structures, sets, bags, or lists. On the 

include methods. her hand, a fundamental principle of the relational model is that a relation's 
tributes have an atomic type, such as numbers and strings. Thus, are must 

nd some way of representing nonatomic attribute types as relations. 
4.4.1 &om ODL Attributes to Relational Attributes Record structures whose fields are themselves atomic are the easiest to han- 

As a starting point, let us assume that our goal is to have one relation for each 
class and for that relation to have one attribute for each property. We shall see 
many ways in which this approach must be modified, but for the moment, let 
us consider the simplest possible case, where we can indeed convert classes to 
relations and properties to attributes. The restrictions we assume are: 

c las s  Star (extent Stars) { 
1. All properties of the class are attributes (not relationships or methods). attr ibute  s tr ing name; 

attribute Struct Addr 
2. The types of the attributes are atomic (not structures or sets). {string s t ree t ,  s tr ing c i ty )  address; 

Example 4.16: Figure 4.9 is an exampIe of such a class. There are b u r  
attributes and no other properties. These attributes each have an atomic type; 
t i t l e  is a string, year and length are integers, and f ilmType is an enumeration Figure 4.10: Class with a struct,ured attribute 
of two values. 

class  Movie (extent Movies) { Example 4.17 : In Fig. 4.10 is a declaration for class Star, with only attributes 

attribute s tr ing t i t l e ;  as properties. The attribute name is atomic, but attribute address is a structure 

attribute integer year; with two fields, street  and c i t y .  Thus, we can represent this class by a 

attribute integer length; relation with three attributes. The first attribute, name, corresponds to the 

attribute enum Film {color,blackAndWhite) filmType; ODL attribute of the same name. The second and third attributes we shall call 
s t ree t  and ci ty;  they correspond to the two fields of the address struct,ure 
and together represent an address. Thus, the schema for our relation is 

Figure 4.9: Attributes of t,he class Movie Stars(name, s t ree t ,  c i t y )  

We create a relation with the same name as the extent of the class, Movies Figure 4.11 shows some typical tuples of this relation. 0 

in this case. The relation has four attributes, one for each attribute of the 
class. The names of the relational attributes can be the same as the names of 
the corresponding class attributes. Thus, the schema for this relation is name street city 

Carrie Fisher 123 Maple S t .  Hollywood 
Movies(title, year, length, f ilmType) Mark Hamill 456 Oak Rd. Brentwood 

Harrison Ford 789 Palm Dr. Beverly H i l l s  
For each object in the extent Movies, there is one tuple in the relation 

Movies. This tuple has a component for each of the four attributes, and the 
value of each component is the same as the value of the corresponding attribute Figure 4.11: A relation representing stars 
of the object. 0 
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4.4.3 Representing Set-Valued Attributes 
However, record structures are not the most complex kind of attribute that can 
appear in ODL class definitions. Values can also be built using type constructors 
Set, Bag, List ,  Array, and Dictionary from Section 4.2.8. Each presents its 
own problems when migrating to the relational model. We shall only discuss 
the Set constructor, which is the most common, in detail. 

One approach to representing a set of values for an attribute A is to make 
one tuple for each value. That tuple includes the appropriate values for all the 
other attributes besides A. Let us first see an example where this approach 
works well, and then we shall see a pitfall. 

c lass  S ta r  (extent Stars)  1 
a t t r ibu te  s t r i n g  name; 
a t t r ibu te  Set< 

Struct Addr {string s t r e e t ,  s t r i n g  city) 
> address; 

1; 

Figure 4.12: Stars with a set of addresses 

Example 4.18: Suppose that class S ta r  were defined so that for each star 
we could record a set of addresses, as in Fig. 4.12. Suppose next that Carrie 
Fisher also has a beach home, but the other two stars mentioned in Fig. 4.11 
each have only one home. Then ure may create two tuples with name attribute 
equal to "Carrie Fisher", as shown in Fig. 4.13. Other tuples remain as they 
were in Fig. 4.11. 

name I street ( city 
Carrie Fisher 1 123 Maple S t .  1 Hollywood 
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It seems that the relational model puts obstacles in our way, while ODL 
is more flexible in allowing structured values as properties. One might be 
tempted to dismiss the relational model altogether or regard it as a prim- 
itive concept that has been superseded by more elegant "object-orientedn 
approaches such as ODL. Howvever, the reality is that database systems 
based on the relational model are dominant in the marketplace. One 
of the reasons is that the simplicity of the model makes possible powerful 
programming languages for querying databases, especially SQL (see Chap- 
ter 6), the standard language used in most of today's database systems. 

c lass  S t a r  (extent Stars)  ( 
a t t r i b u t e  s t r i n g  name; 
a t t r i b u t e  Set< 

Struct Addr {s t r ing s t r e e t ,  s t r i n g  c i ty)  
> address; 

a t t r i b u t e  Date bir thdate ;  

Figure 4.14: Stars with a set of addresses and a birthdate 

Example 4.19 : Suppose that we add birthdate as an attribute in the defi- 
nition of the S ta r  class; that is, we use the definition shown in Fig. 4.14. We 
have added to Fig. 4.12 the attribute birthdate of type Date, which is one 
of ODL's atomic types. The bi r thdate  attribut.e can be an attribute of the 
S ta r s  relation, whose schema now becomes: 

Stars(name, s t r e e t ,  c i t y ,  birthdate) 

Let us make another change to the data of Fig. 4.13. Since a set of addresses 
can be empty, let us assume that Harrison Ford has no address in the database. 
Then the revised relation is shown in Fig. 4.15. Two bad things have happened: 

Figure 4.13: Allorving a set of addresses 1. Carrie Fisher's birthdate has been repeated in each tuple, causing redun- 
dancy. Xote that her name is also repeated, but that repetition is not 

Unfortunately, this technique of replacing objects with one or more set- true redundancy, because without the name appearing in each tuple we 

valued attributes by collections of tuples, one for each combination of values for could not know that both addresses were associated with Carrie Fisher. 

these attributes, can lead to unnormalized relations, of the type discussed in 2. Because Harrison Ford has an empty set of addresses, we have lost all 
Section 3.6. In fact, even one set-valued attribute can lead to a BCNF violation, information about him. This situation is an example of a deletion anomaly 
as the next example shows. that we discussed in Section 3.6.1. 
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name I street I city 1 birthdate 
Carr ie  Fisher 1 123 Maple S t .  I Hollyuood 1 9/9/99 
Carrie Fisher 5 Locust Ln. Malibu 9/9/99 
Mark Hamill I 456 Oak Rd. I Brentvood I 8/8/88 

Figure 4.15: Adding birthdates 

Although name is a key for the class Star,  our need to have several tuples 
for one star to represent all their addresses means that name is not a key for 
the relation Stars.  In fact, the key for that relation is {name, s t r e e t ,  ci ty).  
Thus, the i,. ,: tional dependency 

i. ~e -+ bir thdate  

is a BCNF violation. This fact explains why the anomalies mentioned above 
are able to occur. 0 

There are several options regarding how to handle set-valued attributes that 
appear in a class declaration along with other attributes, set-valued or not. 
First, we may simply place all attributes, set-valued or not, in the schema for 
the relation, then use the normalization techniques of Sections 3.6 and 3.7 to 
eliminate the resulting BCNF and 4NF violations. Notice that a set-valued at- 
tribute in conjunction with a single-valued attribute leads to a BNCF violation, 
as in Example 4.19. Two set-valued attributes in the same class declaration will 
lead to a 4NF violation. 

The second approach is to  separate out each set-valued attribute as if it 
were a many-many relationship between the objects of the class and the values 
that appear in the sets. %'e shall discuss this approach for relationships in 
Section 4.4.5. 

4.4.4 Representing Other Type Constructors 

Besides record structures and sets, an ODL class definition could use Bag, L i s t ,  
Array, or Dictionary to construct values. To represent a bag (multiset), in 
which a single object can be a member of the bag n times, we cannot simply 
introduce into a relation n identical tuples.4 Instead, we could add to the 
relation schema another attribute count representing the number of times that 
each t t .cnt is a member of the bag. For instance, suppose that address 
in F;l 4.1- sere a bag instead of a set. We could say that 123 Maple St., 

4 T ~  be precist. we cannot introduce identical tuples into relations of the abstract relational 
model described ln Chapter 3. However, SQL-based relational DBMS's do allow duplicate 
tuples; i.e., relations are bags rather than sets in SQL. See Sections 5.3 and 6.4. If queries 
are likely to ask for tuple counts, we advise using a scheme such as that described here, even 
if your DBMS allows duplicate tuples. 
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Hollywood is Carrie Fisher's address twice and 5 Locust Ln., Malibu is her 
address 3 times (whatever that may mean) by 

name I street I city I count 
Carrie Fisher 1 123 Maple S t .  I Hollywood 1 2  
Carrie Fisher 1 5 Locust Ln. I Malibu 1 3 

A list of addresses could be represented by a new attribute posit ion,  in- 
icating the position in the list. For instance, we could show Carrie Fisher's 
ddresses as a list, with Hollywood first, by: 

name street city 1 position 
Carrie Fisher 123 Maple S t .  Hollywood 1 1 

F Carrie Fisher 1 5 Locust Ln. I Malibu 1 2 
$ 
!; A fixed-length array of addresses could be represented by attributes for 

each position in the array. For instance, if address were to be an array of two 
$, street-city structures, we could represent Star objects as: 
t. 

name I street1 1 city1 I street2 I ~itwf? --- I ir- 

Carrie Fisher ] 123 Maple St. I Hollywood 1 5 Locust Ln. I Malibu 

Finally, a dictionary could be represented as a set, but with attributes for 
both the key-value and range-value components of the pairs that are members of 
the dictionary. For instance, suppose that instead of star's addresses, we really 
wanted to keep, for each star, a dictionary giving the mortgage holder for each 
of their homes. Then the dictionary would have address as the key value and 
bank name as the range vdue. A hypothetical rendering of the Carrie-Fisher 
object with a dictionary attribute is: 

name I street 1 city I mortgage-holder 
Carrie Fisher 1 123 Maple S t .  I Hollywood I Bank of Burbank 
Carrie Fisher 1 5 Locust Ln. I Malibu I Torrance Trust 

Of course attribute types in ODL may involve more than one type construc- 
tor. If a type is any collection type besides dictionary applied to a structure 
(e.g., a set of structs), then we may apply the techniques from Sections 4.4.3 or 
4.4.4 as if the struct were an atomic value, and then replace the single attribute 
representing the atomic value by several attributes, one for each field of the 
struct. This strategy was used in the examples abo~e ,  where the address is 
a struct. The case of a dictionary applied to structs is similar and left as an 
exercise. 

There are many reasons to limit the complexity of attribute types to an 
optional struct followed by an optional collection type. We mentioned in See- 
tion 2.1.1 that some versions of the E/R model allow exactly this much gen- 
erality in the types of attributes, although we restricted ourselves to atomic 



CHAPTER 4. OTHER DATA MODELS FROM ODL DESIGNS TO RELATIOlYAL DESIGNS 

Utes in the E/R model. We recommend that, if you are going to use an StudioOf ( t i t l e ,  year,  studioName) 
design for the purpose of eventual translation to a relational database typical tuples that would be in this relation are: 

4.4.5 Representing ODL Relationships 

Usually, an ODL class definition will contain relationships to other ODL classes. 
As in the E/R model, 'we can create for each relationship a new relation that 
connects the keys of the two related classes. However, in ODL, relationships 
come in inverse pairs, and we must create only one relation for each pair. 

c l a s s  Movie 
(extent Movies key ( t i t l e ,  year)) 

a t t r i b u t e  s t r i n g  t i t l e ;  
a t t r i b u t e  in teger  year; 
a t t r i b u t e  integer length; 
a t t r i b u t e  enum Film {color,blackAndWhite> filmType; 
re la t ionship  Set<Star> stars Movies(t i t le ,  year, length, filmType, studiolame) 

inverse Star: :starredIn;  and some typical tuples for this relation are: 
re la t ionship  Studio ownedBy 

inverse Studio::ouns; year length f i lmape studzoName 
1 ; Sta r  Wars 1977 124 color Fox 

Mighty Ducks 1991 104 color Disney 
c lass  Studio Wayne's World 1992 95 color Paramount 

(extent Studios key name) 
I Note that t i t l e  and year, the key for the Movie class, is also a key for relation 

a t t r i b u t e  s t r i n g  name ; Movies, since each movie has a unique length, film type, and owning studio. 

a t t r i b u t e  s t r i n g  address; 
re la t ionship  Set<Movie> owns We should remember that it is possible but unwise to treat many-many 

inverse Movie::ownedBy; relationships as we did many-one relationships in Example 4.21. In fact, Ex- 
1 ;  ample 3.6 in Section 3.2.3 w a s  based on what happens if we try to combine the 

many-many stars relationship betnven movies and their stars with the other 

Figure 4.16: The complete definition of the Movie and Studio classes information in the relation Movies to get a relation with schema: 

Movies(t i t le ,  year,  length,  filmType, studioName, starName) 

Example 4.20: Consider the declarations of the classes Movie and Studio, There is a resulting BCNF violation, since { t i t l e ,  year,  starName) is the 
which we repeat in Fig. 4.16. We see that t i t l e  and year form the key for key, yet attributes length, f ilmType, and studioName each are functionally 
Movie and name is a key for class Studio. We may create a relation for the pair determined by only t i t l e  and year. 
of relationships owns and ownedBy. The relation needs a name, which can be Likewise, if we do combine a many-one relationship with the relation for a 
arbitrary; we shall pick StudioOf as the name. The schema for StudioOf has class, it must be the class of the "many." For instance, combining owns and 
attributes for the key of Movie, that is, t i t l e  and year, and an attribute that its inverse ownedBy with relation Studios will lead to a BCXF violation (see 
we shall call studioName for the key of Studio. This relation schema is thus: 
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4.4.6 What 1f There IS NO Key? ! Exercise 4.4.3 : Consider an attribute of type dictionary with key and range 

Since keys are optional in ODL, we may face a situation where the attributes types both structs of atomic types. Show how to convert a class with an at- 

available to us cannot serve to represent objects of a class C uniquely. That tribute of this type to a relation. 

situation can be a problem if the class C participates in one or more relation- * Exercise 4.4.4 : Jt7e claimed that if you combine the relation for class Studio, 
ships. as defined in Fig. 4.16; with the relation for the relationship pair owns and 

1% recommend creating a new attribute or "certificate" that can sen7e as ownedBy. then there is a BCNF violation. Do the combination and show that 
an identifier for objects of class C in relational designs, much as the hidden there is, in fact, a BCXF violation. 
object-ID serves to identify those objects in an object-oriented system. The 
certificate becomes an additional attribute of the relation for the class C, as Exercise 4.4.5 : \ire mentioned that when attributes are of a type more com- 
well as representing objects of class C in each of the relations that come from plex than a collection of structs, it becomes tricky to convert them to relations; 
relationships involving class C. Notice that in practice, many important classes in particular, it becomes necessary to create some intermediate concepts and re- 
are represented by such certificates: university ID'S for students, driver's-license lations for them. The following sequence of questions will examine increasingly 
numbers for drivers, and so on. more complex types and how to represent them as relations. 

Example 4.22 : Suppose we accept that names are not a reliable key for movie * a) A card can be represented as a struct with fields rank (2,3,. . . , l o ,  Jack, 
stars, and we decide instead to adopt a "certificate number" to be assigned to Queen, Icing, and Ace) and s u i t  (Clubs, Diamonds, Hearts, and Spades). 
each star as a way of identifying them uniquely. Then the Stars relation would Give a suitable definition of a structured type Card. This definition should 
have schema: be independent of any class declarations but available to them all. 

Stars(cert#,  n a w ,  s t r e e t ,  c i t y ,  birthdate) * b) A hand is a set of cards. The number of cards may vary. Give a declaration 
of a class Hand whose objects are hands. That is, this class declaration 

If we wish to i. (-sent the many-iii,i.:~:\. relationship between movies and their 
has an attribute theHand, whose type is a hand. 

stars by a rc.! ... on StarsIn, u-e can use the t i t l e  and year attributes from 
Movie and I.:., t crtificate to represent stars, giving us a relation with schema: *! c) Con\-ert your class declaration Hand from (b) to a relation schema. 

Stars In ( t i t l e ,  year, cert#)  d) A poker hard is a set of five cards. Repeat (b) and (c)  for poker hands. 

0 *! e) A deal is a set of pairs, each pair consisting of the name of a player and a 
hand for that player. Declare a class Deal, whose objects are deals. That 

4.4.7 Exercises for Section 4.4 is, this class declaration has an attribute theDeal, whose type is a deal. 

Exercise 4.4.1: Convert your ODL designs from the following exercises to f) Reprat (e): but restrict hands of a deal to be hands of exactly five cards. 

relational database schema. g) Repeat (e). using a dictionary for a deal. You may assume the names of 

* a) Exercise 4.2.1. players in a deal are unique. 

b) Exercise 4.2.2 (include all four of the modifications specified by that ex- *!! h) Convert your class declaration from (e) to a relational database schema. 

ercise). *! i) Suppose we d ~ f i ~ l e d  deals to be sets of sets of cards, ~vith no player as- 

c) Exercise 4.2.3. sociated ~ ~ i t l i  each hand (set of cards). It is proposed that we represent 
such deals by a relation schema 

* d) Esercise 4.2.4. 

e) Es(,rcise 4.2.5. Deals(dealID, card) 

Exercise 4.4.2: Convert the ODL description of Fig. 4.5 to a relational data- meaning that the card was a member of one of the hands in the deal with 
base schema. How does each of the three modifications of Exercise 4.2,6 affect the given ID. \That, if anything, is wrong with this representation? How 
your relational schema? ~vould you fix the problem'? 

\\ 
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Exercise 4.4.6 : Suppose we have a class C defined by 

c l a s s  C (key a) C 
a t t r i b u t e  s t r i n g  a ;  
a t t r i b u t e  T b; 

3 

where T is some type. Give the relation schema for the relation derived from 
C and indicate its key attributes if T is: 

a) SetcStruct S {s t r ing  f ,  s t r i n g  g)> 

*! b) BagcStruct S ( s t r i n g  f ,  s t r i n g  g}> 

! c) List<Struct  S {s t r ing  f ,  s t r i n g  g}> 

! d) Dictionary<Struct K { s t r ing  f ,  s t r ing  g}, Struct  R {s t r ing  i ,  . 
s t r i n g  j)> 

4.5 The Object-Relational Model 
The relational model and the object-oriented model typified by ODL are tn.0 
important points in a spectrum of options that could underlie a DBXIS. For an 
extended period, the relational model was dominant i11 the commercial DBXS 
world. Object-oriented DBMS's made limited inroads during the 1990's. but 
have since died off. Instead of a migration from relational to object-oriented 
systems, as was uidely predicted around 1990. the vendors of relational systems 
have moved to incorporate many of the ideas found in ODL or other object- 
oriented-database proposals. As a result, many DBMS products that used to 
be called "relational" are now called "object-relational." 

In Chapter9 we shall meet the new SQL standard for object-relational data- 
bases. In this chapter, we cover the topic more a1,stractly. \Ye introduce 
the concept of object-relations in Section 4.2.1, then discuss one of its earliest 
embodiments - nested relations - in Section 4.5.2. ODL-like references for 
object-relations are discussed in Section 4.5.3, and in Section 4.5.1 we compare 
the object-relational model against the pure object-oriented approach. 

4.5.1 From Relatioils to Object-Relations 

IVhile thr relation remains the fundamental conccpt, the relational illode1 has 
been extended to the object-relationul model bv illcorporation of features such 
as: 

1. Structured types for attributes. Instead of allowing only atomic types for 
attributes, object-relational systems support a type system like ODL's: 
types built from atomic types and type constructors for structs. sets. and 
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bags, for instance. Especially important is a type that is a set5 of structs, 
which is essentially a relation. That is, a value of one component of a 
tuple can be an entire relation. 

2. Methods. Special operations can be defined for, and applied to, values 
of a user-defined type. While we haven't yet addressed the question of 
how values or tuples are manipulated in the relational or object-oriented 
models, we shall find few surprises when we take up the subject beginning 
in Chapter 3. For example, values of numeric type are operated on by 
arithmetic operators such as addition or less-than. However, in the object- 
relational model, we have the option to define specialized operations for 
a type, such as those discussed in Example 4.7 on ODL methods for the 
Movie class. 

3. Identifiers for tuples. In object-relational systems, tuples play the role of 
objects. It therefore becomes useful in some situations for each tuple to 
have a unique ID that distinguishes it from other tuples, even from tuples 
that have the same values in all components. This ID, like the object- 
identifier assumed in ODL, is generally invisible to the user, although 
there are even some circumstances where users can see the identifier for 
a tuple in an object-relational system. 

4. References. While the pure relational model has no notion of references 
or pointers to tuples, object-relational systems can use these references in 
various Tvays. 

In the next sections, we shall elaborate and illustrate each of these additional 
capabilities of object-relational systems. 

4.5.2 Nested Relations 

Relations extended by point (1) above are often called "nested relations.'' In 
the nested-relational model, we allow attributes of relations to haye a type that 
is not atomic: in particular. a type can be a relation schema. As a result, there 
is a convenient, recursive definition of the types of attributes and the types 
(schemas) of relations: 

BASIS: An atomic type (integer, real. string. etc.) can be the type of an 
attribute. 

INDUCTION: -1 relation's type can be any schemn consisting of names for one 
or more attributes. and any legal type for each attribute. In addition. a schema 
can also be the type of any attribute. 

In our discussio~~ of the relational model, we did not specify the particular 
atomic type associated with each attribute, because the distinctions among 

'Strictly speaking, a bag rather than a set, since commercial relational DB?rIS's prefer to 
support relations with duplicate tuples, i.e. bags, rather than sets. 
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integers, reals, strings, and SO on had little to do with the issues discussed, 
such as functional dependencies and normalization. We shall continue to avoid 
this distinction, but when describing the schema of a nested relation, we must 
indicate which attributes have relation schemas as types. To do so, we shall 
treat these attributes as if they were the names of relations and follow them 
by a parenthesized list of their attributes. Those attributes, in turn, may haye 
associated lists of attributes, down for as many levels as we wish. 

Example 4.23: Let us design a nested relation schema for stars that incor- 
porates within the relation an attribute movies, which will be a relation rep- 
resenting all the movies in which the star has appeared. The relation schema 
for attribute movies will include the title, year, and length of the movie. The 
re1atio:i schem? +r the relation Stars mill include the name, address, and birth- 
date, as well a:, :e information found in movies. Additionally, the address 
attribute will have a relation type with attributes street and city. We can 
record in this relation several addresses for the star. The schema for Stars can 
be written: 

Stars(name, address(street, city), birthdate, 
movies(title, y .>r , length)) 

An exampl(s F a possible relation for nested relation Stars is shown in 
Fig. 4.17. We srv in this relation two tuples, one for Carrie Fisher and one 
for Mark Warnill. The valucs of components are abbreviated to conserve space, 
and the dashed lines separating tuples are only for convenience and have no 
notational significance. 

riame address birthdate rnovies 
I I I 

street city 9 / 9 / 9  9 1 Fisher 1 
r:-% 

1 rifle 1 year 1 ~ ~ r ~ ~ ~ j  1 
Star Wars 1977 124 

. - - - - - - - - - - - - - - - - - -  mi 
Star Wars 1977 124 - - - - - - - - - - - -  - - -  
Empire 1980 127 - - - - - - - - - - - -  - - -  
Return 1983 133 

Figure 4.17: A nested relation for stars and their movies 
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attributes, street and city, and there are two tuples, corresponding to her 
two houses. Next comes the birthdate, another atomic value. Finally, there is a 
component for the movies attribute; this attribute has a relation schema as its 
type, with components for the title, year, and length of a movie. The relation 
for the movies component of the Carrie Fisher tuple has tuples for her three 
best-known movies. 

The second tuple, for Mark Hamill, has the same components. His relation 
for address has only one tuple, because in our imaginary data, he has only 
one house. His relation for movies looks just like Carrie Fisher's because their 
best-known movies happen, by coincidence, to be the same. Note that these 
two relations are two different tuple-components. These components happen to 
be identical, just like two components that happened to have the same integer 
value, e.g., 124. 0 

4.5.3 References 

The fact that movies like Star Wars will appear in several relations that are 
values of the movies attribute in the nested relation Stars is a cause of redun- 
dancy. In effect, the schema of Example 4.23 has the nested-relation analog of 
not being in BCNF. However, decomposing this Stars relation will not elimi- 
nate the redundancy. Rather, we need to arrange that among all the tuples of 
all the movies relations, a movie appears only once. 

To cure the problem, object-relations need the ability for one tuple t to refer 
to another tuple s: rather than incorporating s directly in t .  lye thus add to 
our model an additional inductive rule: the type of an attribute can also be a 
reference to a tuple with a given schema. 

If an attribute .I has a type that is a reference to a single tuple with a 
relation schema named R, we show the attribute d in a schema as ,-l(*R). 
Xotice that this situation is analogous to an ODL relationship .4 whose type is 
R; i.e., it connects to a single object of type R. Similarly, if an attribute .4 has 
a type that is a set of references to tuples of schema R. then .-I will be shown 
in a schema as A({*R)). This situation resembles an ODL relationship .A that 
has type Set<R>. 

Example 4.24: An appropriate way to fix the redundancy- in Fig. 4.17 is 
to use t~vo relations. one for stars and one For movies. The relation Movies 
will be an ordinary relation ~vith the same schema as the attribute movies in 
Example 4.23. The relation Stars xvill have a schema similar to the nested 
relation Stars of that example. but the movies attribute will have a type that 
is a set of references to Movies tuples. The schemas of the tn-o relations are 
thus: 

Movies (title, year, length) 
\ In the Carrie Fisher tuple, we see her name. an atomic value, follo~ved Stars (name, address (street, city), birthdate, 
3p a relation for the value of the address component. That relation has two movies(i*Movies3> 1 . 

\ 
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interfaces, which are essentially class declarations without an extent (see the box 
on "Interfaces" in Section 4.3.4). Then, ODL allows you to define any number 
of classes that inherit this interface, while each class has a distinct extent. In 
that manner, ODL offers the same opportunity the object-relational approach 
when it comes to sharing the same declaration among several collections. 

i r e  did not discuss the use of methods as part of an object-relational schema. 
However, in practice, the SQL-99 standard and all irnplementations of object- 
relational ideas allow the same ability as ODL to declare and define methods 
associated with any class. 

Stars Movies 
Type Systems 

Figure 4.18: Sets of references as the wlue of a,n attribute The type systems of the object-oriented and object-relational models are quite 
similar. Each is based on atomic types and construction of new types by struct- 

~h~ data of Fig. 4.17, converted to this new schema, is shown in Fig. 4.18. and collection-type-constructors. The selection of collection types may vary, but 
Sotice that, because each movie has only one tuple, although it can have man!. all variants include at least sets and bags. AIoreover, the set (or bag) of structs 
references, \ye have eliminated the redundancy inherent in the schema of Ex- type plays a special role in both models. It is the type of classes in ODL, and 

ample 4.23. the type of relations in the object-relational model. 

4.5.4 object-Oriented Versus Object-Relational References a n d  Object-ID'S 

~ 1 , ~  object-oriented data model, as typified by ODL, and the object-relational .A pure object-oriented model uses object-ID'S that are completely hidden from 

model discussed here, are remarkably similar. Some of the salient points of the user, and thus cannot be seen or queried. The object-relational model allows 
references to be part of a type, and thus it is possible under some circumstances 

comparison follow. for the user to see their values and even remember them for future use. You 
may regard this situation as anything from a serious bug to a stroke of genius, 

Objects and  Tuples depending on your point of view, but in practice it appears to make little 

An object's value is really a struct with components for its attributes alld re- 
lationships. ~t is not specified in the ODL standard how relationships are to 
be represented, but we may assume that an object is connected to related ob- Backwards Compatibility 
jects by some collection of pointers. -1 tuple is likewise a struct, but in the 
conventional relational model, it has colnponents for only the attributes. Re- With little difference in essential features of the two models, it is interesting to 

lationsllips would be represented by tuples in another relation, as suggested in consider ~ r h y  object-relational systems have dominated the pure ~ b j e c t - ~ r i ~ ~ t ~ d  

Sectioll 3.2.2. Ho~vever the object-relational model, by allo\ving sets of refer- systems in the marketplace. The reason, we believe, is that there -? by the 

cncfs to be a compollent of tuples, also allo\x-s relationships to be incorporated time object-oriented systems were seriously proposed, an enormous number 

directly into the tuples that represent an "object" or entity. of installations running a relational database system. -4s relational DBlIS's 
evolved into object-relational DBMS's, the vendors were careful to maint.ain 

Extents and  Relations 
back~vards compatibility. That is. nen-er versions of the system would still run 
the old code and accept the same schemas, should the user not care to adopt 

ODL treats all objects in a class as living in an "extent" for that class. The any of the object-oriented features. On the other hand, miflation to a pure 
object-relational model allorvs several different relations with identical schemas. object-oriented DBMS would require the installations to rewrite and reorganize 
so it might appear that there is more opportunity in the object-relational model , extensively. Thus, whatever competitive advantage existed was not enough to 
to distinguish members of the same class. However, ODL allows the definition of , convert many databases to a pure object-oriented DBXIS. 
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4.5.5 From ODL Designs to Object-Relational Designs Exercise 4.5.5 : Render the genealogy of Exercise 2.1.6 in the object-relational 

In Section 4.4 we learned how to convert designs in ODL into schemas of the 
relational model. Difficulties arose primarily because of the richer modeling 
constructs of ODL: nonatomic attribute types, relationships, and methods. 
Some - but not all - of these difficulties are alleviated when we translate 

4.6 Semistructured Data 
an ODL design into an object-relat,ional design. Depending on the specific The semistmctured-data model plays a special role in database systems: 
object-relational model used (we shall consider the concrete SQL-99 model in 
Chapter 9), we may be able to convert most of the nonatomic types of ODL 1. It serves as a model suitable for integration of databases, that is, for de- 
directly into a corresponding object-relational type; structs, sets, bags, lists, scribing the data contained in two or more databases that contain similar 
and arrays all fall into this category. data with different schemas. 

If a type in an ODL design is not available in our object-relational model, 
we can fall back on the techniques from Sections 4.4.2 through 4.4.4. The rep- 2. It serves as a document model in notations such as XML, to be taken up 
resentation of relationships in an object-relational model is essentially the same in Section 4.7, that are being used to share information on the Web. 
as in the relational model (see Section 4.4.5), although we may prefer to use ref- 
erences in place of keys. Finally, although we were not able to translate ODL In this section, we shall introduce the basic ideas behind "semistructured data" 
designs with methods into the pure relational model, most object-relat,ional and how it can represent information more flexibly than the other models we 
models include methods, so this restriction can be lifted. have met preciously. 

4.5.6 Exercises for Section 4.5 4.6.1 Motivation for the Semistructured-Data Model 

Exercise 4.5.1: Using the notation developed for nested relations and re- 
lations with referenw. give one or more relation schemas that represent the 
follo\ring infornl'tt~c 111 each case. you may exercise some discretion regard- 
ing xvh,it attributes of a relation arc included, but try to keep close to the 
attributes found in our running movie example. Also, indicate whether your 
schemas exhibit redundancy, and if so, what could be done to avoid it. 

* a) Navies, with the usual attributes plus all their stars and the usual infor- 
mation about the stars. 

*! h) Studios, all the movies made by that studio, and all the stars of each 
mo\?ie, including all the usual attributes of studios, movies, and stars. 

c )  .\lovies with their studio, their stars, and all the usual attributes of these. 

Let us begin by recalling the E/R model, and its two fundamental kinds of 
data - the entity set and the relationship. Remember also that the relational 
model has only one kind of data - the relation, yet we saw in Section 3.2 
how both entity sets and relationships could be represented by relations. There 
is an ad~antage to having two concepts: we could tailor an E/R design to 
the real-xvorld situation we were modeling, using whichever of entity sets or 
relationships most closely matched the concept being modeled. There is also 
some advantage to replacing two concepts by one: the notation in which we 
express schemas is thereby simplified. and implementation techniques that make 
querying of the database more efficient can be applied to all sorts of data. We 
shall begin to appreciate these advantages of the relational model when we 
study implementation of the DBhIS, starting in Chapter 11. 

Now. let us consider the object-oriented model we introduced in Section 4.2. 
There are two principal concepts: the class (or its extent) and the relationship. ' Exercise 4.5.2: Represent the banking information of Exerclse 2.1.1 in the 
Likewise, the object-relational model of Section 4.5 has two similar concepts: 

object-relational model developed in this section .\lake sure that it is easy, the attribute type (n-hich includes classes) and the relation. given the tuple for a customer, to find their accoumt(s) and also easy, given the 
We ma? see the semistructured-data model as blending the two concepts. tuple for an account to find thc customci(s) that hold that account. Also, try 

class-and-relationship or class-and-relation. niuch as the relational model blends to avoid redundancy. 
entity sets and relationships. However. the motivation for the blending appears 

Exercise 4.5.3 : If the data of Exercise -1.5.2 \\-ere modified so that an accoullt to be different in each case. While: as we mentioned, the relational model owes 
could be held by only one custonler [as in Exercise 2.1.2(a)], how could your some of its success to the fact that it facilitates efficient implementation, interest 
answer to Exercise 4.5.2 be simplified? in the semistructured-data model appears motivated primarily by its flexibility. 

While the other models seen so far each start from a notion of a schema - E/R 
Exercise 4.5.4: Rendcr the players: teams, and fans of Exercise 2.1.3 in tlle diagrams, relation schemas, or ODL declarations, for instance - semistructured 
3bject-relational model. data is "schemaless." ]lore properly, the data itself carries information about 
>\ 
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what its schema is, and that schema can vary arbitrarily, both over time and 
within a single database. 

4.6.2 Semistructured Data Representation 

A database of semistructured data is a collection of nodes. Each node is either 
a leaf or interior. Leaf nodes have associated data; the type of this data can 
be any atomic type, mch as numbers and strings. Interior nodes have one or 
more arcs out. Each arc has a label, which indicates how the node at the head 
of the arc relates to the riode at  the tail. One interior node, called the root, 
has no arcs entering and represents the entire database. Every node must be 
reachable from the root, although the graph structure is not necessarily a tree. 

Example 4.25 : Figure 4.19 is an example of a semistructured database about 
stars and movies. We see a node at  the top labeled Root; this node is the entry 
point to the data and may be thought of as representing all the information in 
the database. The centritl <;i>/c~cts or entities - stars and movies in this case - 
are represented by nodes that are children of the root. 

Maple H'wood Locust Malibu 

Figure 4.19: Semistructured data representing a movie and stars 
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the title and year of this movie, other information not shown, such as its length, 
and its stars, two of which are shown. 

from node N to node M. 

1. It may be possible to think of N as representing an object or struct, while 
M represents one of the attributes of the object or fields of the struct. 
Then, L represents the name of the attribute or field, respectively. 

2. We may be able to think of N and Ivl as objects, and L as the name of a 
relationship from N to 113. 

E Example 4.26: Consider Fig. 4.19 again. The node indicated by cf may be 
thought of as representing the Star object for Carrie Fisher. \Ve see; leaving this 
node, an arc labeled name. which represents the attribute name and properly 
leads to a leaf node holding the correct name. We also see two arcs, each 
labeled address. These arcs lead to unnamed nodes which we may think of as 
representing the two addresses of Carrie Fisher. Together, these arcs represent 
the set-valued attribute address as in Fig. 4.12. 

Each of these addresses is a struct, with fields s t r e e t  and city. We notice 
in Fig. 4.19 how both nodes have out-arcs labeled street and city. lloreover, 
these arcs each lead to leaf nodes with the appropriate atomic values. 

The other kind of arc also appears in Fig. 4.19. For instance: the node cf 
has an out-arc leading to the node sw and labeled starsIn. The node mh (for 
Mark Hamill) has a similar arc, and the node sw has arcs labeled star01 to both 
nodes cf and mh. These arcs represent the stars-in relationship betn-een stars 
and movies. 

4.6.3 Information Integration Via Semistructured Data 

Cnlike the other models we have discussed. data in the semistructured model 
is self-describing; the schema is attached to the data itself. That is. each node 
(except the root) has an arc or arcs entering it, and the labels on these arcs tell" 
what role the node is playing with respect to the node at the tail of the arc. In 
all the other models. data has a fised schema, separate from the data. and the 
role(s) played by data items is implicit in the schema. 

One might naturall?. \vender whether there is an advantage to creating a 
lye also see many leaf nodes. At the far left is a leaf labeled Carrie Fisher, database without a schema, 11-11ere one could enter data at  will, and attach to the 

and at  the far right is a leaf labeled 1977, for inst,ance. There are also inany data whatever schema information you felt was appropriate for that data. There 
intt?rior nodes. Three particular nodes we have labeled cf, rnh and stn, standillg are actually some small-scale information systems such as Lotus Sotes that take 
for "Carrie Fisher," "hlark Hamill," and "Star L'ars," respectively. These labels the self-describing-data approach. However, when people design databases to 
are not part of the model; and we placed them on these nodes only so n-e ~vould hold large amounts of data, it is generally accepted that the advantages of fixing 
have a way of referring to the nodes, which otherwise would be nameless. 11% the schema far outweigh the flexibility that comes from attaching the schema to 
may think of node sw, for instance, as representing the concept "Star \Vars": the data. For instance, fixing the schema allows the data to be organized with 
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data structures that support efficient answering of queries, as we shall discuss 
begillning in Chapter 13. 

lret the flexibility of semistructured data has made it important in two 
applications. We shall discuss its use in documents in Section 4.7, but here we 
shall consider its use as a tool for information integration. As databases have 
proliferated, it has become a common requirement that data in two or more 
of tllem be accessible as if they were one database. For instance, companies 
may merge; each has its own personnel database, its own database of sales. 
inventory, product designs, and perhaps many other matters. If corresponding 
databases had the same schemas, then combining them would be simple; for 
instance, we could take the union of the tuples in two relations that had the 
same schema and played the same roles in the the two databases. 

However, life is rarely that simple. Independently developed databases are 
unlikely to share a schema, even if they talk about the same things, such as per- 
sonnel. For instance, one employee database may record spouse-name, another 
not. One may have a way to represent several addresses, phones, or emails 
for an employee, another database may allow only one of each. One database 
might be relational, another object-oriented. 

To make matters more complex, databases tend over time to be used in so 
many different applications that it is impossible to shut them down and copy or 
translate their data into another database, even if we could figure out an efficient 
way to transform the data from one schema to another. This situation is often 
reffwed to as the legacy-database problem; once a database has been in existence 
for a xt-liile, it becomes impossible to disentangle it from the applications that 
grow up around it, so the database can never be decommissioned. 

.4 possible solution to the legacy-database problem is suggested in Fig. 4.20. 
We show two legacy databases with an interface; there could be many legacy 
systems involved. The legacy systems are each unchanged, so they can support 
their usual applications. 

User 
C 

Interface 0 
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For flexibility in integration, the interface supports semistructured data, and 
the user is allowed to query the interface using a query language that is suitable 
for such data. The semistructured data may be constructed by translating the 
data at  the sources, using components called wrappers (or "adapters") that are 
each designed for the purpose of translating one source to semistructured data. 

Alternatively, the semistructured data at the interface may not exist at  all. 
Rather, the user queries the interface as if there were semistructured data, while 
the interface answers the query by posing queries to the sources, each referring 
to the schema found at that source. 

Example 4.27 : \%re can see in Fig. 4.19 a possible effect of information about 
stars being gathered from several sources. Notice that the address information 
for Carrie Fisher has an address concept, and the address is then broken into 
street and city. That situation corresponds roughly to data that had a nested- 
relation schema like Stars(name, address(s t ree t  , c i ty )  ). 

On the other hand, the address information for hiark Hamill has no address 
concept at  all, just street and city. This information may have come from 
a schema such as Stars(name, s t r e e t ,  city) that only has the ability to 
represent one address for a star. Some of the other variations in schema that are 
not reflected in the tiny example of Fig. 4.19, but that could be present if movie 
information were obtained from several sources, include: optional film-type 
information, a director, a producer or producers, the owning studio, revenue, 
and information on where the movie is currently playing. 

4.6.4 Exercises for Section 4.6 

Exercise 4.6.1 : Since there is no schema to design in the semistructured-data 
model, ~t-e cannot ask you to design schemas to describe different situations. 
Rather. in the follo\ving exercises we shall ask you to suggest how particular 
data might be organized to reflect certain facts. 

* a) .idd to Fig. 4.19 the facts that Star Wars was directed by George Lucas 
and produced by Gary Kurtz. 

b) Add to Fig. 4.19 informat,ion about Empire Strikes Back and Return of 
the Jedi, including the facts t,hat Carrie Fisher and Mark Hamill appeared 
in these movies. 

C) .Add to (b) information about the studio (Fox) for these movies and the  
address of the studio (Holly~vood). 

* Exercise 4.6.2: Suggest llow typical data about banks and customers. as in 
Exercise 2.1.1. could be represented in the semistructured model. 

Exercise 4.6.3 : Suggest how typical data about players, teams. and fans, 
Figure 4.20: Integrating two legacy databases through an interface that sup- as ~vas described in Exercise 2.1.3, could be represented in the semistructured 
Ports semistructured data 
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Exercise 4.6.4 : Suggest how typical data about a genealogy, as was described semist,ructured data. As m-e shall see in Section 4.7.3, DTD's generally 
in Exercise 2.1.6, could be represented in the semistructured model. allow more flexibility in the data than does a conventional schema; DTD's 

often allow optional fields or missing fields, for instance. 
*! Exercise 4.6.5 : The E/R model and the semistructured-data model are both 

"graphical:' in nature, in the sense that they use nodes, labels, and connections 
among nodes as the medium of expression. Yet there is an essential difference 4.7.2 Well-Formed XML 
between the two models. What is it? The niinimal requirement for well-formed XML is that the document begin ~vith 

a declaration that it is XML, and that it have a root tag surrounding the entire 

4.7 XML and Its Data Model 
body of the text. Thus, a well-formed XbIL document would have an outer 
structure like: 

XML (Extensible Markup Language) is a tag-based notation for "marking" doc- <? XML VERSION = "1.0" STANDALONE = "yes" ?> 
uments, much like the familiar HTML or less familiar SGML. A document is 
nothing more nor less than a file of characters. However, while HMTL's tags . . . 
talk about the presentation of the information contained in documents - for 
instance, which portion is to be displayed in italics or what the entries of a list 
are - XML tags talk about the meaning of substrings within the document. The first line indicates that the file is an XML document. The parameter 

In this section we shall introduce the rudiments of XML. We shall see t.hat it STANDALONE = "yes" indicates that there is no DTD for this document; i.e., it 
captures, in a linear form, the same structure as do the graphs of semistructured is a-ell-formed XRIL. Notice that this initial declaration is delineated by special 
data introduced in Section 4.6. In particular, tags play the same role as did markers <?. . . ?>. 

the labels on the arcs of a semistructured-data graph. UTe then introduce the 
DTD ("document type definition"), which is a flexible form of schema that lye <? XML VERSION = "1.0" STANDALONE = "yes" ?> 
can place on certain documents with XhiIL tags. <STAR-MOVIE-DATA> 

<STAR><NAME>Carrie Fisher</NAME> 

4.7.1 Semantic Tags <ADDRESS><STREET>123 Maple %.</STREET> 
~CITY>Hollywood</CITY></ADDRESS> 

Tags in XML are text surrounded by triangular brackets, i.e., <. . .>, as in <ADDRESS><STREET>5 Locust Ln.</STREET> 
HIITL. Also as in HThlL, tags generally come in matching pairs, with a be- <CITY>Malibu</CITY></ADDRESS> 
ginning tag like <FOO> and a matching ending tag that is the same word with a </STAR> 
slash, like </FOO>. In HTRL there is an option to have tags with no matching <STAR><NAME>Mark Hamill</NAME> 
ender, like <P> for paragraphs, but such tags are not permitted in XhIL. \T,-hen <STREET>456 Oak Rd.</STREET><CITY>Brentwood</CITY> 
tags come in matching begin-end pairs, there is a requirement that the pairs be </STAR> 
nested. That is, between a matching pair <FOO> and </FOO>, t,here can be any <MOVIE><TITLE>Star Wars</TITLE><YEAR>1977</YEAR> 
number of other matching pairs, but if the beginning of a pair is in this range. </MOVIE> 
then the ending of the pair must also be in the range. USTAR-MOVIE-DATA> 

XLIL is designed to be used in two some~hat  different modes: 

1. il'ell-formed XR.IL allows you to invent your own tags, much like the arc- Figure 4.21: .In XlIL document about stars and movies 
labels in semistructured data. This mode corresponds quite closely to 
semistructured data, in that t,here is no schema, and each document is 
free to use whatever tags the author of the document 1%-ishes. Example 4.28 : In Fig. 4.21 is an XLIL document that corresponds roughly to 

the data in Fig. 4.19. The root tag is STAR-MOVIE-DATA. We see two sections 
2. Valid XAIL involves a Document Type Definition that specifies the al- surrounded by the tag <STAR> and its matching </STAR>. Within each section 

Ion-able tags arid gives a grammar for how they may be nested. This are subsections giving the name of the star. One: for Carrie Fisher, has two 
form of SAIL is intermediate between the strict-schema models such as subsections, each giving the address of one of her homes. These sections are 
the relational or ODL models, and the completely schernaless world of surrounded by an <ADDRESS> tag and its ender. The section for Mark Hamill 
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has only entries for one street and one city, and does not use an <ADDRESS> tag ing tag is STARS (XML, like HTML, is case-insensitive, so STARS is clearly the 
to group these. This distinction appeared as well in Fig. 4.19. root-tag). The first element definition says that inside the matching pair of tags 

i\Totice that the document of Fig. 4.21 does not represent the relationship <STARS>. . .</STARS> we will find zero or more STAR tags, each representing a 
:+,tars-inV between stars and movies. We could store information about each single star. It is the * in (STAR*) that says "zero or more," i.e., "any number 
movie of a st,ar within the section devoted to that star, for instance: 

<sTAR><NAME>Mark Hamill</NAME> 
<STREET>O~~</STREET><CITY>B~~~~WOO~</CITY> <!DOCTYPE Stars [ 
<MOVIE><TITLE>Star w~~~</TITLE><YEAR>~~~~</YEAR></MovIE> <!ELEMENT STARS (STAR*)> 
<MOVIE><TITLE>E~~~~~</TITLE><YEAR>~~~~</YEAR></MOVIE> < ! ELEMENT STAR (NAME, ADDRESS+, MOVIES) > 

</STAR> < !ELEMENT NAME (#PCDATA) > 

However, that approach leads to redundancy, since all information about the <!ELEMENT ADDRESS (STREET, CITY)> 

movie is repeated for each of its stars (we have shown no information except a <!ELEMENT STREET (#PCDATA)> 

movie's key - title and year - which does not actually represent- an instance <!ELEMENT CITY (#PCDATA)> 

of redundancy). We shall see in Section 4.7.5 how XML handles the problem < !ELEMENT MOVIES (MOVIE*) > 

that tags inherently form a tree structure. 0 <!ELEMENT MOVIE (TITLE, YEAR)> 
<!ELEMENT TITLE (#PCDATA)> 
< !ELEMENT YEAR (#PCDATA) > 

4.7.3 Document Type Definitions 

In order for a computer to process XML documents automatically, there needs 
to be something like a schema for the documents. That is, we need to be told 
what tags can appear in a collection of documents and how tags can be nested. Figure 4.22: 1.1 DTD for movie stars 

The descriptioll of the schema is given by a grammar-like set of rules, called a 
document type definition, or DTD. It is intended that companies or communities The second element, STAR, is declared to consist of three kinds of subele- 
wishing to share dat,a will each create a DTD that describes the form(s) of the ments: NAME, ADDRESS, and MOVIES. They must appear in this order, and each 

documents they share and establishing a shared view of the semantics of their must be present. Ho~vever, the + following ADDRESS says "one or more"; that 

tags. Fo; instance, there could be a DTD for describing protein structures, a is, there can be any number of addresses listed for a star, but there must be at 

DTD for dmcribing t,he purchase and sale of auto parts, and so on. least one. The NAME element is then defined to be *PCD.lTAl7' i.e., simple test. 

The gross structure of a DTD is: The fourth element says that an address element consists of fields for a street 
and a city, in that order. 

< ! DOCTYPE root-tag [ Then, the MOVIES element is defined to have zero or more elements of type 
<!ELEMENT element-name (components) > MOVIE within it; again, the * says "any number of." A MOVIE element is defined 

more elements to consist of title and year fields, each of which are simple text. Figure 4.23 is 
1 > 

. .. 

an example of a document that conforms to the DTD of Fig. 4.22. o 
I. The root-tag is used (with its matching ender) to surround a document that 

.' conforms to the rules of this DTD. An element is described by its name, which is The components of an element E are generally other elements. They must 

the tagused to surround portions of the document that represent that element, appear between the tags <E> and </E> in the order listed. Horr-ever. there 
and a parenthesized list of components. The latter are tags that may or must are several operators that control the number of times e1etllent.s appear. 

appear within the tags for the element being described. The exact requirements 
on each coniponlent are indicated in a manner we shall see short,lg. 1. A * follorving an element means that the element nlay occur any tiutllbcr 

There is, however, an important special case. (#PCDATA) after an element of times, including zero t,imes. 

name means that element has a value that is text, and it has no tags nested 2. A + following an element means that the element may occur one or more 
within. times. 

Exampie 4.29 : In Fig. 4.22 rve see a DTD for stars." The name and surround- 3. A ? following an element nieans that the element may occur either zero 
'Sote that the stars-and-movies data of Fig. 4.21 is not intended to conform to this DTD. times or one time, but no more. 

\ 
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<STARS> 
<sTAR><NAME>Carrie Fisher</NAME> 

<ADDRESS><STREET>123 Maple St.</STREET> 
<CITY>HO~~~WOO~</CITY></ADDRESS> 

<ADDRESS><STREET>5 Locust Ln.</STREET> 
<CITY>Malibu</CITY></ADDRESS> 

<MOVIES><MOVIE><TITLE>Star Wars</TITLE> 
<YEAR>1977</YEAR></MOVIE> 
<MOVIE><TITLE>Empire Strikes Back</TITLE> 
<YEAR>l980</YEAR></MOVIE> 
<MOVIE><TITLE>Return of the Jedi</TITLE> 
<YEAR>1983</YEAR></MOVIE> 

</MOVIES> 
</STAR> 
<STAR><NAME>Mark Hamill</NAME> 

<ADDRESS><STREET>456 Oak Rd.<STREET> 
<CITY>Brentwood</CITY></ADDRESS> 

<MOVIES><MOVIE><TITLE>Star Wars</TITLE> 
<YEAR>1977</YEAR></MOVIE> 
<MOVIE><TITLE>Ernpire Strikes Back</TITLE> 
<YEAR>1980</YEAR></MOVIE> 
<MOVIE><TITLE>Return of the Jedi</TITLE> 
<YEAR>1983</YEAR></MOVIE> 

</MOVIES> 
</STAR> 

</STARS> 

.7. X&IL AND ITS DATA iVIODEL 

Example 4.30 : Here is how we might introduce the document of Fig. 4.23 to 
assert that it is intended to conform to the DTD of Fig. 4.22. 

<?XML VERSION = "1.0" STANDALONE = "nou?> 
<!DOCTYPE Stars SYSTEM "star.dtdl'> 

The parameter STANDALONE = "no" says that a DTD is being used. Recall we 
set this parameter to "yes" when we did not wish to specify a DTD for the 
document. The location from which the DTD can be obtained is given in the 
! DOCTYPE clause, where the keyword SYSTEM followed by a file name gives this 
location. U 

4.7.5 Attribute Lists 

There is a strong relationship between XML documents and semistructured 
data. Suppose that for some pair of matching tags <T> and <IT> in a doc- 
ument we create a node n. Then, if <S> and <IS> are matching tags nested 
directly within the pair <T> and </T> (i.e., there are no matched pairs sur- 
rounding the S-pair but surrounded by the T-pair), we draw an arc labeled S 
from node n to the node for the S-pair. Then the result will be an instance of 
semistructured data that has essentially the same structure as the document. 

Gnfortunately, the relationship doesn't go the other way, with the limited 
subset of XML we have described so far. We need a way to express in XML 
the idea that an instance of an element might have more than one arc leading 
to that element. Clearly, \ve canilot nest a tag-pair directly within more than 
one tag-pair, so nesting is not sufficient to represent multiple predecessors of a 
node. The additional features that allow us to remesent all semistructured data 
in X51L are attributes within tags, identifiers (ID's), and identifier references 

Figure 4.23: Example of a document following the DTD of Fig. 4.22 (IDREF'S). 
Opening tags can have attributes that appear within the tag, in analogy to 

4. The symbol I may appear between elements, or between parenthesized constructs like <A HREF = . . . > in HTML. Keyxvord ! ATTLIST introduces a list 

groups of elements to signify "or"; that is, either the element(s) on the of attributes and their types for a given element. One common use of attributes 

left appear or the element(s) on the right appear, but not both. For is to associate single, labeled values with a tag. This usage is an  alternative to 

example, the expression (#PCDATA I (STREET, CITY)) as components subtags that are simple text (i.e., declared as PCDAT.4). 

for element ADDRESS ivould mean that an address could be either simple Another important purpose of such attributes is to represent semistructured 

test, or consist of tagged street and city components. data that does not have a tree form. An attribut,e for elements of type E that 
is declared to be an ID ~a-ill be given values that uniquely identify each portion 
of the document that is surro~l~lded by an <E> and matching </E> tag. In 

4.7.4 Using a DTD terms of scmistructured data, an ID provides a unique name for a ~loclc. 

If a document is intended to conform to a certain DTD, we can either: Other attributes may be declared to be IDREF's. Their values are the 
ID's associated with other tags. By giving one tag instance (i.e., a node in 

a) Include the DTD itself as a preamble to the document, or semistructured data) an ID ~vith a value v and another tag instance an IDREF 
with value v, the latter is effectively given an arc or link to the former. The 

b) In the opening line, refer to the DTD, which must be stored separately following example illustrates both the syntax for declaring ID'S and IDREF's 
in the file system accessible to the application that is processing the doc- and the significance of using them in data. 
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<!DOCTYPE Stars-Movies [ 
<!ELEMENT STARS-MOVIES (STAR*, MOVIE*)> 
<!ELEMENT STAR (NAME, ADDRESS+)> 

<!ATTLIST STAR 
starId ID 
starredIn IDREFS> 

<!ELEMENT NAME (#PCDATA)> 
< !ELEMENT ADDRESS (STREET, CITY )> 
<!ELEMENT STREET (#PCDATA)> 
<!ELEMENT CITY (#PCDATA)> 
<!ELEMENT MOVIE (TITLE, YEAR)> 

<!ATTLIST MOVIE 
movieId ID 
starsOf IDREFS 

<!ELEMENT TITLE (#PCDATA) > 
<!ELEMENT YEAR (#PCDATA)> 

I > 

Figure 4.24: A DTD for stars and movies, using ID'S and IDREF'S 

Example 4.31 : Figure 4.24 shows a revised DTD, in which stars and movies 
are given equal status, and ID-IDREF correspondence is used to describe the 
many-many relationship between movies and stars. Analogously, the arcs be- 
tween nodes representing stars and movies describe the same many-many rela- 
tionship in the semistructured data of Fig. 4.19. The name of the root tag for 
this DTD has been changed to STARS-MOVIES, and its elements are a sequence 
of stars followed by a sequence of movies. 

..1 star no longer has a set of movies as subelements. as was the case for the 
DTD of Fig. 4.22. Rather, its only subelements are a name and address. and 
in the beginning <STAR> tag we shall find an attribute starredIn whose value 
is a list of ID'S for the movies of the star. Sote that the attribute starredIn is 
declared to be of type IDREFS, rather than IDREF. The additional "S" allo~s-s the 
value of starredIn to be a list of ID's for movies, rather than a single mot-ie. 
as would be the case if the type IDREF were used. 

A <STAR> tag also has an attribute starId. Since it is declared to be of 
type ID: the value of starId may be referenced by <MOVIE> tags to indicate 
the stars of the movie. That is, when we look at the attribute list for MOVIE in 
Fig. 4.24. we see that it has an attribute movieId of type ID: these are the ID'S 
that will appear on lists that are the values of starredIn tags. Symmetrically. 
the attribute starsOf of MOVIE is a list of ID's for stars. 

Figure 4.25 is an example of a document that conforms to the DTD of 
Fig. 4.24. It is quite similar to the semistrl~ctured data of Fig. 4.19. It includes 
"Ore data - three movies instead of only one. However, the only structural 
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difference is that here, all stars have an ADDRESS subelement, even if they have 
only one address, while in Fig. 4.19 we went directly from the Mark-Hamill 
node to street and city nodes. 

(STARS-MOVIES> 
(STAR starId = "cf" starredIn = "sw, esb, rj"> 

<NAME>Carrie Fisher</NAME> 
<ADDRESS><STREET>123 Maple St.</STREET> 

<CITY>Hollywood</CITY></ADDRESS> 
<ADDRESS><STREET>S Locust Ln.</STREET> 

<CITY>Malibu</CITY></ADDRESS> 
</STAR> 
(STAR starId = "mh" starredIn = "sw, esb, rj"> 

<NAME>Mark Hamill</NAME> 
<ADDRESS><STREET>456 Oak Rd.<STREET> 

<CITY>Brentwood</CITY></ADDRESS> 
</STAR> 
<MOVIE movieId = "sw" starsOf = "cf, mh"> 

<TITLE>Star Wars</TITLE> 
<YEAR>1977</YEAR> 

</MOVIE> 
<MOVIE movieId = "esb" starsOf = "cf, mh"> 

<TITLE>Empire Strikes Back</TITLE> 
<YEAR>1980</YEAR> 

</MOVIE> 
<MOVIE movieId = "rj" starsOf = "cf, mh"> 

<TITLE>Return of the Jedi</TITLE> 
<YEAR>1983</YEAR> 

</MOVIE> 
</STARS-MOVIES> 

Figure 4.25: Example of a document following the DTD of Fig. 4.24 

4.7.6 Exercises for Section 4.7 

Exercise 4.7.1 : Add to the document of Fig. 4.25 the follo~ving facts: 

* a) Harrison Ford also starred in the three movies mentioned and the nio~ie 
Witness (1985). 

b) Carrie Fisher also starred in Hannah and Her Sisters (1985). 

c) Liam Seeson starred in The Phantom Menace (1999). 
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* Exercise 4.7.2 : Suggest how typical data about banks and customers, as was major features of object-orientation. These extensions include nested re- 
described in Exercise 2.1.1, could be represented a s  a DTD. lations, i.e., complex types for attributes of a relation, including relations 

as types. Other extensions include methods defined for these types, and 
Exercise 4.7.3 : Suggest how typical data about players, teams, and fans, as the ability of one tuple to refer to another through a reference type. 
was described in Exercise 2.1.3, could be represented as a DTD. 

+ ~emlstructured Data: In this model, data is represented by a graph. 
Exercise 4.7.4 : Suggest how typical data about a genealogy, as was described Nodes are like objects or values of their attributes, and labeled arcs con- 
in Exercise 2.1.6, could be represented as a DTD. nect an object to both the values of its attributes and to other objects to 

which it is connected by a relationship. 

4.8 Summary of Chapter 4 + XML: The Extensible Markup Language is a World-Wide-Web Consor- 

+ Object Definition Language: This language is a notation for formally de- tium standard that implements semistructured data in documents (text 
scribing the schemas of databases in an object-oriented style. One defines files). Nodes correspond to sections of the text, and (some) labeled arcs 
classes, which may have three kinds of properties: attributes, methods, are represented in XML by pairs of beginning and ending tags. 
and relationships. + Identifiers and References in XML: To represent graphs that are not trees, 

+ ODL Relationships: A relationship in ODL must be binary. It is repre- XML allows attributes of type I D  and IDREF within the beginning tags. 

sented, in the two classes it connects, by names that are declared to be A tag (corresponding to a node of semistructured data) can thus be given 

inverses of one another. Relationships can be many-many, many-one, or an identifier, and that identifier can be referred to by other tags, from 

one-one, depending on whether the types of the pair are declared to be a which we would like to establish a link (arc in semistructured data). 

single object or a set of objects. 

+ The ODL Type System: ODL allows types to be constructed, beginning 4.9 References for Chapter 4 
with class names and atomic types such as integer, by applying any of the 
following type constructors: structure formation, set-of, bag-of, list-of, The manual defining ODL is [6]. It is the ongoing work of ODLIG, the Object 
array-of, and dictionary-of. Data Management Group. One can also find more about the history of object- 

oriented database systems from [4], [5], and [8]. + Extents: A class of objects can have an extent, which is the set of objects of Semistructured data as a model developed from the TSIRIXIIS and LORE 
that class currently exist,ing in the database. Thus, the extent corresponds projects at  Stanford. The original description of the model is in [9]. LORE and 
to a relation instance in the relational model, while the class declaration its query language are described in [3]. Recellt surveys of work on semistruc- 
is like the schema of a relation. tured data include [I], [lo], and the book [2]. .A bibliography of semistructured 

+ Keys in ODL: Keys are optional in ODL. One is allo~r-ed to declare one data is being compiled on the Web, at  [7]. 

or more keys, but because objects have an object-ID that is not one of its XXIL is a standard developed by the Xorld-\Vide-Web Consortium. The 

propert,ies, a system implementing ODL can tell the difference between home page for information about XXIL is [Ill. 

objects, even if they have identical values for all properties. 
1. S. Abiteboul, "Querying semi-structured data," Proc. Intl. Conf. on Dnta- + Converting ODL Designs to Relations: If rve treat ODL as only a de- base Theory (1997); Lecture Sotes in Computer Science 1187 (F. Afrati 

sign language, whose designs are then converted to relations, the simplest and P. Kolaitis, eds.), Springer-Verlag, Berlin, pp. 1-18. 
approach is to create a relation for a the attributes of a class and a re- 
lation for each pair of inverse relationships. However. we can combine a 2. Abiteboul, S., D. Suciu, and P. Buneman, Data on the Web: From Rela- 
many-one relationship with the relation intended for the attributes of the taons to Semistructured Data and Xml, X4organ-Icaufmann, San Francisco, 
"manyn class. It is also necessary to create new attributes to represent 
the key of a class that has no key. 

3. -4biteboul S., D. Quass, J. McHugh, J. IVidom, and J. L. Weiner, "The 
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11. NJorld-Wide-Web Consortium, h t tp :  //www .w3. org/XML/ While ODL uses methods that, in principle, can perform any operation on 
data, and the E/R model does not embrace a specific way of manipulating 
data, the relational model has a concrete set of "standard" operations on data. 
Surprisingly, these operations are not "Turing complete" the way ordinary pro- 
gramming languages are. Thus, there are operations we cannot express in 
relational algebra that could be expressed, for instance, in ODL methods writ- 
ten in C++. This situation is not a defect of the relational model or relational 
algebra, because the advantage of limiting the scope of operations is that it 
becomes possible to optimize queries written in a very high level language such 
as SQL, tvhich we introduce in Chapter 6. 

We begin by introducing the operations of relational algebra. This algebra 
formally applies to sets of tuples, i.e., relations. Hoxvever, commercial DBkIS's 
use a slightly different model of relations, which are bags, not sets. That is, 
relations in practice may contain duplicate tuples. While it is often useful to 
think of relational algebra as a set algebra, we also need to be conscious of the 
effects of duplicates on the results of the operations in relational algebra. In 
the final section of this chapter, n-e consider the matter of how constraints on 
relations can be expressed. 

Later chapters let us see the languages and features that today's commercial 
DBMS's offer the user. The operations of relational algebra are all implemented 
by the SQL query language, which we study beginning in Chapter 6. These 
algebraic operations also appear in the OQL language, an object-oriented query 
language based on the ODL data model and introduced in Chapter 9. 
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5.1 An Example Database Schema 

As we begin our focus on database programming in the relational model, it is 
useful to have a specific schema on which to base our examples of queries. Our 
chosen database schema draws upon the running example of movies, stars, and 
studios, and it uses normalized relations similar to the-ones that we developed 
in Section 3.6. However, it includes some attributes that we have not used pre- 
viously in examples, and it includes one relation - MovieExec - that has not 
appeared before. The purpose of these changes is to give us some opportunities 
to study different data types and different ways of representing information. 
Figure 5.1 shows the schema. 

Movie ( 
TITLE: s t r ing ,  
YEAR: integer,  
length: integer,  
incolor: boolean, 
studioName: s t r ing ,  
producerC#: integer)  

S ta r s In (  
MOVIETITLE: s t r i n g ,  
MOVIEYEAR: in teger ,  
STARNAME: s t r ing)  

Moviestar( 
NAME: s t r ing ,  
address: s t r ing ,  
gender : char, 
bir thdate:  date) 

HovieExec( 
name: s t r ing ,  
address: s t r ing ,  
CERT# : integer , 
networth: integer)  
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Our schema has five relations. The attributes of each relation are listed, 
along with the intended domain for that attribute. The key attributes for a 
relation are shown in capitals in Fig. 5.1, although when we refer to them in 
text, they will be lower-case as they have been heretofore. For instance, all 
three attributes together form the key for relation StarsIn .  Relation Movie 
has six attributes; t i t l e  and year together constitute the key for Movie, as 
they have previously. Attribute t i t l e  is a string, and year is an integer. 

The major nlodifications to the schema compared mit,h what we have seen 

There is a notion of a certificate number for movie executives - studio 
presidents and movie producers. This certificate is a unique integer that 
we imagine is maintained by some external authority, perhaps a registry 
of executives or a "union." 

\Ire use certificate numbers as the key for movie executives, although 
movie stars do not al~vays have certificates and we shall continue to use 
name as the key for stars. That decision is probably unrealistic, since 
two stars could have the same name, but we take this road in order to 
illustrate some different options. 

\Ve introduced the producer as another property of movies. This infor- 
mation is represented by a new attribute, producerC#, of relation Movie. 
This attribute is intended to be the certificate number of the producer. 
Producers are expccted to be moyie executives, as are studio presidents. 
There may also be other esecutives in the MovieExec relation. 

Attribute f ilmType of Movie has been changed from an enumerat,ed type 
to a boolean-valued attribute called incolor: true if the movie is in color 
and false if it is in black and white. 

The attribute gender has been added for movie stars. Its type is "char- 
acter," either M for male or F for female. Attribute birthdate,  of type 
"date" (a special type supported by many commercial database systems 

=g, or just a character string if we prefer) has also been added. 

All addresses have been made strings, rather than pairs consisting of a 
street and city. The purpose is to make addresses in different relations 
comparable easily and to simplify operations on addresses. 

Studio ( 5.2 An Algebra of Relational Operations - - 
NAME: s t r ing ,  
address: s t r i n g ,  TO begin our study of operations on relations. we shall learn about a special 

presC#: integer)  algebra, called relattonal algebra, that consists of some simple but po\ierful nays 
to construct new relations from given relations. When the giwn relations are 
stored data, then the constructed relations can be answers to queries about this 

Figure 5.1: Example database schema about movies 

\ 
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Why Bags Can Be More Efficient Than Sets 

As a simple example of why bags can lead to implementation efficiency, if 
you take the union of two relations but do not eliminate duplicates, then 
you can just copy the relations to the output. If you insist that the result 
be a set, you have to sort the relations, or do something similar to detect 
identical tuples that come from the two relations. 

The development of an algebra for relations has a history, which we shall 
follow roughly in our presentation. Initially, relational algebra was proposed 
by T. Codd as an algebra on sets of tuples (i.e., relations) that could be used 
to express typical queries about those relations. It consisted of five operations 
on sets: union, set difference, and Cartesian product, with which you might 
already be familiar, and two unusual operations - selection and projection. 
To these, several operations that can be defined in terms of these were added: 
varieties of "join" are the most important. 

When DBMS's that used the relational model were first developed, their 
query languages largely implemented the relational algebra. However, for ef- 
ficiency purposes, these systems regarded relations as bags, not sets. That is. 
unless the user asked explicitly that duplicate tuples be condensed into one (i.e., 
that "duplicates be eliminated"), relations were allowed to contain duplicates. 
Thus, in Section 5.3, we shall study the same relational operations on bags and 
see the changes necessary. 

.inother change to the algebra that was necessitated by commercial imple- 
mentations of the relational model is that several other operations are needed. 
Nost important is a way of performing aggregation, e.g., finding the average 
value of some column of a relation. We shall study these additional operations 
in Section 5.4. 

5.2.1 Basics of Relational Algebra 
Xn algebra, in general, consists of operators and atomic operands. For in- 
stance, in the algebra of arithmetic, the atomic operands are variables like .r 
and constants like 15. The oDerators are the usual arithmetic ones: addition. 
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2. Constants, which are finite relations. 

.As we mentioned, in the classical relational algebra, all operands and the results 
of expressions are sets. The operations of the traditional relational algebra fall 
into four broad classes: 

a) The usual set operations - union, intersection, and difference - applied 
to relations. 

b) Operations that remove parts of a relation: "selection" eliminates some 
rows (tuples), and "projection" eliminates some columns. 

c) Operations that combine the tuples of two relations, including "Cartesian 
product," which pairs the tuples of two relations in all possible ways, and 
various kinds of "join" operations, which selectively pair tuples from two 
relations. 

d) An operation called .'renamingx that does not affect the tuples of a re- 
lation, but changes the relation schema, i.e., the names of the attributes 
and/or the name of the relation itself. 

IVe shall generally refer to expressions of relational algebra as 9uerie.s. \Yhile 
we don't yet have the symbols needed to sho~v many of the expressions of 
relationaj algebra, you should be familiar with the operations of group (a). and 
thus recognize (R U S) as an esainple of an expression of relational algebra. 
R and S are atomic operands standing for relations, whose sets of tuples are 
unknown. This query asks for the union of whatever tuples are in the relations 
named R and S. 

5.2.2 Set Operations on Relations 

The three most common operations on sets are union. intersection; and differ- 
ence. \Ye assume the reader is familiar with these operations. n-hich are defined 
as follo~vs on arbitrary sets R and S: 

R U S: the m i o n  of R and S; is the set of elements that are in R or S or 
both. An element appears only once in the union even if it is present in 
both R and S. 

subtraction, multiplication, and division. Any algebra allows us to build ez- R n S? the in,ter.section of R and S.  is the set of elelilents that are in both 
pressions by applying operators to atomic operands and/or other expressiolls R and S.  
of the algebra. Usually, parentheses are needed to group operators and their 
operands. For instance, in arithmet,ic we have expressions such as (x + y) * z or R - S ,  the difference of R and S ,  is the set of elements that are in R but 
((x + 7)/(y - 3)) + x. not in S .  Sote that R - S is different froni S - R; the latter is the set of 

Relational algebra is another example of an algebra. Its atomic operallds elements that are in S but not in R. 
are: 

When we apply these operations to relations, tve need to put some conditions 
1. Variables that stand for relat,ions. 

., . , 
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1. R and S must have schemas with identical sets of attributes, and the 
types (domains) for each attribute must be the same in R and S. 

2. Before me compute the set-theoretic union, intersection, or difference of 
sets of tuples, the columns of R and S must be ordered so that the order 
of attributes is the same for both relations. 

Sometimes we would like to take the union, intersection, or difference of 
relations that have the same number of attributes, with corresponding domains. 
but that use different names for their attributes. If so, we may use the renaming 
operator to be discussed in Section 5.2.9 to change the schema of one or both 
relations and give them the same set of attributes. 

name address gender birthdate 
Carr ie  Fisher 123 Maple S t . ,  Hollywood F 9/9/99 
Mark H a i l 1  456 Oak Rd., Brentwood M 8/8/88 

Relation R 

name address gender birthdate 
Carrie Fisher 123 Maple S t . ,  Hollywood F 9/9/99 
Harrison Ford 789 Palm Dr., Beverly H i l l s  M 7/7/77 
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Xow, only the Carrie Fisher tuple appears, because only it is in both relations. 
The difference R - S is 

name I address I gender I birthdate 
Mark Hamill 1 456 Oak Rd. , Brentwood ( M ( 8/8/88 

That is, the Fisher and Hamill tup!es appear in R and thus are candidates for 
R - S. Horn-ever: the Fisher tuple also appears in S and so is not in R - S. 

5.2.3 Projection 

The projection operator is used to produce from a relation R a new relation 
that has only some of R's columns. The value of expression ~ T A ~ , . ~ ~ , . . . , A ~  (R) is 
a relation that has only the columns for attributes A1, A2,. . . , A, of R. The 
schema for the resulting value is the set of attributes {Ax, -42,. . . , A,),  which 
we conventionally show in the order listed. 

title year length incolor studioName producerC# 
S t a r  Wars 1977 124 t r u e  Fox 12345 
Mighty Ducks 1991 104 t r u e  Disney 67890 
Wayne's World 1992 95 t r u e  Paramount 99999 

Figure 3.3: The relation Movie 

Relation S 
Example 5.2 : Consider the relation Movie with the relation schema described 
in Section 5.1. -111 instance of this relation is shown in Fig. 5.3. We can project 

Figure 5.2: TIYO relations this relation onto the first three attributes with the expression 

7 

10 t i t le .year. length (Movie) 

Example 5.1 : Suppose we have the two relations R and S: instances of the The resulting relation is 
relation Moviestar of Section 5.1. Current instances of R and S are shon-n in 
Fig. 5.2. Then the union R U S is title I year 1 length 

name address gender birthdate 
Carrie Fisher 123 Maple S t . ,  Hollywood F 9/9/99 
Mark Harnill 456 Oak Rd., Brentwood M 8/8/88 -1s another example. n-e can project onto the attribute incolor xith the 
Harrison Ford 789 Palm Dr., Beverly H i l l s  M 7/7/77 expression ;ii,lc,rc.,(Movie). The result is the single-column relation 

Sote that the two tuples for Carrie Fisher from the two relations appear only inColor 
once in the result. t r u e  

The intersection R n S is 
Sotice that there is only one tuple in the resulting relation, since all three tuples 

name 1 address 1 gender I birthdate of Fig. 5.3 have the same value in their component for attribute incolor,  and 
Carrie Fisher 1 123 Maple S t . ,  Hollywood I F in the relational algebra of sets, duplicate tuples are always eliminated. 0 



196 CHAPTER 5. RELATIONAL ALGEBRA 5.2. AN ALGEBRA OF RELATIOArS4L OPERATIOh*S 197 

5.2.5 Cartesian Product 5.2.4 Selection 

The selection operator, applied to a relation R, produces a new relation with a 
subset of R's tuples. The tuples in the resulting relation are those that satisfy 
some condition C that involves the attributes of R. We denote this operation 
uc(R). The schema for the resulting relation is the same as R's schema, and 
we conventionally show the attributes in the same order as we use for R. 

C is a conditional expression of the type with which we are familiar from 
conventional programming languages; for example, conditional expressions fol- 
low the keyword i f  in programming languages such as C or Java. The only 
difference is that the operands in condition C are either constants or attributes 
of R. We apply C to each tuple t of R by substituting, for each attribute rl 
appearing in condition C, the component of t for attribute A. If after substi- 
tuting for each attribute of C the condition C is true, then t is one of the tuples 
that appear in the result of uc(R); otherwise t is not in the result. 

Example 5.3: Let the relation Movie be as in Fig. 5.3. Then the wlue of 
expression ul,,,th2~oo(Movie) is 

title year length incolor studioName producerC# 
Star Wars 1977 124 t r u e  Fox 12345 
Mighty Ducks 1991 104 t rue  Disney 67890 

The first tuple satisfies the condition length 2 100 because when we substitute 
for length the value 124 found in the component of the first tuple for attribute 
length, the condition becomes 124 2 100. The latter condition is true, so xe 
accept the first tuple. The same argument explains why the second tuple of 
Fig. 5.3 is in the result. 

The third tuple has a length component 95. Thus, when we substitute for 
length n-e get the condition 95 2 100, which is false. Hence the last tuple of 
Fig. 5.3 is not in the result. 0 

The Cartesian product (or cross-product, or just product) of two sets R and 
S is the set of pairs that can be formed by choosing the first element of the 
pair to be any element of R and the second any element of S. This product 
is denoted R x S .  When R and S are relations, the product is essentially the 
same. However, since the members of R and S are tuples, usually consisting 
of more than one component, the result of pairing a tuple from R with a tuple 
from S is a longer tuple, with one component for each of the components of 
the constituent tuples. By convention, the components from R precede the 
components from S in the attribute order for the result. 

The relation schema for the resulting relation is the union of the schemas 
for R and S. However, if R and S should happen to have some attributes in 
common, then we need to invent new names for at least one of each pair of 
identical attributes. To disambiguate an attribute A that is in the sclemas of 
both R and S ,  we use R..4 for the attribute from R and S.A for the attribute 
from S .  

Relation R 

Relation S 

Example 5.4: Suppose we want the set of tuples in the relation Movie that 
represent Fox movies at least 100 minut,es long. We can get these tuples with 
a more complicated condition, involving the AND of two subconditions. The 
expression is 

fllength>lOO AND studioName='FoxJ 

The tuple 

Result R x S 
title 1 year 1 length I inColor ] studioName 1 producerC# 
Star Wars 1 1977 ( 124 1 t r u e  1 Fox 

Figure 5.3: Tn-o relations and their Cartesian product, 
is the only one in the resulting relation. 
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Example 5.5 : For conciseness, let us use an abstract example that illustrates Example 5.6: The natural join of the relations R and S from Fig. 5.4 is 
the product operation. Let relations R and S have the schemas and tuples 
shown in Fig. 5.4. Then the product R x S consists of the six tuples shown in 
that figure. Note how we have paired each of the two tuples of R with each of 
the t,hree tuples of S. Since B is an attribute of both schemas, we have used 
R.B and S.B in the schema for R x S. The other attributes are unambiguous, 
and their names appear in the resulting schema unchanged. The only attribute common to R and S is B. Thus, to pair successfully, tuples 

need only to agree in their B components. If so, the resulting tuple has corn- 
ponents for attributes A (from R), B (from either R or S), C (from S) ,  and D 

5.2.6 Natural Joins 
In this example, the first tuple of R successfully pairs with only the first 

More often than we want to take the product of two relations, we find a need to tuple of S ;  they share the value 2 on their common attribute B. This pairing 
join them by pairing only those tuples that match in some way. The sinlplest ~ ie lds  the first tuple of the result: (1,2,5,6). The second tuple of R pairs 
sort of match is the natural join of t~vo relations R and S,  denoted R w S, in successfully only with the second tuple of S, and the pairing yields (3,4,7,8). 
which we pair only those tuples from R and S that agree in whatever attributes Note that the third tuple of S does not pair with any tuple of R and thus has 
are common to the schenlas of R and S. More precisely, let A1, A2, . . . , A, be 110 effect on the result of R w S .  X tuple that fails to pair n-it11 any tuple of 
all the attributes that are in both the schema of R and the schema of S. Then the other relation in a join is said to.be a dangling tuple. 0 
a tuple r from R and a tuple s from S are successfully paired if and only if r 
and s agree on each of the attributes ill, A*, . ..,A,. Example 5.7: The previous exalnple does not illustrate all the possibilities 

If the tuples r and s are successfully paired in the join R w S, then the inherent in the natural join operator. For example, no tuple paired successfully 
result of the pairing is a tuple, called the joined tuple, with one component for with more than one tuple. and there was only one attribute in common to the 
each of the attributes in the union of the schemas of R and S. The joined tuple two relation schemas. In Fig. 5.6 we see two other relations, Ci and I;, that share 
agrees with tup!e r in each attribut,e in t.he schema of R, and it agrees with s tu-o attributes between their schcmas: B and C. We also show an instance in 
in each attribute: i r ~  the schema of S. Since r and s are successfully paired, the which one tuple joins with se~eral  tuples. 
joined tuple is able to agree with both these tuples on the attributes they have For tuples to pair successfully, they must agree in both the B and C conl- 
in common. The construction of the joined tuple is suggested by Fig. 5.5. ponents. Thus, the first tuple of C joins with the first t~vo tuples of I', tvhile 

the second and third tuples of li join with the third tuple of I-. The result of 
R these four pairings is shown in Fig. 3.6. 0 

5.2.7 Theta-Joins 

The natural join forces us t,o pair tuples using one specific condition. 1l7hile this 
vay, equating shared attributes, is the most common basis on n-hich relations 
are joined, it is sometinles desirable to pair tuples from two relations on some 
other basis. For that purpose, we have a related notation called the theta- 
join. Historically the "theta" refers to an arbitrary condition. which ~ve~shall 
represent by C rather than 0. 

The notation for a theta-join of relations R and S based on condition C is 
Figure 3.5: Joining tuples R 7 S. The result of this operation is constructed as follo~vs: 

Sate also that this join operation is the same one that Ire used in Scc- 1. Take the product of R and S. 

tion 3.6.5 to recombine relations that had been project,ed onto two subsets of 2. Select frorn the product only those tuples that satisfy the condition C. 
their attributes. There the motivation was to explain why BCNF decomposi- 
tion made sense. In Section 5.2.8 we shall see another use for t,he natural join: As with the product operation, the schema for the result is the union of the 
combining two relations so that we can write a query t,hat relates attributes of schemas of R and S. with "R," or "S." prefised to attributes if necessary to 
each. indicate from which schema the attribute came. 
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Relation U 

Figure 5.7: Result of U ATD V 

Example 5.9 : Here is a theta-join on the same relations U and V that has a 
more complex condition: 

Relation V 
W * A<D AND U.Bf K B  ' 

That is, we require for successful pairing not only that the A component of the 
U-tuple be less than the D component of the V-tuple, but that the two tuples 
disagree on their respective B components. The tuple 

A 1 U.B 1 U.C 1 V.B 1 t7.C 1 D 
1 1 2  1 3  1 7  ( 8  110 

Result U w l 7  
is the only one to satisfy both conditions, so this relation is the result of the 
theta-join above. 

Figure 5.6: Natural join of relat.ions 

5.2.8 Combining Operations to Form Queries 
Example 5.8: Consider the operation U I.', where U and 1.' are the If all .rve could do n.as to write single operations on one or t ~ o  relations as 
relations from Fig. 3.6. We must consider all nine pairs of tuples, one from each queries, then relational algebra would not be as useful as it is. However, re- 
relation, and see ~vhetlier the A component from the U-tuple is less than the lational algebra. like all algebras, allows us to form expressions of arbitrary 
D component of the V-tuple. The first tuple of Li, with all d compo~ler~t of 1. complexity by applying operators either to given relations or to relations that 
successfully pairs with each of the tuples from I-. However, the second and third are the result of applying one or more relational operators to relations. 
tuples from U ,  with .4  component.^ of 6 and 9. respectively, pair successfull!- One can construct expressions of relational algebra by applying operators 
11-ith only the last tuple of V. Thus, the result has only five tuples, constructed to subexpressions, using parentheses when necessary to indicate grouping of 
from the five successful pairings. This relation is shown in Fig. 5.7. operands. It is also possible to represent expressions as expression trees; the 

latter often are easier for us to read, although they are less convenient as a 
Sotice that the schema for the result in Fig. 3.7 consists of all sis at tr i l~utc~.  machine-readable notation. 

n-ith li and 1- prefixed to their respective occurrnices of attributes 13 and C to 
distinguish them. Thus, the theta-join contrasts I\-ith natural join, since in the Example 5.10 : Let us reconsider the decomposed Movies relation of Exam- 
latter coxnmon attributes are merged into one copy. Of course it makes sense to pie 3.24. Suppose n-e want to know "What are the titles and years of movies 
do so in the case of the natural join, since tuples don't pair unless t,hey agree in made by Fox that are at least 100 minutes long?" One way to compute the 
their common attributes. In the case of a theta-join, there is no guarantee that answer to this query is: 
compared attributes will agree in the result, since t,hey may not be compared 
with =. 1. Select those Movies tuples that have length 2 100. 
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2. Select those Movies tuples that have studioiVame = 'Fox'. 

3. Compute the intersection of (1) and (2). 

4. Project the relation from (3) onto attributes t i t l e  and year. 

Movies Movies 

Figure 5.8: Expression tree for a relational algebra expression 

In Fig. 5.8 we see the above steps represented as an expression tree. The 
two selection nodes correspond to steps (1) and (2). The intersection node 
corresponds to step (3), and the projection node is step (4). 

Alternatively, we could represent the same expression in a conventional. 
linear notation, with parentheses. The formula 

represents the same expression. 
Incidentally, there is often more than one relational algebra expression that 

represents the same computation. For instance, the above query could also be 
written by replacing the intersection by logicd AND within a single selection 
operation. That is, 

- 
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Equivalent Expressions and Query Optimization 

All database systems have a query-answering system, and many of them 
are based on a language that is similar in expressive power to relational 
algebra. Thus, the query asked by a user may have many equivalent expres- 
sions (expressions that produce the same answer, whenever they are given 
the same relations as operands), and some of these may be much more 
quickly evaluated. An important job of the query "optimizer" discussed 
briefly in Section 1.2.5 is to replace one expression of relational algebra by 
an equivalent expression that is more efficiently evaluated. Optimization 
of relational-algebra expressions is covered extensively in Section 16.2. 

Moviesl with schema { t i t l e ,  year, length, filmType, studioName) 
Movies2 with schema { t i t l e ,  year, starName) 

Let us write an expression to answer the query "Find the stars of movies that 
are at least 100 minutes long." This query relates the starName attribute of 
Movies2 with the length attribute of Moviesl. \Ire can connect these attrihutes 
by joining the two relations. The natural join successfi~lly pairs only those tuples 
that agree on t i t l e  and year: that is, pairs of tuples that refer to the same 
movie. Thus, Moviesl w Movies2 is an expression of relational algebra that 
produces the relation we called Movies in Esample 3.24. That relation is the 
non-BCNF relation whose schema is all sis attributes and that contains several 
tuples for the same movie when that movie has several stars. 

To the join of Moviesl and Movies2 Ive must apply a selection that enforces 
the condition that the length of the movie is at least 100 minutes. \ire then 
project onto the desired attribute: starName. The expression 

implements the desired query in relational algebra. 

Tt i t le .yea~ (glength>1oo AND PoxJ (~ov ies ) )  
5.2.9 Renaming 

is an equivalent form of the query. 
In order to control the names of the attrihutes used for relations that are con- 
structed by applying relational-algebra operations, it is often convenient to 

Example 5.11 : One use of t,he natural join operation is to recombine relations use an operator that explicitly renames relations. We shall use the operator 
that were decomposed to put them into BCNF. Recall the decomposed relations PS(A~,A~,...,A,)(R) to rename a relation R. The resulting relation has exactly 
from Example 3.24:l the same tuples as R, but the name of the relation is S. lloreover, the at- 

 ernem ember that the relation Movies of that example has a somewhat different relation tributes of the result relation S are named dl: --Iz,. . . ,.A,? in order from the 

schema from the relation Movie that we introduced in Section 5.1 and used in Examples 5.2, left. If we only want to change the name of the relation to S and leave the 
5.3, and 5.4. attributes as they are in R, we can just say ps(R).  
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Example 5.12 : In Example 5.5 we took the product of two relations R and s .is an alternative, we could take the product without renaming, as we did in 
from Fig. 5.4 and used the convention that when an attribute appears in both 5.5, and then rename the result. The expression PRS(A,B,X,C.D)(R x S )  
operands, it is renamed by prefixing the relation name to it. These relations R ields the same relation as in Fig. 5.9, with the same set of attributes. But this 
and S are repeated in Fig. 5.9. &tion has a name, RS, while the result relation in Fig. 5.9 has no name. O 

Suppose, howetrer, that we do not wish to call the two versions of B by 
names R.B and S.B; rather we want to continue to use the name B for the 5.2.10 Dependent and Independent Operations attribute that comes from R, and we want to use X as the name of the attribute 
B coming from S. ?Ve can reriame the attributes of S so the first is called x. Some of the operations that we have described in Section 5.2 can be expressed 
The result of the expression ps (x , c ,~ ) (S )  is a relation named S that looks just in terms of other relational-algebra operations. For example, intersection can 
like the relation S from Fig. 5.4, but its first column has attribute X instead be expressed in terms of set difference: 
of B. 

R n S = R - ( R - S )  

That is, if R and S are any two relations with the same schema, the intersection 
of R and S can be computed by first subtracting S from R to form a relation 
T consisting of all those tuples in R but not S .  TVe then subtract T from R, 
leaving only those tuples of R that are also in S.  

Relation R The two forms of join are also expressible in terms of other operations. 
Theta-join can be expressed by product and selection: 

R 7 S = u c ( R x  S )  

The natural join of R and S can be expressed by starting with the product 
R x S.  n'e then apply the selection operator with a condition C of the form 

Relation S R..A1 = S.Al AND = S..A2 AND. . . AND R.& = s.-& 

\\-here .AI: A2:. . . , '4, are all the attributes appearing in the schemas of both R 
and S. Finally, we must project out one copy of each of the equated attributes. 
Let L be the list of attributes in the schema of R follo~\-ed by those attributes 
in the schema of S that are not also in the schema of I?. Then 

R W  s = r L ( u c ( ~  x s)) 

Example 5.13: The natural join of the relations U and V from Fig. 5.6 can 
be witten in terms of product, selection, and projection as: 

~ e s u l t  R x Ps(.Y,c,D) (s)  r.asa.c,o (gu.B=t.e AND r..c=t:c(~~ x 1;)) 

That is. \\-e take the product C x I,-. Then we select for equality between each Figure 5.9: Renaming before taking a product 
pair of attributes \vith the same name -- B and C in this example. Finall>-. 
we project onto all the attributes except one of the B's and one of the C's: xve 

When 11-e take the product of R with this nex relation, there is no conflict have chosen to eliminate the attributes of 1- whose names also appear in the 
of names among the attributes, so no further renaming is done. That is, the schema of U. 

of the expression R x ~ s ( x , c , ~ ) ( S )  is the relation R x S from Fig. 5.4. For another example, the theta-join of Example 5.9 can be n-ritten 
that the five columns are labeled A, B, S, C,  and D, froln the left. This 

relation is shown in Fig. 5.9. 
U.A<D AND U.B+IB(C x 1'7 
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That is, we take the product of the relations U and V and then apply the 
condition that appeared in the theta-join. 

The rewriting rules mentioned in this section are the only "redundancies" 
among the operations that we have introduced. The six remaining operations - 
unio11, difference, selection, projection, product, and renaming - form an in- 
dependent set, none of which can be written in terms of the other five. 

5.2.11 A Linear Notation for Algebraic Expressions 

In Section 5.2.8 we used trees to represent complex expressions of relational 
algebra. another alternative is to invent names for the temporary relations that 
correspond to the interior nodes of the tree and write a sequence of assignments 
that create a value for each. The order of the assignments is flexible, as long 
as the children of a node N have had their values created before we attempt to 
create the value for N itself. 

The notation we shall use for assignment statements is: 

1. A relation name and parenthesized list of attributes for that relation. The 
name Answer will be used conventionally for the result of the final step: 
i.e.; the name of the relation a t  the root of the expression tree. 

2. The assignment symbol : =. 

3. .4ny algebraic expression on the right. We can choose to use only one 
operator per assignment, in which case each interior node of the tree gets 
its own assignment statement. However, it is also permissible to conibine 
several algebraic operations in one right side, if it is convenient to do so. 

Example 5.14: Consider the tree of Fig. 5.8. One possible sequence of as- 
signments to evaluate this expression is: 

R ( t , y , l , i , s , p )  := ~len~th>loo(Movie) 
S ( t  ,y, l , i ,  s s p )  := UstudioNarne=~fax' (Movie) 
T ( t , y , l , i . s . p )  := R n S 
Answer(title, year) : = s t , <  (T) 
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5.2.12 Exercises for Section 5.2 

Exercise 5.2.1 : In this exercise we introduce one of our running examples of 
a relational database schema and some sample data.2 The database schema 
consists of four relations, whose schemas are: 

product (maker, model, type) 
PC(mode1, speed, ram, hd, rd, price)  
~aptop(mode1, speed, ram, hd, screen, price)  
Printer (model, color,  type, price)  

The Product relation gives the manufacturer, model number and type (PC, 
laptop, or printer) of various products. We assume for convenience that model 
numbers are unique over all manufacturers and product types; that assumption 
is not realistic, and a real database would include a code for the manufacturer 
as part of the model number. The PC relation gives for each model number 
that is a PC the speed (of the processor, in megahertz), the amount of RAM 
(in megabytes), the size of the hard disk (in gigabytes), the speed and type 
of the removable disk (CD or DVD), and the price. The Laptop relation is 
similar, except that the screen size (in inches) is recorded in place of information 
about the removable disk. The Prinzer relation records for each printer model 
whether the printer produces color output (true. if so), the process type (laser, 
ink-jet. or bubble), and the price. 

Some sample data for the relation Product is shown in Fig. 5.10. Sample 
data for the other three relations is shown in Fig. 5.11. Manufacturers and 
model numbers haye been "sanitized," but the data is typical of products on 
sale a t  the beginning of 2001. 

Write expressions of relational algebra to answer the follo~ving queries. You 
may use the linear notation of Section 5.2.11 if you wish. For the data of Figs. 
5.10 and 3.11, show the result of your query. However, your answer should work 
for arbitrary data, not just the data of these figures. 

* a) What PC models have a speed of at  least 1000? 

The first step computes the relation of the interior node labeled ulength?loo b) IYhich manufacturers make laptops with a hard disk of at least one giga- 
in Fig. 5.8, and the second step computes the node labeled U s t u d i o ~ a m e = > F o x L  byte? 
Notice that we get renaming "for free," since we can use any attributes and 
relation name we wish for the left side of an assignment. The last two steps c) Find the model nunlber and price of all products (of ally type) made by 
compute the intersection and the projection in the obvious way. manufacturer B. 

It is also permissible to combine some of the steps. For instance, we could 
combine the last two steps and write: d) Find the model numbers of all color laser printers. 

R(t , Y ,  1 ,  i , s ,p) : = u,ength2100 (Movie) e) Find those manufacturers that sell Laptops. but not PC's. 
- - 

S ( t  , y , l  , i , S ,p) := (TstudioName='~ox' (Movie) 
Answerctitle, year) := T ~ , ~ ( R  n S) *! f) Find those hard-disk sizes that occur in two or more PC's. 

'Source: manufacturers' \Veb pages and Xmazon.com. 
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maker model type 
A 1001 PC 

A 1002 PC 

A 1003 PC 

A 2004 laptop 
A 2005 laptop 
A 2006 laptop 
B 1004 PC 

B 1005 PC 

B 1006 PC 
B 2001 lap top  
B 2002 lap top  
B 2003 lap top  
C 1C07 PC 
C 1008 ' pc 
C 2008 lap top  
C 2009 lap top  
C 3002 p r i n t e r  
C 3003 p r i n t e r  
C 3006 p r i n t e r  
D 1009 PC 
D 1010 PC 
D 1011 PC 
D 2007 lap top  
E 1012 PC 
E 1013 PC 

E 2010 lap top  
F 3001 p r i n t e r  
F 3004 p r i n t e r  
G 3005 p r i n t e r  
H 3007 p r i n t e r  

Figure 5.10: Sample data for Product 
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model  ( speed / r a m  I hd I rd I price 
1001 1 700 1 64 1 10 1 48xCD 1 799 

Ei (a) Sample data for relation PC 

model 1 speed ram hd screen 1 price 
2001 1 700 64 5 12.1 1 1448 
2002 800 96 10 15.1 2584 
2003 850 64 10 15.1 2738 
2004 550 32 5 12.1 999 
2005 600 64 6 12.1 2399 
2006 800 96 20 15.7 2999 
2007 850 128 20 15.0 3099 
2008 650 64 10 12.1 1249 
2009 750 256 20 15.1 2599 
2010 366 64 10 12.1 1499 

(b) Sample data for relation Laptop 

model color tgpe price 
3001 t r u e  i nk - j e t  231 
3002 t r u e  i nk - j e t  267 
3003 f a l s e  l a s e r  390 
3004 t r u e  i nk - j e t  439 
3005 t r u e  bubble 200 
3006 t r u e  l a s e r  1999 
3007 f a l s e  l a s e r  350 

(c) Sample data for relation P r in t e r  

%F9 
&b; Figure 5.11: Sample data for relations of Exercise .5.2.1 
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! g) Find those pairs of P C  models that  have both the same speed and R.A)I. 
.i pair should be listed only once; e.g., list (i, j) but not (j,i). 

*!! h) Find those manufacturers of a t  least two different computers (PC's or "i 
laptops) with speeds of a t  least 700. $ 

!! i) Find the manufacturer(s) of the computer (PC or laptop) with the highest 
available speed. 

!! j) Find the manufacturers of PC's with a t  least three different speeds. 

!! k) Find the manufacturers who sell exactly three different models of PC. 

Exercise 5.2.2: Draw expression trees for each of your expressions of Exer- 
cise 5.2.1. 

Exercise 5.2.3: Write each of your expressions from Exercise 5.2.1 in the 
linear notation of Section 5.2.11. 

Exercise 5.2.4 : This exercise introduces another running example, concerning 
World War I1 capital ships. It involves the following relations: 

Classes (c lass ,  t y p e ,  country,  numGuns, bore,  displacement)  
Ships(name, c l a s s ,  launched) 
B a t t l e s  (name, d a t e )  
Outcomes(ship, b a t t l e ,  r e s u l t )  

Ships are built in "classes" from the same design, and the class is usually named 
for the first ship of that class. The relation Classes  records the name of thr  
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c1as.r 
Bismarck 
Iowa 
Kongo 
North C a r o l i n a  
Renown 
Revenge 
Tennessee 
Y amat o 

UUI 
class, the type (bb for battleship or bc for battlecruiser), the country that built =.. , 
the ship, the number of main guns, the bore (diameter of the gun barrel, in 
inches) of the main guns, and the displacement (weight, in tons). Relation 
Ships records the name of the ship, the name of its class, and the year in which 
the ship was launched. Relation B a t t l e s  gives the name and date of battles 

type - 
bb 
bb 
bc 
bb 
bc 
bb 
bb 

I bb 

country 
Germany 
USA 
Japan 
USA 
G t .  B r i t a i n  
G t .  B r i t a i n  
USA 
Japan 

bore - - 
15 
16 
14 
16 
15 
15 
14 
18 

(a) Sample data for relation Classes  

North Cape 12/26/43 

(b) Sample data  for relation B a t t l e s  

ship I battle 

C a l i f o r n i a  Surigao S t r a i t  

r u d O  Surigao S t r a i t  
North A t l a n t i c  

King George V North A t l a n t i c  
Kir ishima Guadalcanal 
"--ince of Wales North A t l a n t i c  
nudney North A t l a n t i c  
- 3  . L x, ...- L " ~ p e  

- rr 
involving these ships, and relation Outcomes gives the result (sunk, damaged. "A. 
or ok) for each ship in each battle. bcnarnnorsc I V O ~ C I I  L, 

Figures 5.12 and 5.13 give some sample data  for these four  relation^.^ Sote c___L1_ ,._,-....- 1 ,-...-A,,,.- 

that. unlike the data for Exercise 5.2.1. there are some "daneline tnnlrs" in this - -" - - r - - -  --- 
data. e.g., ships mentioned in Outcomes that are not mentioned in Ships. 

Write expressions of relational algebra t o  answer the following queries. For 

JOULII U ~ K U L ~  u u a u a r ~ a n a l  
Tennessee Surigao S t r a i t  
Washington Guadalcanal 
I 1 c,.,in=n S t r a i t  

c.*--; * 

displacement 
42000 
46000 
32000 
37000 
32000 
29000 
32000 
65000 

result 
sunk 
ok 
ok 
sunk 
sunk 
ok 
sunk 
damaged 
ok 
sunk 

I damaged 
ok 
ok I O* 

I -..-I. 

- - a dur r g - v  
the data of Figs. 5.12 and 3.13, show the result of your query. However: your Yamashiro I Surigao r u a L *  I nu=. 

answer should work for arbitrary data, not just the dat,a of thcse figures. 

a) Give the class names and countries of the classes that carried guns of a t  ( c )  Sample data for relation Outcomes 
least 16-inch bore. 

3Source: J.  S .  \Vestwood, Fighting Ships of World War I] ,  Follett Publishing, Chicago. 
1976 and R. C .  Stern, US Battleships in Action, Squadron/Signal Publications, Carrollton. Figure 3.12: Data for Exercise 5.2.4 
TS. 1980. 
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name 
California 
Haruna 
Hiei 
Iowa 
Kirishima 
Kongo 
Hissouri 
Musashi 

1 class I launched 
( Tennessee 1 1921 

Kongo 
Kongo 
Iowa 
Kongo 
Kongo 
Iowa 
Yamato 

New Jersey 
Worth Carolina 
Ramillies 
Renown Renown 1916 
Repulse Renown 1 1916 
Resolution I Revenge 1 1916 
Revenge I Revenge 
Royal Oak Revenge 
Royal Sovereign Revenge 
Tennessee Tennessee 
Washington 
Wisconsin 
Yamato 

North Carolina 
Iowa 
Yamato 

Figure 5.13: Sample data for relation Ships 

b) Find the ships launched prior to 1921. 

c) Find the ships sunk in the battle of the North Atlantic. 

d) The treaty of Washington in 1921 prohibited capital ships heavier than 
33,000 tons. List the ships that violated the treaty of Washington. 

e)  List the name, displacement, and number of guns of the ships engaged it1 

the battle of Guadalcanal. 

f )  List all the capital ships mentioned in the database. (Remember that all 
these ships may not appear in the Ships relation.) 
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Exercise 5.2.5 : Draw expression trees for each of your expressions of Exer- 
cise 5.2.4. 

Exercise 5.2.6: Write each of your expressions from Exercise 5.2.4 in the 
linear notation of Section 5.2.11. 

Exercise 5.2.7: What is the difference bet~veen the natural join R w S and the 
theta-join R S where the condition C is that R.d = S.4  for each attribute 
A appearing in the schemas of both R and S? 

Exercise 5.2.8 : ;In operator on relations is said to be monotone if whenever 
we add a tuple to one of its arguments, the result contains all the tuples that 
it contained before adding the tuple, plus perhaps more tuples. Which of the 
operators described in this section are monotone? For each, either explain why 
it is monotone or give an example showing it is not. 

Exercise 5.2.9: Suppose relations R and S have n tuples and m tuples, re- 
spectively. Give the minimum and maximum numbers of tuples that the results 
of the follo~ving expressions can hare. 

c) uc(R) x S: for sorne condition C. 

d) vr. (R) - S:  for sorne list of attributes L. 

Exercise 5.2.10: The semijoin of relatioils R and S, written R D<S, is the 
bag of tuples t in R such that there is at least one tuple in S that agrees with t 
in all attributes that R and S have in common. Give three different expressions 
of relational algebra that are equivalent to R D< S. 

Exercise 5.2.11 : The antisemijoin R T% S is the bag of tuples t in R that 
do not agree with any tuple of S in the attributes common to R and S. Give 
an expression of relational algebra equivalent to R S. 

Exercise 5.2.12 : Let R be a relation with schema 

and let S he a relation ~vith schema (B1. B2.. . . , B,): that is, the attributes 
of S axe a subset of the attributes of R. The quotient of R and S. denoted 

! g) Find the classes that had only one ship as a member of that class. R + S. is the set of tuples t over attributes -41, .a2:. . . , -4, (i.e., the attributes 
of R that are not attributes of S )  such that for every tuple s in S, the tuple t s ,  

! h) Find those countries that had both battleships and battlecruisers. consisting of the components of t for -41, A*, .  . - , -4n and the components of s 
for B1: Bz, . . . , B,, . is a member of R. Give an expression of relational algebra, 

! i) Find those ships that "lived t,o fight another day"; they were damaged in using the operators we have defined previously in this section, that is equil-alent 
one battle, but later fought in another. 
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5.3 Relational Operations on Bags 

\vhile a set of tuples (i.e., a relation) is a simple, natural model of data as it 
might appear in a database, commercial database systems rarely, if ever, are 
based purely on sets. In some situations, relations as they appear in database 
systems are permitted to have duplicate tuples. Recall that if a "set" is allon-ed 
to haye multiple occurrences of a member, then that set is called a bag or 
muftiset. In this section, nre shall consider relations that are bags rather than 
sets; that is, we shall allow the same tuple to appear more than once in a 
relation. When we refer to a "set," we mean a relation without duplicate 
tuples; a "bag" means a relation that may (or may not) have duplicate tuples. 

Example 5.15: The relation in Fig. 5.14 is a bag of tuples. In it, the tuple 
(1,2) appears three times and the tuple (3,4) appears once. If Fig. 5.14 were 
a set-valued relation, we would have to eliminate two occurrences of the tuple 
(1,2). In a bag-valued relation, we do allow multiple occurrences of the same 
tuple, but like sets, the order of tuples does not matter. 

Figure 5.14: A bag 

5.3. RELATIOiVAL OPERATIOW ON BAGS 

Figure 5.15: Bag for Example 5.16 

we used the ordinary projection operator of relational algebra, and therefore 
eliminated duplicates, the result would be only: 

Sote that the bag result, although larger, can be computed more quickly, since 
there is no need to compare each tuple (1,2) or (3,4) with previously generated 
tuples. 

Lloreover. if we are projecting a relation in order to take an aggregate (dis- 
cussed in Section 5.4). such as "Find the average value of .-I in Fig. 5.15." we 
could not use the set model to think of the relation projected onto attribute -4. 
-4s a set, the average value of -4 is 2. because there are only two values of A - 1 
and 3 - in Fig. 5.15. and their average is 2. However. if we treat the -4-column 
in Fig. 5.15 as a bag (1.3.1.1). we get the correct average of '4. which is 1.5, 
among the four tuples of Fig. 5.15. 

5.3.2 Union, Intersection, and Difference of Bags 
5.3.1 Why Bags? 

When xve take the union of tn-o bags, we add the nunlber of occurrences of each 
Khen we think about implementing relations efficiently, we can see several rvays tuple. That is, if R is a bag in n-hich the tuple t appears n times, and S is a bag 
that allowing relations to be bags rather than sets can speed up operations on in which the tuple t appears m times, then in the bag R U S tuple t appears 
relations. We mentioned at  the beginning of Section 5.2 how allowing the result n f m times. Sote that either n or m (or both) can be 0. 
to be a bag coulcl speed up the union of two relations. For another example. IYlen ~ v e  intersect two bags R and S, in \vhich tuple t appears n and 
when ~ v e  do a projection, allowing the resulting relation to be a bag (even I\-lien m times, respectively. in R n S tuple t appears min(n, m) times. f hen we 
the original relation is a set) lets us work with each tuple indepcndent.1~. If \YO compute R - S. the difference of bags R and S:  tuple t appears in R - S 
~vant a set as the result, we need to compare each projected tuple with all thc mas(0,r. - m )  times. That is. if t appears in R more times than it appears in 
other projected tuples, to make sure that each projection appears only oncc. S. then in R-  S tuple t appears the number of times it appears in R. minus the 
However, if we can accept a bag as the result, then we simply project each tuple number of ti~nes it appears in 5'. Ho~vever: if t appears at least as many times 
and add it to the result; no comparison with other projected tuples is necessary. in S as it appears in R. then t does not appear at all in R - S. Intuitively, 

occurrences of t in S each "cancel" one occurrence in R. 
Example 5.16: The bag of Fig. 5.14 could be the result of project,ing the 
relation shown in Fig. 5.15 onto attributes -4 and B, provided vie allow the Example 5.17: Let R be the relation of Fig. 5.14, that is, a bag in which 
result to be a bag and do not eliminate the duplicate occurreIices of (1,2). Had tuple (1,2) appears three times and (3.4) appears once. Let S be the bag 



Bag Operations on Sets 

Imagine we have two sets R and S. Every set may be thought of as a 
bag; the bag just happens to have a t  most one occurrence of any tuple. 
Suppose we intersect R n S ,  but we think of R and S as bags and use the 
bag intersection rule. Then we get the same result as we would get if we 
thought of R and S as sets. That is, thinking of R and S as bags, a tuple 
t is in R n S the minimum of the number of times it is in R and S. Since 
R and S are sets, t can be in each only 0 or 1 times. IQhether we use the 
bag or set intersection rules, we find that t can appear at  most once in 
R n S ,  and it appears once exactly when it is in both R and S. Similarly, 
if we use the bag difference rule to compute R - S or S - R we get exactly 
the same result as if we used the set rule. 

However, union behaves differently, depending on whether we think 
of R and S as sets or bags. If we use the bag rule to compute R U S, 
then the result may not be a set, even if R and S are sets. In particular, 
if tuple t appears in both R and S .  then t appears tivice in R U S if vie 
use the bag rule for union. But if we use the set rule then t appears only 
once in R U S. Thus. when taking unions, we must be especially careful 
t o  specify whether we are using the bag or set definition of union. 
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Then the bag union R U S is the bag in which (1,2) appears four times (three 
times for its occurrences in R and once for its occurrence in S); (3,4) appears 
three times, and (5,G) appears once. 

The bag intersection R n S is the bag 

with one occurrence each of (1,2) and (3,4). That is, (1,2) appears three times 
in Rand once in S, and min(3,l) = 1, so (1,2) appears once in R n S. Similarly. 
(3,4) appears min(l,2) = 1 time in R n S. Thple (5,6), which appears once in 
S but zero times in R appears min(0,l) = 0 times in R n S. 

The bag difference R - S is the bag 

If the elimination of one or rriore attributes during the projection causes 
To see why, notice that (1,2) appears three times in R and once in S: so in the same tuple to be created from several tuples, these duplicate tuples are not 
R - S it appears max(0,3 - 1) = 2 times. Tuple (3,4) appears once in R and eliminated from the result of a bag-projection. Thus, the three tuples (1: 2:5), 
twice in S ,  so in R - S it appears max(0,l - 2) = 0 times. No other tuplc (1,2.7). and (1: 2,8) of the relation R from Fig. 5.15 each gave rise t o  the same 
appears in R, so there can be no ot,her tuples in R - S. tuple (1: 2) after projection onto attributes A and B. In the bag result, there are 

As another example, the bag difference S - R is the bag three occurrences of tuple (1.2): while in the set-projection, this tuple appears 

AIB 
5.3.4 Selection on Bags 

To apply a selection to a bag, we apply the selection condition to each tuple 
Tuple (3,4) appears once because that is the difference in the number of ti~ncs 
it appears in S minus the number of times it appears in R. Tuple (5 :  6) appears 
once in S - R for the same reason. The resulting bag happens to be a set ill 

this case. Example  5.18 : If R is the bag 

5.3.3 Projection of Bags 
We hare already illustrated the projection of bags. As we saw in Example 5.16. 
each tuple is processed independently during the projection. If R is the bag of 
Fig. 5.15 and we compute the bag-projection T ~ , ~ ( R ) ,  then we get the bag of 
Fig. 5.14. then the result of the bag-selection oos(R) is 



Algebraic Laws for Bags 

An algebraic law is an equivalence between two expressions of relational 
algebra whose arguments are variables standing for relations. The equiv- 
alence asserts that no matter what relations we substitute for these vari- 
ables, the two expressions define the same relation. An example of a well- 
known law is the conimutative law for union: R U S  = S U R. This law 
happens to hold whether we regard relation-variables R and S as standing 
for sets or bags. However, there are a number of other laws that hold when 
relational algebra is applied to sets but that do not hold when relations are 
interpreted as bags. A simple example of such a law is the distributive law 
of set difference over union, ( R  U S) - T = ( R  - T )  U ( S  - T ) .  This law 
holds for sets but not for bags. To see why it fails for bags, suppose R, S, 
and T each have one copy of tuple t. Then the expression on the left has 
one t ,  while the expression on the right has none. As sets, neither would 
have t. Some exploration of algebraic laws for bags appears in Exercises 
5.3.4 and 3.3.5. 
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(a) The relation R 

(b) The relation S  

(c) The product R x S 

That is, all but the first tuple nieets the selection condition. The last two tuples. 
Figure 3.16: Computing the product of bags which are duplicates in R ,  are each included in the result. EI 

5.3.6 Joins of Bags 
5.3.5 Product of Bags 

Joining bags also presents 110 surprises. We compare each tuple of one relation 
The rule for the Cartesian product of bags is the expected one. Each tuple of xvith each tuple of the other, decide whether or not this pair of tuples joins suc- 
one relation is paired with each tuple of the other, regardless of whether it is a cessfully, and if so we put the resulting tuple in the answer. When constructing 
duplicate or not. As a result, if a tuple r appears in a relation R m times. and . the answer: ~e do not eliminate duplicate tuples. 
tuple s appears iz times in relation S, t,lien in the product R x S ,  the tuple r.9 

 ill appear mn times. 

Example 5.19: Let R and S  be the bags sho\x-n in Fig. 3.16. Then the 
~~roduct R x S consists of six tuples, as shown in Fig. 5.1G(c). Mote that the 
usual convention regarding attribute names that we developed for set-relations 
applies equally well to hags. Thus, the attribute 13, which belongs to both 
relations R and S, appears twice in the product, each time prefixed by one of That is. tuple (1: 2) of R joins with (2,3) of S.  Since there are two copies of 
the relation names. (1.2) in R and one copy of (2: 3) in S ,  there are two pairs of tuples that join to 

give the tuple (1; 2,3). S o  other tuples from R and S join successfully. 
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As another example on the same relations R and S,  the theta-join 

R ..B?'s.B S 

produces the bag 

The computation of the join is as follows. Tuple (1,2) from R and (4,5) from S 
meet the join condition. Since each appears twice in its relation, the number of 
times the joined tuple appears in the result is 2 x 2 or 4. The other possible join 
of tuples - (1,2) from R with (2,3) from S - fails to meet the join condition, 
so this combination does not appear in the result. 

5.3.7 Exercises for Section 5.3 

* Exercise 5.3.1 : Let PC be the relation of Fig. 5.11(a), and suppose we compute 
the projection iiSpeed(PC). What is the value of this expression as a set? .is a 
bag? What is the ayerage value of tuples in this projection, when treated as a 
set? -4s a bag? 

Exercise 5.3.2 : Repeat Exercise 5.3.1 for the projection 7ihd(~C). 

Exercise 5.3.3: This exercise refers to the "batt,leship" relat.ions of Exer- 
cise 5.2.4. 

a) The expression aaOre(Classes) yields a single-column relation with the 
bores of the various classes. For the data of Exercise 5.2.4. ~vhat is this 
relation as a set? As a bag? 

! b) Write an expression of relational algebra to give the bores of the ships 
(not the classes). Your expression must make sense for bags; that is, the 
number of times a value b appears must be the number of ships that have 
bore b. 

! Exercise 5.3.4: Certain algebraic laws for relations as sets also hold for rc- 
lations as bags. Explain wily each of the laws belo\\- Iiold for bags as  ell as 
sets. 

* a) The associative law for union: (R  U S )  U T = R U (S  U T). 

b) The associative law for intersection: (R  n S)  n T = R f l  (S fl T ) .  

c )  The associative law for natural join: (R w S) w T = R w ( S  w T). 
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d) The commutative law for union: (R U S) = (S  U R). 

e) The commutative law for intersection: (R fl S) = ( S  n R). 

f) The commutative law for natural join: (R w S)  = (S w R). 

g) nL(R U S) = iiL(R) U i i ~ ( S ) .  Here, L is an arbitrary list of attributes. 

* h) The distributi~e law of union over intersection: R U (S f l  T) = (R U S)  n 

i) uc  AND D(R) = uc(R) n oD(R). Here, C and D are arbitrary conditions 
about the tuples of R. 

Exercise 5.3.5: The following algebraic laws hold for sets but not for bags. 
Explain why they hold for sets and give counterexamples to show that they do 

* a )  ( R n S ) - T =  R n  (S-T) .  

b) The dist,ributi~-e law of intersection over union: R n (S U T)  = (R n S) u 

C) uc  OR D(R) = uC(R) U UD(R). Here, C and D are arbitrary conditions 
about the tuples of R. 

5.4 Extended Operators of Relational Algebra 

Section 5.2 presented the classical relational algebra, and Section 5.3 introduced 
the modifications necessary to treat relations as bags of tuples rather than sets. 
The ideas of these two sections serve as a foundation for most of modern query 
languages. However. languages such as SQL have several other operations that 
have proved quite important in applications. Thus, a full treatment of relational 
operations must include a number of other operators. which ~ v e  introduce in this 
section. The additions: 

1. The duplicate-e1iminatio.n operator 6 turns a bag into a set by eliminating 
all but one copy of each tuple. 

2. Aggregation operators. such as sums or averages, are not operations of 
relational algebra. but are used by the grouping operator (described next). 
.\ggregation operators apply to attributcs (columns) of a relation. e.g.. the 
sum of a column produces the one number that is the sum of all the values 
in that column. 

3. Grouping of tuples according to their value in one or more attributes has 
the effect of partitioning the tuples of a relation into "groups." Aggre- 
gation can then be applied to columns within each group. giving us the 
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ability to express a number of queries that are impossible to express in 1. SUM produces the sum of a column with numerical values. 
the classical relat,ional algebra. The grouping operator y is an operator 
that combines the effect of grouping and aggregation. 2. AVG produces the average of a column with numerical values. 

4. The sorting operator T turns a relation into a list of tuples, sorted accord- 3. M I N  and MAX, applied to a column with numerical values, produces the 

ing to one or more attributes. This operator should be used judiciously, smallest or largest value, respectively. When applied to  a column with 

because other relational-algebra operators apply to sets or bags, but never character-string values, they produce the lexicographically (alphabeti- 
to lists. Thus, T only makes sense as the final step of a series of operations. cally) first or last value, respectively. 

5. Extended projection gives addit,ional power to the operator sr. In addition 4. COUNT produces the number of (not necessarily distinct) values in a col- 

to projecting out some columns, in its generalized form sr can perform umn. Equivalently, COUNT applied to any attribute of a relation produces 

computations involving the columns of its argument relation to produce the number of tuples of that relation, including duplicates. 

new columns. Example 5.22 : Consider the relation 

6. The oute j o i n  operator is a variant of the join that avoids losing dangling 
tuples. In the result of the outerjoin, dangling tuples are "padded" with 
the null value, so the dangling tuples can be represented in the output. 

5.4.1 Duplicate Elimination 

Sometimes, we need an operator that converts a bag to a set. For that purpose, 
we use d(R) to return the set consisti~lg of one copy of every tuple that appears Some examples of aggregations on the attributes of this relation are: 

one or more times in relation R. 1. SUM(B) = 2 + 4 + 2 + 2 = 10. 

Example 5.21 : If R is the relation 2. AVG(A) = (1 i 3 + 1 + 1)/1= 1.5. 

ALL!?- 3. MIN(A) = 1. . i n  

from Fig. 5.14, then 6(R) is 

Sote that the tuple (1,2), which appeared three times in R. appears only oncc 
in d(R). 

5.4.3 Grouping 

Often we do not xant simply the average or some other aggregation of an 
entire column. Rather, we need to consider the tuples of a relation in groups. 
corresponding to the value of one or more other colulnns. and nr aggregate only 
within each group. .As an esample, suppose we wanted to conlpute the total 
number of minutes of movies produced by each studio. i.e.. a relation such as: 

5.4.2 Aggregation Operators 

There are several operators that apply to sets or bags of atomic values. These 
operators are used to summarize or "aggregate" the values in one column of 
a relation, and thus are referred to as aggregation operators. The standard 
operators of this type are: Starting with the relation 



(i is a Special Case of y 

Technically, the 6 operator is redundant. If R(A1, A?, . . . , A,) is a relation, 
then 6(R) is equivalent to y ~ ,  ,.t ,,...,. 4,(R). That is, to eliminate duplicates, 
we group on all the attributes of the relation and do no aggregation. Then 
each group corresponds to a tuple that is found one or more times in 
R. Since the result of 7 contains exactly one tuple from each group, the 
effect of this "grouping" is to eliminate duplicates. Horn-ever, because 6 is 
such a common and important operator, we shall continue to  consider it 
separately when we study algebraic laws and algorithms for implementing 
the operators. 

One can also see y as an extension of the projection operator on sets. 
That is, y~,,,i,, .,,A,(R) is also the same as na,,A ,,..., A,(R), if R is a set. 
Howeyer, if R is a bag, then y eliminates duplicates while si does not. For 
this reason, y is often referred to as generalized projection. 

studioNartte 

Disney 
Disney 
Disney 

MGM 
MGM 

0 
0 
0 
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Movie(title, year, length, incolor, studioName, producerC#) 

from our example database schema of Section 5.1, we must group the tuples 
according to their value for attribute studioName. We must then sum the 
length column within each group. That is, we imagine that the tuples of 
Movie are grouped as suggested in Fig. 5.17, and we apply the aggregation 
SUM(1ength) to each group independently. 

Figure 5.17: A relation with imaginary division into groups i. The grouping attributes' values for that group and 

ii. The aggregations, over all tuples of that group, for t,he aggregated 
attributes on list L. 

. 5.4.4 The Grouping Operator 

nP shall no~v introduce an operator that allo~vs us to group a relation and/or 
aggregate some columns. If there is grouping? then the aggregation is within Example 5.23 : Suppose we have the relation 

groups. 
The subscript used with the y operator is a list L of elements, each of \vhicli StarsIn(title, year, starName) 

is either: 
and we wish to find, for each star 13-110 has appeared in at least three movies, 

a) An attribute of the relation R to which the y is applied; this attribute is the earliest year in which they appeared. The first step is to group: using 
one of the attributes by which R will be grouped. This element is said to starName as a grouping attribute. We clearly must compute for each group 
be a grouping attribute. the MIN(year) aggregate. However, in order to decide ~i-hich groups satisf>- the 

condition that the star appears in at least three movies, we must also compute 
b) An aggregation operator applied to an attribute of the relation. To pro- tlie COUNT(tit1e) aggregate for each group. 

vide a name for the attribute corresponding to this aggregation in the We begin ~vith the grouping expression 
result, an arrow and new name are appended to the aggregation. The 
underlying attribute is said to be an aggregated attribxte. 

? s t o r . ~ o , n r .  HIN(yenr ) - - tm inYenr .  ~~~l~~(title)+ct~ltle(StarsIn) 

The relation returned by the expression yL(R) is constructed as follo~vs: 
The first two colun~ns of the result of this expression are needed for the quer?- re- 

1. Partition the tuples of R into groups. Each group consists of all tuples sult. The third column is an ausiliary attribute, n-hich we have named ctTitle: 

having one particular assignment of values to tlie grouping attributes in it is needed to determine whether a star has appeared in at  least three movies. 

the list L. If there are no grouping attributes, the entire relation R is one That is, we corltinuc the algebraic expression for the query by selecting for 

group. ctTitle >= 3 and then projecting onto the first two columns. -An expression 
tree for the query is sho~i-n in Fig. 5.18. 0 

2. For each group, produce one tuple consistilig of: 
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" sturNuin~, rnin Year A [ B I C  

a crTirle >= 3 

Then the result of T ~ . ~ + ~ + ~ ( R )  is 

StarsIn 

the name X. 

The result's schema has two attributes. One is A, the first attribute of R, not 
Figure 5.18: Algebraic expression tree for the SQL query of Example 5.23 renamed. The second is the sum of the second and third attributes of R, with 

For another example, a ~ - ~ , x , c - ~ + y ( R )  is 
5.4.5 Extending the Projection Operator 

Let, us reconsider the projection operator rL(R) introduced in Section 5.2.3. 
In the classical relational alg?bra, L is a list of (some of the) attributes of R. 
We extend the projection operator to allow it to con~pute with components 
of tuples as well as choose components. In extended projection, also denoted 
nL (R), projection lists can have the following kinds of elements: Sotice that the calculation required by this project'ion list happens to turn 

different tuples (0: 1,2) and (3,4,5) into the same tuple (1: 1). Thus, the latter 
1. A single attribute of R. tuple appears three times in t,he result. 

2.  An expression x -t y, where x and y are names for attributes. Thc 
element x -+ y in the list L asks that we take the attribute x of R  anti 5.4.6 The Sorting Operator 
rename it y; i.e., the name of this at,tribute in the schema of the result There are several contexts in which we want to sort the tuples of a relation by 
relation is y. one or more of its attributes. Often, when querying data, one 15-ants the result 

relation to be sorted. For instance, in a query about all the movies in which 
3. An expression E -+ z,  where E is an expression involving attributes of Sean Connery appeared, a-e might wish to haye the list sorted by title, so we 

R, constants, arithmetic operators, and string operat,ors, and z is a new could more easily find whether a certain movie was on the list. \Vc shall also 
narne for the attribute that result,s frorn the calculation implied by E. For see in Section 15.4 h o ~  execution of queries by the DBMS is often made more 
example, a + b -+ x as a list element represents the sum of the attributes a efficient if we sort the relations first. 
and b, renamed x. Element cl Id -+ e means concatenate the (presumably The espression rL(R)? where R is a relation and L a list of some of R's 
string-valued) attributes c and d and call the result e .  

attributes, is the relation R, but with the tuples of R sorted in the order indi- 
cated by L. If L is the list .-I1; ,I2:. . . ,A,,, then the tuples of R are sorted first 

The result of the projection is conlputed by considering each tuple of R in 
by their value of attribute .-I1. Ties are broken according to the value of .&; 

turn. ni. cvahiatc the list L by substituting the tuple's components for the 
tuples that agree on both -41 arid .-I2 are ordered according to their value of .43: corresponding attributes mrntioned in L and applying any operators indicated 
and so on. Ties that rcrnairi after attribute .4,, is considered may be ordered L to these \R~UBS.  The result is a relation whose schema is the names of the 

attributtx on list L, with whatever renaming the list specifies. Each tuple of 

R yields one tuple of the result. Duplicate tuples in R surely yield duplicate Example 5.25 : If R is a relation with schema R(A, B, C)! then TC.B(R) orders 
tuples in tlle result, but the result can have duplicates even if R does not. the tuples of R by their value of C? and tuples with the same C-value are ordered 

by their B value. Tuples that agree on both B and C may be ordered arbitrarily. 
Example 5.24 : Let R he the relation 

\ 
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The operator T is a~omalous, in that it is the only operator in our relational 
algebra whose result is a list of tuples, rather than a set. Thus, in terms of 
expressing queries, it only makes sense to talk about T as the final operator 
in an algebraic expression. If another operator of relational algebra is applied 
after T ,  the result of the T is treated as a set or bag: and no ordering of the 
tuples is i rn~ l i ed .~  

Relation U 

5.4.7 Outerjoins 

A pr0pert.y of the join operator is that it is possible for certain tuples to be 
"dangling"; that is, they fail to match any tuple of the other relation in the 
common attributes. Dangling tuples do not have any trace in the result of the 
join, so the join may not represent the data of the original relations completely. 
In cases where this behavior is undesirable, a variation on the join, called "out- 
erjoin," has been proposed and appears in various commercial systems. Relation V 

IVe shall consider the "natural7' case first, where the join is on equated . 
values of all attributes in common t,o the two relations. The outerjoin R &I S 
is formed by starting with R w S, and adding any dangling tuples from R or 
S. The added tuples must be padded with a special null symbol, I, in all the 
attributes that they do not possess but that appear in the join r e ~ u l t . ~  

Example 5.26: In Fig. 5.19 we see two relations U and V. Tuple (1,2,3)  of 
C: joins wit!' both (2;3,10) and (2,3,11) of V, so these three tuples are not 
dangling. Hoxever, the otl~er three tuples - (4,5,6) and (7,8,9) of U and 
(6,7,12) of I - - are dangling. That is, for none of these three tuples is there a Result U & If 
tuple of the other relation that agrees with it on both the B and C components. 
Thus, in U t% I,'. the three dangling tuples are padded with I in the attributes 
that they do not have: attribute D for the tuples of U and attribute .+I for the Figure 5.19: Outerjoin of relations 
tuple of V. O 

There are many variants of the basic (natural) outerjoin idea. The left 
outerjoin R c f b L  S is like the outerjoin, but only dangling tuples of the left 
argurnclnt R are padded with I and added to the result. The right oute join 
R AR S is like the outerjoin, but only the dangling tuples of the right argument 
S are padded ait.11 I and added t.o the result. 

Example 5.27: If C' and V are as in Fig. 5.19, then U & I L  I -  is: 

In addition, all three natural outerjoin operators hare theta-join analogs. 
where first a theta-join is taken and then those tuples that failed to join n-it11 
any tuple of the other relation, ~ l l e n  the condition of the theta-join 11-a~ applicd. 

are padded with I and added to the result. We use 5 to denote a thrta- 
outerjoin with condition C. This operator can also be modified with L or R to 

"ol~ver:  as shall see in Chapter 15, it sometimes speeds execution of the query if we 
indicate left- or right-outerjoin. 

Sort intermediate results. Example 5.28: Let U and V be the relations of Fig. 5.19: and coiisider 5 i ~ h e n  we study SQL, we shall find that the null symbol I is written out, as  NULL. You 
may use NULL in place of L here if you wish. U V. Tuples (4,5,6) and (7,8,9) of U each satisfy the condition with 
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both of the tuples (2,3,10) and (2,3,11) of V. Thus, none of these four tuples 
are dangling in this theta-join. However, the two other tuples - (1,2,3) of C' 
and (6,7,12) of V - are dangling. They thus appear, padded, in the result 
shown in Fig. 5.20. 

Figure 5.20: Result of a theta-outerjoin 

5.4.8 Exercises for Section 5.4 

Exercise 5.4.1 : Here are two relations: 

Compute the following: *a) TA+B,AZ,BZ(R); b) ZB+~.C-I(S); Q) TB,A(R): 
d) TB,c(S): *e) 6(R); f )  6(S); *g) TA, SUH(B)(R); h) SB.IVO(C)(~): 
! i) T*(R): ! j) T ~ , ~ ~ ~ ( ~ ) ( R  w S);  *k) R AL S; 1) R An S; m) R S: 

s .  R.B<S.B 

! Exercise 5.4.2: .4 unary operator f is said to be idempotent if for all relations 
R. f (f (R)) = f (R). That is, applying f more than once is the same as applying ' 

it once. li-hich of the follo~ving operators are idempotcnt? Either esplain \vhy 
or give a rounterexample. 

*a) 6: *b) ii~: C) up; d) y ~ ;  e) r. 

*! Exercise 5.4.3: One thing that can be done with an estended projection. 
but not with the original version of projection that we defined in Section 5.2.3. 
is to duplicate columns. For example, if R(A, B) is a relation, then z~, . . i (R) 
produces the tuple (a ,  a)  for every tuple (a, b)  in R. Can this operation be done 
using only the classical operations of relation algebra from Section 5.2? Explain 
your reasoning. 
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5.5 Constraints on Relations 

Relational algebra provides a means to express common constraints, such as 
the referential integrity constraints introduced in Section 2.3. In fact, we shall 
see that relational algebra offers us convenient ways to express a wide variety of 
other constraints. Even functional dependencies can be expressed in relational 
algebra. as we shall see in Example 5.31. Constraints are quite important 
in database programming, and we shall cover in Chapter 7 how SQL database 
systems call enforce the same sorts of constraints as we can espress in relational 
algebra. 

5.5.1 Relational Algebra as a Constraint Language 

There are two ways in which we can use expressions of relational algebra to 
express constraints. 

1. If R is an expression of relational algebra, then R = 0 is a constraint 
that says "The value of R must be empty," or equivalently "There are no 
tuples in the result of R." 

2. If R and S are expressions of relational algebra, then R C S is a constraint 
that says "Every tuple in the result of R must also be in the result of S." 
Of course the result of S may contain additional tuples not produced by 
R. 

These ways of expressing constraints are actually equivalent in what they 
can espress. but sometimes one or the other is clearer or more succinct. That 
is. the constraint R 5 S could just as well have been written R - S = 0. To 
see why. notice that if every tuple in R is also in S, then surely R -  S is empty. 
Conversely. if R - S contains no tuples, then every tuple in R must be in S (or 
else it ~vould be in R - S). 

On the other hand, a constraint of the first form. R = 0, could just as 
well have been written R 5 0. Technically. 0 is not an expression of relational 
algebra. but since there are espressions that evaluate to 0. such as R - R, 
there is no harm in using 0 as a relational-algebra espression. Sote that these 
equivalences hold even if R and S are bags. provided lve make the conventional 
interpretation of R 5 S. each tuple t appears in S at least as many times as it 
appears in R. 

In the following sections, we shall see how to express significant constraints 
in one of these two styles. AS wve shall see in Chapter 7, it is the first style - 
equal-to-theemptyset - that is most commonly used in SQL programming. 
However. as shown above, we are free to think in terms of set-containment if 
we wish and later convert our constraint to the equal-to-the-emptyset style. 
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5.5.2 Referential Integrity Constraints StarsIn(movieTitle, movieyear, starName) 

.k common kind of constraint, called "referential integrity" in Section 2.3, as- also appears in the relation 
serts that a value appearing in one context also appears in another, related 
context. \Ve saw referential integrity as a matter of relationships "making Movie(t i t le,  year,  length, incolor,  studioName, producerC#) 
sense." That is, if an object or entity A is related to object or entity B, then B 
must really exist. For example, in ODL terms, if a relationship in object '4 is Movies are represented in both relations by title-year pairs, because we agreed 
represented physically by a pointer, then referential integrity of this relationship that one of these attributes alone was not sufficient to identify a movie. The 
asserts that the pointer must not be null and must point to a genuine object. 

In the relational model, referential integrity constraints look somewhat dif- 
ferent. If we have a value v in a tuple of one relation R, then because of our XmovieTitle, movieyear(StarsIn) C rt i t le,  year(M~~ie)  
design intentions we may expect that v will appear in a particular component 
of some tuple of another relation S. An example will illustrate how referential expresses this referential integrity constraint by comparing the title-year pairs 
integrity in the relational model can be expressed in relational algebra. produced by projecting both relations onto the appropriate lists of components. 

Example 5.29 : Let us think of our running movie database schema, particu- 
larly the two relations 5.5.3 Additional Constraint Examples 

Movie(title, year, length,  incolor ,  studioName, producerC#) The same constraint notation allows us to express far more than referential in- 
MovieExec(name, address, c e r t # ,  networth) tegrity. For example, we can express any functional dependency as an algebraic 

We might reasonably assume that the producer of every movie would have to constraint, although the notation is more cumbersome than the FD notation 

appear in the MovieExec relation. If not, there is something wrong, and 1%-e introduced in Section 3.4. 
- - 

~ ~ o u l d  at least want a system implementing a relational database to inform us Example 5.31 : Let us express the FD: 
that we had a movie with a producer of which the system had no knowledge. 

To be Inore precise, the producerC# component of each Movie tuple must name -t address 
also appear in the cer t#  component of some MovieExec tuple. Since executives 
are uniquely identified by their certificate numbers, we would thus be assured for the relation 
that the movie's producer is found among the movie executives. We can express 
this constraint by the set-containment MovieStar(name, address, gender, bir thdate) 

~ T ~ ~ ~ ~ ~ ~ ~ ~ ~ # ( M o v ~ ~ )  5 ncert#(MovieExec) as an algebraic constraint. The idea is that if we construct all pairs of Moviestar 
tuples (tl,  t z ) ,  we must not find a pair that agree in the name component and 

The value of the expression on the left is the set of all certificate numbers 
disagree in the address component. To construct the pairs we use a Cartesian 

appearing in producercd components of Movie tuples. Likewise, the expression 
product, and to search for pairs that violate the FD we use a selection. \Ve on the right's value is the set of all certificates in the certft component of 
then assert the constraint by equating the result to 0. MovieExec tuples. Our constraint says that cl-ery certificate in the former set 

To begin, since tve are taking t,he product of a relation with itself, we need 
 nus st also be in the latter set. 

to rename at  least one copy: in order to have names for the att.ributes of the Incidentally, we could express the same constraint as an equality to the 
emptyset: product. For succinctness, let us use two n e ~  names, MS1 and MS2, to refer 

to the MovieStar relation. Then the FD can be expressed by the algebraic 

npro~ucerC#(M~vie) - xcert#(MovieExec) = 0 constraint: 

~MSl.nome=~~2.name AND ~ ~ l . a d d r e s ~ ~ ~ 2 .  address(~S1 X M S ~ )  = 0 

Example 5.30: We can similarly express a referential integrity constraint In the above, MS1 in the product MS1 x MS2 is shorthand for the renaming: 
lvhere the 'L\ralue'' involved is represented by more than one attribute. For 
instance, \Ye may want to assert that any movie mentioned in the relation P~~l(name,address.~ender~birthdote) (Moviestar) 
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and MS2 is a similar renaming of Moviestar. 5.5.4 Exercises for Section 5.5 

Some domain constraints can also be expressed in relational algebra. Often, Exercise 5.5.1 : Express the following constraints about the relations of Ex- 
a domain constraint simply requires that values for an attribute have a specific ercise 5.2.1, reproduced here: 
data type, such as integer or character string of length 30, so we may associate 
that domain with the attribute. However, often a domain constraint involves Product (maker, model, type) 
specific values that we require for an attribute. If the set of acceptable values can PC(mode1, speed, ram, hd, rd ,  price) 
be expressed in the language of selection conditions, then this domain constraint Laptop(mode1, speed, ram, hd, screen, pr ice)  
can be expressed in the algebraic constraint language. P r i n t e r h o d e l ,  color ,  type, price) 

Example 5.32 : Suppose we wish to specify that the only legal values for the You may write your constraints either as containments or by equating an ex- 
gender attribute of MovieStar are 'F' and 'M' .  We can express this constraint pression to the empty set. For the data of Exercise 5.2.1, indicate any violations 
algebraically by: to your constraints. 

Ugenderf1F' llND genderZ'~'(M~vieStar) = 0 * a) A PC with a processor speed less than 1000 must not sell for more than 
That is, the set of tuples in MovieStar whose gender component is equal to 
neither 'F' nor 'M '  is empty. 

b) A laptop with a screen size less than 14 inches must have at  least a 10 
Finally, there are some constraints that fall into none of the categories out- gigabyte hard disk or sell for less than $2000. 

lined in Section 2.3, nor are they functional or multiwlued dependencies. The 
algebraic constraint language lets us express many new kinds of constraints. ! c) No manufacturer of PC's may also make laptops. 
We offer one example here. 

*!! d) A rnanufachrer of a PC must also make a laptop with at  least as great a 
Example 5.33: Suppose we wish to require that one must have a net ~vortli processor speed. 
of at least $10,000,000 to be the president of a movie studio. This constraint 
cannot be classified as a domain, single-value, or referential integrity constraint. ! e) If a laptop has a larger main memory than a PC, then the laptop must 
Yet we can express it algebraically as follows. First, we need to theta-join the also have a higher price than the PC. 
t ~ o  relations 

Exercise 5.5.2 : Express the follo~ving constraints in relational algebra. The 
MovieExec(name, address, ce r t# ,  networth) constraints are based on the relations of Exercise 5.2.4: 
Studio(name, address, presC#) 

using the condition that presC# from Studio and cer t#  from MovieExec are Classes(c lass ,  type, country, numGuns , bore, displacement) 

equal. That join combines pairs of tuples consisting of a studio and an executive, Ships (name, c l a s s ,  launched) 

such that the executive is the president of the studio. If we select from this Bat t leshame,  date) 

relation those tuples where the net worth is less than ten million, we have a set Outcomes(ship, b a t t l e ,  r e su l t )  

that, according to our constraint, must be empty. Thus, IT-e may express the 
You may write your constraints either as containments or by equating an es- constraint as: 
pression to the empty set. For the data of Exercise 3.2.4, indicate any violations 

W 
~ n e t ~ ~ r t h < ~ o o o o o o o ( S t ~ d i o  presC#=cert# ~ovieExec) = 0 to your const,raints. 

An alternative way to express the same constraint is to compare the set a) S o  class of ships may have guns with larger than 16-inch bore. 
of certificat,es that represent studio presidents with the set of certificates that 
represent executi~es with a net worth of at least $10,000,000; the former must b) If a class of ships has more than 9 guns, then their bore must be no larger 
be a subset of the latter. The containment than 14 inches. 

~~m.d#(Stndio) ncert. ( ~ n e t w a ~ t ~ ~ ~ o o o o o o o ( ~ ~ ~ ~ ~ ~ ~ ~ ~ ) )  ! c) S o  class may have more than 2 ships. 

expresses the above idea. ! d) No country may have both battleships and battlecruisers. 
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!! e) No ship with more than 9 guns may be in a battle with a ship having + Grouping and Aggregation: Aggregations summarize a column of a rela- 
fewer than 9 guns that was sunk. tion. Typical aggregation operators are sum, average, count, minimum, 

and maximum. The grouping operator allows us to partition the tuples 
! Exercise 5.5.3: Suppose R and S are two relations. Let C be the referen- of a relation according to their value(s) in one or more attributes before 

tial integrity constraint that says: whenever R has a tuple with some values computing aggregation(s) for each group. 
v1, 212,. . . , V, in particular attributes 41, A2,. . .,A,, there must be a tuple of S 
that has the same values vl,v2,. . . , v, in particular attributes B1, B2,. . . , B,. 4 Outerjoins: The outerjoin of two relations starts with a join of those re- 
Show how to express constraint C in relational algebra. lations. Then, dangling tuples (those that failed t.o join with any tuple) 

from eit,her relation are padded with null values for the attributes belong- 
! Exercise 5.5.4: Let R be a relation, and suppose A1A2 ..- An -+ B is a FD ing only to the other relation, and the padded tuples are included in the 

involving the attributes of R. Write in relational algebra the constraint that 
says this FD must hold in R. 

+ Constraints in Relational Algebra: Many common kinds of constraints can 
!! Exercise 5.5.5 : Let R be a relation, and suppose be expressed as the containment of one relational algebra expression in 

AlA2...An -t, B1B2...Bm another, or as the equality of a relational algebra expression to the empty 
set. These constraints include functional dependencies and referential- 

is a MVD involving the attributes of R. Write in relational algebra the con- integrity constraints, for example. 
straint that says this MVD must hold in R. 

5.7 References for Chapter 5 
5.6 Surnmary of Chapter 5 

Relational algebra was another contribution of the fundamental paper [l] on the 
+ Classical Relational Algebra: This algebra underlies most query languages relational model. Extension of projection to include grouping and aggregation 

for the relational model. Its principal operators are union, intersection, are from [2]. The original paper on the use of queries to express constraints is 
difference, selection, projection, Cartesian product, natural join, theta- 
join, and renaming. 

1. Codd, E. F., "A relational model for large shared data banks," Comm. 
+ Selection and Projection: The seIection operator produces a result con- ACM 13:6, pp. 3'77-387, 1970. 

sisting of all tuples of the argument relation that satisfy the selection 
condition. Projection removes undesired columns from the argument re- 2. d. Gupta, \;. Harinarayan, and D. Quass, "Aggregate-query process- 
lation to produce the result. ing in data warehousing environments," Proc. Intl. Conf. on Very Large 

Databases (1995), pp. 358-369. + Joins: We join two relations by comparing tuples, one from each relation. 
In a natural join, we splice together those pairs of tuples that agree on all 3. Sicolas, J.-11.: "Logic for improving integrity checking in relational data- 
attributes common to the two relations. In a theta-join, pairs of tuples bases," Acta Informatics 18:3, pp. 227-253, 1982. 
are concatenated if they meet a selection condition associated with the 
theta-join. 

+ Relations as Bags: In comn~ercial database systems, relations are actually 
bags, in which the same tuple is allowed to appear several times. The 
operations of relational algebra on sets can be extended to bags. but 
there are some algebraic laws that fail to hold. 

+ Extensions to Relational Algebra: To match the capabilities of SQL or 
other query languages, some operators not present in the classical rela- 
tional algebra are needed. Sorting of a relation is an example, as is an 
extended projection, where computation on columns of a relation is sup- 
ported. Grouping, aggregation, and outerjoins are also needed. 
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The most cornmanly used relational DBhIS's query and modify the database 
through a language called SQL (sometimes pronounced "sequel"). SQL stands 
for "Structured Query Language." The portion of SQL that supports queries 
has capabilities very close to  that  of relational algebra; a s  extended in Sec- 
tion 5.4. However: SQL also includes statements for modifying the database 
(e.g., inserting and deleting tuples from relations) and for declaring a database 
schema. Thus, SQL serves as both a data-manipulation language and as a data- 
definition language. SQL also standardizes many other database commands, 
covered in Chapters 7 and 8. 

There are many different dialects of SQL. First, there are three major stan- 
dards. There is ASS1 (American Sational Standards Institute) SQL and an 
updated standard adopted in 1992, called SQL-92 or SQL2. The recent SQL-99 
(previously referred to as SQL3) standard extends SQL2 with object-relational 
features and a number of other new capabilities. Then, there are  versions of 
SQL produced by the principal DBMS vendors. These all include the capa- 
bilities of the original .ITS1 standard. They also conform t o  a large estent to 
the more recent SQL2. although each has its variations and extensions beyond 
SQLS, including sonre of the features in the SQL-99 standard. 

In this and the nest t ~ v o  chapters n-e shall en~phasize the use of SQL as 
a query language. This chapter focuses on the generic (or "ad-hoc") query 
interface for SQL. That is. n-e consider SQL as a stand-alone query language. 
ahere we sit at a ter~nillal and ask queries about a database or request database 
modifications. such as  insertion of tien- tuples into a relation. Query answers 
are displayed for us a t  our terminal. 

The next chapter discusses constraints and triggers: as  another way of es- 
erting user control over the content of the database. Chapter 8 covers database- 
related programming in conventional programming languages. Our discussion 
of SQL in this and the next tn-o chapters ~3-ill conform to the SQL-99 standard, 
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emphasizing features found in almost all commercial systems as well as the 
earlier standards. 

The intent of this chapter and the follo~ving two chapters is to provide the 
reader ~ i t h  a sense of what SQL is about, more at the level of a "tutorial" 
than a "manual." Thus, we focus on the most commonly used features only. 
The references mention places where more of the details of the language and 
its dialects can be found. 

6.1 Simple Queries in SQL 
Perhaps the simplest form of query in SQL asks for those tuples of some one 

The WHERE clause is a condition, much like a selection-condition in rela- relation that satisfy a condition. Such a query is analogous to a selection in 
tional algebra. Tuples must satisfy the condition in order to match the relational algebra. This simple query, like almost all SQL queries, uses the three 

keywords, SELECT, FROM, and WHERE that characterize SQL. query. Here, the condition is that the studioName attribute of the tuple 
has the value 'Disney' and the year attribute of the tuple has the value 
1990. -411 tuples meeting both stipulations satisfy the condition; other 

Movie(t i t le,  year, length, incolor,  studioName, producerC#) tuples do not. 
StarsIn(movieTitle, movieyear, starName) 
MovieStar(name, address, gender, b i r thdate)  The SELECT clause tells which attributes of the tuples matching the con- 

dition are produced as part of the answer. The * in this example indicates MovieExec(name, address, ce r t# ,  networth) 
that the entire tuple is produced. The result of the query is the relation Stndio(name, address, presC#) 
consisting of all tuples produced by this process. 

A Trick for Reading and Writing Queries 

It is generally easist to examine a select-from-where query by first looking 
a t  the FROM clause, to learn which relations are involved in the query. 
Then, more to the WHERE clause, to  learn what it is about tuples that is 
important to the query. Finally, look at the SELECT clause to see what 
the output is. The same order - from, then where, then select - is often 
useful when writing queries of your own, as well. 

a 

Figure 6.1: Esample database schema, repeated One way to interpret this query is to consider each tuple of the relation 
mentioned in the FROM clause. The condition in the WHERE clause is applied 
to the tuple. SIore precisely? any attributes ment,ioned in the WHERE clause are 

Example 6.1: In this and subsequent examples, we shall use the database replaced by the value in the tuple's component for that attribute. The condition 
schema described in Section 5.1. To review, these relation schema are the o~lus is then evaluated, and if true, the components appearing in the SELECT clause 
shown in Fig. 6.1. We shall see in Section 6.6 hot\- to express schema information are produced as one tuple of the answer. Thus, the result of the query is 

in SQL, but for the moment, assume that each of the relations and domains the Movie tuples for those movies produced by Disney in 1990, for example, 

(data types) mentioned in Section 5.1 apply to their SQL counterparts. Pretty Woman. 
-4s our first query, let us ask about the relation In detail, when the SQL query processor encounters the Movie tuple 

- - 

title I year I length ( znColor I studioName I producerC# 
Movie(t i t le,  year ,  length, incolor ,  studioName, producerC#) 

for all movies produced by Disney Studios in 1990. In SQL, ~ v e  say (here, 999 is the imaginary certificate number for the producer of the movie), 

SELECT * the value )Disneyl is substituted for attribute studioName and value 1990 is 

FROM Movie substituted for attribute year in the cot~dition of the WHERE clause, because 
these are the values for those attributes in the tuple in quesrion. The WHERE 

WHERE StudioName = 'Disney' AND year = 1990; 
clause thus becomes 

This query eshibits the characteristic. select-from-where form of niost SQL 
queries. WHERE 'Disney' = 'Disney' AND 1990 = 1990 

Since this condition is evidently true, the tuple for Pretty Itroman passes the 
The FROM clause gives the relation or relations to which the querv refers. test of the WHERE clause and the tuple becomes part of the result of the query. 
1x1 our example. the query is about the relation Movie. 
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6.1.1 Projection in SQL 
1% can, if we wish, eliminate some of the components of the chosen tuples; 

Another option in the SELECT clause is to use an expression in place of that is, we can project the relation produced by an SQL query onto some of 
an attribute. Put another way, the SELECT list can function like the lists in its attributes. In place of the * of the SELECT clause, we may list some of 
an extended projection, which u7e discussed in Section 5.4.5. We shall see in the attributes of the relation mentioned in the FROM clause. The result will be 
Section 6.4 that the SELECT list can also include aggregates as in the 7 opaator projected onto the attributes listed.' 
of Section 5.4.4. 

Example 6.2 : Suppose we wish to modify the query of Example 6.1 to produce 
only the movie title and length. We may write Example 6.4: Suppose we wanted output as in Example 6.3, but with the 

length in hours. We might replace the SELECT clause of that example with 
SELECT t i t l e ,  length 
FROM Novie SELECT t i t l e  AS name, length*0.016667 AS LengthInHours 
WHERE studioName = 'Disney' AND year = 1990; 

Then the same movies would be produced, but lengths would be calculated in 
The result is a table with two columns, headed t i t l e  and length. The tuples hours and the second column would be headed by attribute lengthInHours, 
in this table are pairs, each consisting of a movie title and its length, such that 
the movie was produced by Disney in 1990. For instance, the relation schema 
and one of its tuples looks like: name ZengthInHours 

Pret ty  Woman 1.98334 
. . .  ... 

0 Example 6.5 : 1Ve can even allow a constant as an expression in the SELECT 

Sometimes, we wish to produce a relation with column headers different clause. It might seen1 pointless to do so, but one application is to put some 

from the attributes of the relation mentioned in the FROM clause. \Ve may follo~s- useful n-ords into the output that SQL displays. The following query: 

the name of the attribute by the keyword AS and an alias, which becomes the SELECT t i t l e ,  length*0.016667 AS length,  ' h r s . '  AS inHours 
header in the result relation. Keyword AS is optional. That is, an alias can 

FROM Movie immediately follow what it stands for, without any intervening punctuation. 
WHERE studioName = 'Disney' AND year = 1990; 

Example 6.3 : We can modify Example 6.2 to produce a relation with at- 
tributes name and duration in place of t i t l e  and length as follows. produces tuples such as 

SELECTtitle AS name, length AS duration title length inHours 
FROM Movie P re t ty  Woman 1.98334 hrs .  
WHERE studioName = 'Disney' AND year = 1990; ... ... ... 

The result is the same set of tuples as in Example 6.2, but with the columns 1Ve ha\-e arranged that the third column is called insours, which fits with the 
headed by attributes name and duration. For example, the result relation column header length in the second column. Every tuple in the answer [%-ill 
might begin: have the constant h r s .  in the third column, which gives the illusion of being 

name the units attached to the value in the second column. 0 

6.1.2 Selection in SQL 

'Thus, the keyword SELECT in SQL actually corresponds most closely to the projection The selection operator of relational algebra, and much more, is available through 
operator of relational algebra, while the selection operator of the algebra corresponds to the  the WHERE clause of SQL. The expressions that may follow WHERE include con- 
WHERE clause of SQL queries. ditional expressions like those found in common languages such as C or Java. 
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Case Insensitivity 

SQL is case insensitive, meaning that it treats upper- and lower-case let- 
ters as the same letter. For example, although we have chosen to write 
keywords like FROM in capitals, it is equally proper to write this keyword 
as From or from, or even From. Names of attributes, relations, aliases, and 
so on are similarly case insensitive. Only inside quotes does SQL make 
a distinction between upper- and lower-case letters. Thus, 'FROM' and 
'from' are different character strings. Of course, neither is the keyword 
FROM. 

We may build expressions by comparing values using the six common com- 
parison operators: =, <>, <, >, <=, and >=. These operators have the same 
meanings as in C, but <> is the SQL symbol for "not equal to"; it corresponds 
to != in C. 

The values that may be compared include constants and attributes of the 
relations mentioned after FROM. We may also apply the usual arithmetic op- 
erators, +, *, and so on, to numeric values before we compare them. For 
instance, (year - 1930) * (year - 1930) < 100 is true for those years within 9 
of 1930. We may apply the concatenation operator I I to strings; for esalriple 
'foo' ( I  'bar'  h a s d u e  ' foobar ' .  

An example comparison is 

studioName = 'Disney' 

in Example 6.1. The attribute studioName of the relation Movie is tested fc~l 
equality against the constant 'Disney'. This constant is string-valued: string5 
in SQL are denoted by surrounding them with single quotes. Numeric constants. 
integers and reals, are also allowed, and SQL uses the common notations for 
reals such as -12.34 or 1.23E45. 

The result of a comparison is a boolean value: either TRUE or FALSE.? 
Boolean values may be combined by the logical operators AND, OR, and NOT. 
with their espected meanings. For instance, we saw in Example 6.1 how t~vo 
conditions could be combined by AND. The WHERE clause of this example eval- 
uates to true if and only if both comparisons are satisfied; that is, the studio 
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SQL Queries and Relational Algebra 

The simple SQL queries that we have seen so far all have the form: 

SELECT L 
FROM R 
WHERE C 

in ~vhicll L is a list of espressions, R is a relation, and C is a condition. 
The meaning of any such expression is the same as that of the relational- 
algebra espression 

TL (uc(R)) 

That is, we start with the relation in the FROM clause, apply to each tuple 
whatever condition is indicated in the WHERE clause, and then project onto 
the list of attributes and/or expressions in the SELECT clause. 

FROM Movie 
WHERE year > 1970 AND NOT i n c o l o r ;  

In this condition, we again have the AND of t~vo booleans. The first is an ordinary 
comparison, but the second is the attribute i n c o l o r ,  negated. The use of this 
attribute by itself inakes scnse. bccai~se i n c o l o r  is of type boolean. 

r e s t  . consider the query 

SELECT t i t l e  
FROM Movie 
WHERE (year  > 1970 OR l e n g t h  < 90) AND studioName = 'MGM'; 

This query asks for the titles of movies made by NGhl  Studios that either were 
made after 1970 or xverr less than 90 minutes long. Sotice that comparisons 
can be grouped using parentheses. The parentheses are needed here because the 
precedence of logical operators in SQL is thc same as in most other languages: 
AND takes precedence olpr OR. and NOT takes precedence over both. O 

name is 'Disney and the year is 1990. Here are sotne more examples of quelics 
~vith comples WHERE clauses. 

3: 6.1.3 Comparison of Strings 

Tu-o strings are cqnal if they arc thc same sequence of characters. SQL allo\~s 
Exaxnple 6.6: The following query asks for all the movies made after 1970 declarations of different t?-pes of strings, for esample fixed-length arrays of char- 
that are in black-and-white. acters and ~ariable-length lists of characters."f so, we can expect reasonable 

SELECT t i t l e  3Xt least the strings may be thought of as stored as an array or list, respectively. How 
they are actually stored is an implementation-dependent matter, not specifid in any SQL 

2i\'ell there's a bit more to boolean values; see Section 6.1.6. 



Representing Bit Strings 

A string of bits is represer~ted by B followed by a quoted string of 0's and 
1's. Thus, B ' O l l '  represents the string of three bits, the first of which 
is 0 and the other two of which are 1. Hexadecimal notation may also 
be used, where an X is followed by a quoted string of hexadecimal digits 
(0 through 9, and a through f ,  with the latter representing "digits'' 10 
through 15). For instance, X'7ff' represents a string of twelve bits, a 0 
follotved by eleven 1's. Note that each hexadecimal digit represents four 
bits, and leading 0's are not suppressed. 
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FROM Movie 
WHERE t i t l e  LIKE 'S t a r  

his query asks if the title attribute of a movie has a value that is nine characters 
ng, the first five characters being S t a r  and a blank. The last four characters 

may be anything, since any sequence of four characters matches the four - 
symbols. The result of the query is the set of complete matching titles, such as 
Star Wars and Star Trek. 

Example 6.8 : Let us search for all movies with a possessive ('s) in their titles. 
The desired query is 

SELECT t i t l e  
FROM Movie 

coercions among string types. For example, a string like foo might be stored WHERE t i t l e  LIKE '%"s%'; 
as a fixed-length string of length 10, with 7 "pad" characters, or it could be 
stored as a variable-length string. U'e would expect values of both types to be To understand this pattern, we must first observe that the apostrophe, being 
equal to each other and also equal to the constant string ' fooJ .  More about the character that surrounds strings in SQL, cannot also represent itself. The 
physical storage of character strings appears in Section 12.1.3. convention taken by SQL is that two consecutive apostrophes in a string rep- 

When \ve compare strings by one of the "less than" operators, such as < or resent a single apostrophe and do not end the string. Thus, ' 's in a pattern is 
>=, we are asking whether one precedes the other in lexicographic order (i.e., matched by a single apostrophe followed by an s. 
in dictionary order, or alphabetically). That is, if alas . . . a, and bl b2 . . . brn The two % characters on either side of the ' s  match any strings whatsoever. 
are two strings, then the first is "less than" the second if either a1 < bl :  or if Thus, any title with ' s  as a substring will match the pattern, and the answer 
a1 = bl and a2 < b;?, or if a1 = bl, a2 = b2,  and a3 < b3, and so on. n'e also say to this query n-ill include filnis such as Logan's Run or Alice's Restaurant. 
ala.2.. .a,, < blb2.. . bm if n < m and a l a2 . .  . a, = blb2.. . b,; that is, the first 
string is a proper prefix of the second. For instance, 'fodder ' < ' f 00' ; because 
the first two characters of each string are the same, f o, and the third character of 6.1.4 Dates and Times 
fodder precedes the third character of f 00. Also, 'bar '  < 'bargain ' beratlsc 
the former is a proper prefix of the latter. As with equal it^.; we may espcc:t Implementations of SQL generally support dates and times as special data 
reasonable coercion among different string types. types. These 1-alues are often representable in a variety of formats such as 

SQL also provides the capability to compare strings on the basis of a simple 5/14/1948 or 14 May 1948. Here we shall describe only the SQL standard 
pattern match. An alternative form of comparison expression is notation, tvhich is very specific about format. 

A% date constant is represented by the keyn-ord DATE follo11-ed by a quoted 
s LIKE p string of a special form. For example, DATE ' 1948-05-14' follo~vs the required 

where s is a string and p is a pattern; that is, a string with t,he optional~use form. The first four characters are digits representing the year. Then come a 
of the two special characters % and -. Ordinary characters in p match 0111~ 

hyphen and two digits representing the month. Note that: as in our example, 

themselves in s. But % in p can niatch any sequence of 0 or more characters in a one-digit month is padded with a leading 0. Finally there is another hyphen 

J. and - in p matches any one character in s .  The value of this espressioll is and tn-o digits representing the day. As with months. we pad the day with a 
true if and only if string s matches pattern p. Similarly, s NOT LIKE p is true leading 0 if that is necessary to make a two-digit number. 

if and only if string s does not match pattern p. A time constant is represented silnilarly by the keyword TIME and a quoted 
string. This string has two digits for the hour, on the lnilitary (24-hour) 

Example 6.7: \Ve remember a movie "Star something," and we relneinber clock. Then come a colon: two digits for the minut,e, another colon, and two 
that the something has four letters. What could this movie be? We call retrieve digits for the second. If fractions of a second are desired, we may continue 
all such names with the query: with a decimal point and as many significant digit,s as we like. For instance? 

TIME ' 15: 00 : 02.5' represents the time at which all  student,^ will have left a 
SELECT t i t l e  class that ends at  3 P?\I: two and a half seconds past three o'clock. 
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. Value witlzheld: "We are not entitled to know the value that belongs 
Escape Characters in LIKE expressions here." For instance, an unlisted phone number might appear as NULL in 

the component for a phone attribute. 
What if the pattern we wish to  use in a LIKE expression involves the char- 
acters % or -? Instead of having a part,icular character used as the escape saw in Section 5.4.7 how the use of a n  outerjoin operator produces null 
character (e.g., the backslash in most UNIX commands), SQL al101t.s us in some components of tuples; SQL allows outerjoins and also produces 
to  specify any one character \ire like as the escape character for a single 
pattern. We do so by following the pattern by the keyword ESCAPE and 
the chosen escape character, in quotes. A character % or - preceded by ues, as we shall see in Section 6.5.1. 
the escape character in the pattern is interpreted literally as that charac- HERE clauses, we must be prepared for the possibility that  a component 
ter, not as a symbol for any sequence of charact,ers or any one character, 
respectively. For example, 

s LIKE 'x%%x%' ESCAPE 'x' 1. Wlien me operate on a NULL arid any value, including another NULL, using 
an arithmetic operator like x or +, the result is NULL. 

makes x the escape character in the pattern x%%x%. The sequence x% is 
taken to be a single %. This pattern matches any string that begins and 2. When we compare a NULL value and any value, including another NULL, 
ends wit11 the character %. Note that only the middle % has its "any string" using a comparison operator like = or >? the result is UNKNOWN. The value 
interpretation. UNKNOWN is another truth-value, like TRUE and FALSE; we shall discuss how 

to manipulate truth-value UNKNOWN shortly. 

However, we inust remember that: although NULL is a value that can appear 
Alternatively, time can be expressed as  the number of hours and mil~utcs 

ahead of (indicated by a plus sign) or behind (indicated by a minus sign) Grern- 
~ i c h  Ipfean Time (GhIT). For instance, TIME ' 12: 00 : 00-8 : 00' represents  loon 

in Pacific Standard Time, which is eight hours behind GMT. 
To combine dates and times we use a value of type TIMESTAMP. Thcsc valucs Example 6.9 : Let x have the value NULL. Then the value of x + 3 is also NULL. 

consist of the keyword TIMESTAMP, a date value, a space, and a tint7 \.aiuc'. HOR-ever, NULL + 3 is not a legal SQL espression. Similarly, t,he value of x = 3 
Thus, TIMESTAMP ' 1948-05-14 12: 00: 00' represents noon on hlay 14.19-48. is UNKNOWN, because we cannot tell if the value of x, which is NULL, equals the 

\fTe can compare dates or times using the same comparison operators we use lalue 3. Ho~vevcr, the comparison NULL = 3 is not correct SQL. 
for numbers or strings. That is, < on dates means that  the first date is rarlicr 
than the second; < on times means that the first is earlier (wit,hin the same Incidentally, the correct way to ask if x has the value NULL is with the 
day) than the second. expression x I S  NULL. This expression has the value TRUE if x has the value 

NULL and it has value FALSE otherwise. Similarl?;: x I S  NOT NULL has the value 

6.1.5 Null Values and Comparisons Involving NULL TRUE unless the value of x is NULL. 

SQL allotvs attributes to  have a special value NULL, which is called the rrl / l l  

d u e .  There are many different interpretations that  can be put on null \-tilnc'i. 6.1.6 The Truth-Value UNKNOWN 
Here are some of the most common: In Section 6.1.2 13-e assumed that the result of a conrparison was either TRUE 

or FALSE, and these truth-values were combined in the obvious way using the 
1. Value vr,known: that is, '.I 1;nox- there is some value that belongs ll('re 

but 1 don't know what it is." .In unknon-n birthdate is an esanlple. 
logical operators AND, OR. and NOT. \Ye have just seen that nhen NULL values 
occur, comparisons can vield a third truth-value: UNKNOWN. We must now learn 

2. Value inapplicable:. "There is no value that  makes sense here." For ex- how the logical operators behave on combinations of all three truth-values. 
ample, if we had a spouse attribute for the Moviestar relation, then all 
unmarried star might have NULL for that attribute, not because n-c 
k n o ~  the spouse's name, but because there is none. 
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Pitfalls Regarding Nulls 

It is tempting to assume that NULL in SQL can always be taken to mean 
"a value that we don't know but that surely exists.'' However, there 
are several ways that intuition is violated. For instance, suppose x is 
a component of some tuple, and the domain for that component is the 
integers. We might reason that 0 * x surely has the value 0, since no 
matter what integer x is, its product with 0 is 0. However, if x has the 
value NULL, rule (1) of Section 6.1.5 applies; the product of 0 and NULL is 
NULL. Similarly, we might reason that x - x has the value 0, since whatever 
integer x is, its difference with itself is 0. However, again rule (1) applies 
and the result is NULL. 

1. The AND of two truth-values is the minimum of those values. That. is. 
x AND y is FALSE if either x or y is FALSE; it is UNKNOWN if neither is FALSE 
but at  least one is UNKNOWN, and it is TRUE only when both x and y arc 
TRUE. 

2. The OR of two truth-values is the maximum of those values. That is. 
x OR y is TRUE if either x or y is TRUE; i t  is UNKNOWN if neither is TRUE but 
at  least one is UNKNOWN, and it is FALSE only when both are FALSE. 

3. The negation of truth-value v is 1 - v. That is, NOT x has the value TRUE 
when x is FALSE, the value FALSE when x is TRUE, and the value UNKNOWN 
when x has value UNKNOWN. 

In Fig. 6.2 is a summary of the result of applying the three logical operators to 
the nine different combinations of truth-~alues for operarrds z and y. The value 
of the last operator, NOT, depends only on x. 

.x Y 1 x AND y x OR y NOT x 
TRUE TRUE 1 TRUE TRUE FALSE 
TRUE UNKNOWN 
TRUE FALSE 
UNKNOWN TRUE 
UNKNOWN UNKNOWN 
UNKNOWN FALSE 
FALSE TRUE 

UNKNOWN TRUE FALSE 
FALSE TRUE FALSE 
UNKNOWN TRUE UNKNOWN 
UNKNOWN UNKNOWN UNKNOWN 
FALSE UNKNOWN UNKNOWN 
FALSE TRUE TRUE 

FALSE UNKNOWN FALSE UNKNOWN TRUE 
FALSE FALSE FALSE FALSE TRUE 
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SQL conditions, as appear in WHERE clauses of select-from-where statements, 
pply to each tuple in some relation, and for each tuple, one of the three truth 
alues, TRUE, FALSE, or UNKNOWN is produced. However, only the tuples for 
hich the condition has the value TRUE become part of the answer; tuples with 
ther UNKNOWN or FALSE as value are excluded from the answer. That situation 

eads to another surprising behavior similar to that discussed in the box on 
"Pitfalls Regarding Xulls," as the nest example illustrates. 

Example 6.10 : Suppose we ask about our running-example relation 

Movie( t i t le ,  year,  length ,  incolor ,  studioName, producerC#) 

the following query: 

SELECT * 
FROM Movie 
WHERE length  <= 120 OR length > 120; 

Int,uitively, we ~vould expect to get a copy of the Movie relation, since each 
movie has a length that is either 120 or less or that is greater than 120. 

However, suppose there are Movie tuples with NULL in the length compo- 
nent. Then both comparisons length  <= 120 and length > 120 evaluate to 
UNKNOWN. The OR of two UNKNOWN'S is UNKNOWN, by Fig. 6.2. Thus, for any tuple 
with a NULL in the length  component, the WHERE clause evaluates to UNKNOWN. 
Such a tuple is not returned as part of the answer to the query. As a result, the 
true meaning of the query is "find all the Movie tuples with non-NULL lengths." 

6.1.7 Ordering the Output 

We may ask that the tuples produced by a query be presented in sorted order. 
The order may be based on the value of any attribute, with ties broken by the 
value of a second attribute, remaining ties broken by a third, and so on, as in 
tlie r operation of Section 5.4.6. To get output in sorted order, we add to the 
select-from-where statement a clause: 

ORDER BY < l i s t  of a t t r i b u t e s >  

The order is by default ascending. but 11-c can get the output highest-first by 
appending the keyword DESC (for .'descending") to an attribute. Similarly. Ive 
can specify ascending order with the keyword ASC, but that word is unnecessary. 

Example 6.11 : The follo~ving is a rewrite of our original query of Esa~nple 6.1. 
asking for tlie Disney movies of 1990 from the relation 

Figure 6.2: Truth table for three-valued logic Movie( t i t le ,  year ,  length ,  incolor ,  studioName, pr0ducerCt) 
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To get the movies listed by length, shortest first, and among movies of equal Show the result of your queries using the data from Exercise 5.2.1. 
length, alphabetically, we can say: 

* a) Find the model number, speed, and hard-disk size for all PC's whose price 
SELECT * is under $1200. 
FROM Movie 
WHERE studioName = 'Disney' AND year = 1990 * h) Do the same as (a), but rename the speed column megahertz and the hd 

ORDER BY length,  t i t l e ;  column gigabytes. 

n c) Find the manufacturers of printers. 

d) Find the niodel number, memory size, and screen size for laptops costing 
6.1.8 Exercises for Section 6.1 more than $2000. 

* Exercise 6.1.1 : If a query has a SELECT clause * e) Find all the tuples in the P r in te r  relation for color printers. Remember 
that color is a boolean-valued attribute. 

SELECT A B 
f) Find the model number, speed, and hard-disk size for those PC's that 

how do we know whether A and B are two different attributes or B is an alias have either a 12x or 16x DVD and a price less than $2000. YOU may 
of A? regard the rd  attribute as having a string type. 

Exercise 6.1.2: FVrite the following queries, based on our running movie Exercise 6.1.4: IVrite the following queries based on the database schema of 
database example Exercise 5.2.4: 

Movie(t i t le,  year,  length,  incolor,  studioName, producerC#) 
StarsIn(movieTitle, movieyear, starName) 

Classes (c lass ,  type, country, numGuns , bore, displacement) 

MovieStar(name, address, gender, bir thdate) Ships (name, c lass ,  launched) 

MovieExec(name, address, cer t# ,  networth) Bat t les  (name, date) 

Studio (name, address, presC#) Outcomes(ship, b a t t l e ,  r e s u l t )  

in SQL. and shorn the result of your query on the data of Esercise 5.2.4. 

* a) Find the address of LIGM studios. a) Find the class name and country for all classes n-ith at  least 10 guns. 

b) Find Sandra Bullock's birthdate. b) Find the names of all ships launched prior to 1918: but call the resulting 
column shipName. 

* c) Find all the stars that appeared either in a movie made in 1980 or a movie 
with "Love" in the title. c) Find the names of ships sunk in battle and the name of the battle in which 

they were sunk. 
d) Find all executives worth at least $10.000,000. 

d) Find all ships that have the same name as their class. 
e) Find all the stars ~ 1 1 0  eit,her are male or live in Alalibu (have string Malibu 

as a part of their address). e) Find the names of all ships that hegin tvith the letter "R." 

Exercise 6.1.3 : \\kite the follo\ving queries in SQL. They refer to the database ! f )  Find the names of all ships whose name consists of three or more words 
schema of Exercise 3.2.1: (e.g., Iiing George V). 

Product (maker, model, type) Exercise 6.1.5: Let a and b be integer-valued attributes that may be NULL in 
PC(mode1, speed, ram, hd, rd ,  price) some tuples. For each of the follo~ving conditions (as may appear in a WHERE 
Laptop (model, speed, ram, hd, screen, price) clause), describe exactly the set of (a. b) tuples that satisfy the condition, in- 
Printer(mode1, color ,  type, pr ice)  cluding the case  here a and/or b is NULL. 
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* a) a = 10 OR b = 20 

b) a = 10 AND b = 20 

! e) a <= b 

! Exercise 6.1.6 : In Example 6.10 we discussed the query . L 

SELECT * 
FROM Movie 
WHERE length <= 120 OR length > 120; Y ::a 

": 4 which behaves unintuitively when the lennth of a movie is NULL. Find a simnler. 1 
equivalent query, one with a single ( 
of conditions). 

;he WHERE clause (no AND dr OR 

=? 

6.2 Queries Involving More Than One Relation '5 .4: 

6.2. QUERIES IX\'OLVIATG MORE THAN ONE REL.4TlON 

SELECT name 
FROM Movie, MovieExec 
WHERE t i t l e  = 'S tar  Wars1 AND producerC# = ce r t# ;  

This query asks us to consider all pairs of tuples, one from Movie and the other 
frnrn Movi nE.unc.. The r-nndit,ions on this  air are stated in the WHERE clause: 

. 1. The t i t l e  component of the tuple from Movie must have value 'Star  
Wars'. 

, 2. The producerC# attribute of the Movie tuple must be the same certificate 
number as the ce r t#  attribute in the MovieExec tuple. That is, these two 
tuples must refer to the same producer. 

g2 Whenever we find a pair of tuples satisfying both conditions, we produce 
the name attribute of the tuple fr& MovieExec as part of the answer. If the 
data is what we ex~ec t ,  the only time both conditions will be met is when the 
tuple from Movie is for Star w&, and the tuple from MovieExec is for George 
Lucas. Then and only then will the title be correct and the certificate numbers 
agree. Thus, George Lucas should be the only value produced. This process is 
suggested in Fig. 6.3. We take up in more detail how to interpret multirelation Ei" 

Much of the power of relational algebra comes from its ability to combine two in section 6.2.4. 
or more relations through joins, products, unions, intersections, and differences. 
We get all of these operations in SQL. The set-theoretic operations - union, t i t l e  producerC# name ce r t#  

intersection, and difference - appear directly in SQL, as we shall learn in 
Section 6.2.5. First, we shall learn how the select-from-where statement of SQL 
allows us to perform products and joins. 

6.2.1 Products and Joins in SQL 

SQL has a simple way to couple relations in one query: list each relation in the 
FROM clause. Then, the SELECT and WHERE clauses can refer to the attributes of 
any of the relations in the FROM clause. 

Example 6.12 : Suppose we want to know the name of the producer of Stcir MovieExec 
Wars. To answer this question we need the follolving two relations from our 
running example: "Star Wars"? 

If so, output this. 
Movie ( t i t l e ,  year, length, incolor,  studioName, producerC#) 
MovieExec(name, address, cer t# ,  networth) Figure 6.3: The query of Esample 6.12 asks us to pair every tuple of Movie 

with every tuple of MovieExec and test two conditions The producer certificate number is givcn in the Movie relation, so 1,-e can do a 
simple query on Movie to get this number. We could then do a second query 
on the relation MovieExec to find the name of the person with that certificate 
number. 6.2.2 Disambiguating Attributes 

Horn-elel-er, we can phrase both these steps as one query about the pair of Sometimes we ask a query involving sexral relations, and among these relations 
relations Movie and MovieExec as follows: are t~vo or more attributes with the same name. If so, we need a way to indicate 



Tuple Variables and Relation Names 

Technically, references to attributes in SELECT and WHERE clauses are al- 
ways to a tuple variable. However. if a relation appears only once in the 
FROM clause, then we can use the relation name as its own tuple variable. 
Thus, we can see a relation name R in the FROM clause as shorthand for 
R AS R. Furthermore, as we have seen, when an attribute belongs un- 
anibiguously to one relation, the relation name (tuple variable) may be 
omitted. 
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which of these attributes is meant by a use of their shared name. SQL solves 
this problem by allowing us to place a relation name and a dot in front of an 
attribute. Thus R.A refers to the &tribute A of relation R. 

Example 6.13 : The two relations 

MovieStar(name, address, gender, birthdate) 
MovieExec(name, address, cert#, networth) 

each have attributes name and address. Suppose we wish to find pairs consist- 
ing of a star and an executive with the same address. The following query does 
the job. 

SELECT MovieStar.name, MovieExec.name We may list a relation R as many times as we need to in the FROM clause, but 
FROM MovieStar, MovieExec ~ve need a way to refer to each occurrence of R. SQL allows us to define, for 

WHERE MovieStar.address = MovieExec.address; each occurrence of R in the FROM clause, an "alias" which we shall refer to as 
a tuple variable. Each use of R in the FROM clause is followed by the (optional) 

In this query, we look for a pair of tuples, one from Moviestar and the other keyword AS and the name of the tuple variable; we shall generally omit the AS 
from MovieExec, such that their address components agree. The WHERE clause in this context. 
enforces the requirement that the address attributes from each of the two In the SELECT and WHERE clauses, we can disambiguate attributes of R by 
tuples agree. Then, for each matching pair of tuples, we extract the two name preceding them by the appropriate tuple variable and a dot. Thus, the tuple 
attributes, first from the Moviestar tuple and then from the other. The result variable serves as another name for relation R and can be used in its place when 
would be a set of pairs such as 

MovieStar.name MouieExec.name Example 6.14 : While Example 6.13 asked for a star and an executive sharing 

Jane Fonda Ted Turner an address, we might similarly want to know about two stars who share an 

. . .  . . . address. The query is essentially the same, but now we must think of two tuples 
chosen from relation MovieStar, rather than tuples from each of MovieStar and 
MovieExec. Using tuple variables as aliases for two uses of Moviestar, we can 
wi t e  the query as 

The relation name, followed by a dot, is permissible even in situations where 
there is no ambiguity. For instance, we are free to write the query of Example SELECT Starl.name, Star2.name 
6.12 as FROM Moviestar Starl, Moviestar Star2 

WHERE Starl.address = Star2.address 
SELECT MovieExec.name AND Starl.name < Star2.name; 
FROM Movie, MovieExec 
WHERE Movie-title = 'Star Wars' We see in the FROM clause the declaration of tn-o tuple variables, Starl and 

AND Movie.producerC# = MovieExec.cert#; Star2; each is an alias for relation MovieStar. The tuple variables are used in 
the SELECT clause to refer to the name components of the two tuples. These 

Altefnati\7ely, we may use relation names and dots in front of any subset of the aliases are also used in the WHERE clause to say that the two Moviestar tu- 
attributes in this query. pies represented by Star1 and Star2 have the same value in their address 

Components. 

6.2.3 Tuple Variables The second condition in the WHERE clause, Star 1. name < Star2. name, says 
that the name of the first star precedes the name of the second star alphabet- 

Disambiguating attributes by prefixing the relation name works as long as the ically. If this condition were omitted, then tuple variables Star1 and Star2 
query involves combining several different relations. However, sometimes ive could both refer to the same tuple. We would find that the tti-o tuple variables 
need to ask a query that involves two or more tuples from the same relation, referred to tuples whose address components are equal, of course, and thus 
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produce each star name paired with itself.* The second condition also forces us 
to produce each pair of stars with a common address only once! in alphabetical LET t h e  t u p l e  v a r i a b l e s  i n  t h e  from-clause range over  

If we used <> (not-equal) as the comparison operator, then we ~vould r e l a t i o n s  Rl:  R2,. . . , R,; 

produce pairs of married stars twice, like FOR each t u p l e  t i  i n  r e l a t i o n  R1 DO 
FOR each t u p l e  t2 i n  r e l a t i o n  R2 DO 

. . . 
FOR each t u p l e  t ,  i n  r e l a t i o n  R, DO 

I F  t h e  where-clause is  s a t i s f i e d  when t h e  v a l u e s  
from t l , t z , .  . . , t ,  a r e  s u b s t i t u t e d  f o r  a l l  
a t t r i b u t e  r e f e r e n c e s  THEN 

e v a l u a t e  t h e  express ions  of t h e  s e l e c t - c l a u s e  
according t o  t l ,  t2 , .  . . , t, and produce t h e  
t u p l e  of v a l u e s  t h a t  r e s u l t s .  

6.2.4 Interpreting Multirelation Queries 

There are several ways to  define the meaning of the select-from-where expres- Figure 6.4: Answering a simple SQL query 
sions that we have just covered. All are equivalent, in the sense that they each 
give the same answer for each query applied to  the same relation instances. \ITe Conversion t o  Re la t iona l  Algebra  
shall consider each in turn. 

-1 third approach is to  relate the SQL query to relational algebra. ITk start with 
the tuple variables in the FROM clause and take the Cartesian product of their 

Nested Loops relations. If two tuple variables refer to the same relation, then this relation 

The semantics that me have implicitly used in examples so far is that of tuple appears twice in the product, and we rename its att,ributes so all attributes lla~-e 
w-ariables. Recall that  a tuple variable ranges over all tuples of the correspo~ldi~lg unique names. Similarly, attributes of the same name from different relations 
relation. A relation name that is not aliased is also a tuple variable ranging are renamed to avoid ambiguity. 
over the relation itself, as we mentioned in the box on "Tuple Variables and Having created the product, we apply a selection operator to it  by convert- 
Relation Names." If there are several tuple variables, we may iniagine nest('({ illg the WHERE clause to a selection condition in the obvious way. That  is, each 
loops, one for each tuple variable, in which the variables each range over tht, attribute reference in the WHERE clause is replaced by the attribute of the prod- 
tuples of their respective relations. For each assignment of tuples to the t~lplc uct to ~vhich it corresponds. Finally, we create from the SELECT clause a list 
xariables, we decide whetsher the WHERE clause is true. If so; we produce a tuple of expressions for a final (extended) projection operation. As we did for the 
consisting of the values of the expressions following SELECT; note that each tern1 WHERE clause, n-e interpret each attribute reference in the SELECT clause as the 
is given a value by the current assignment of tuples t o  tuple variables. This corresponding attribute in the product of relations. 

query-answering algorithm is suggested by Fig. 6.4. E x a m p l e  6.15 : Let us convert the query of Example 6.14 to relational algebra. 
First, there are two tuple variables in the FROM clause, both referring t o  relation 

Parallel Ass ignment  Moviestar.  Thus, our expression (without the necessary renaming) begins: 

There is an equivalent definition in which we do not explicitly create nestctl Moviestar x Moviestar 

loops ranging over the tuple variables. Rather, wve consider in arbitrary order. The resulting relation l ~ a s  eight attributes. the first four correspond to at- 
or in parallel, all possible assignments of tuples from the appropriate relations 
to the tuple variables. For each such assignment, we consider ~vhcther the 

tributes name. address .  gender. and b i r t h d a t e  from the first copy of relation 

WHERE clause becomes true. Each assignment that produces a true WHERE clause 
Moviestar,  and thc second four correspond to the same attributes from the 

contributes a tuple t o  the  answer; that tuple is constructed from the attributes 
other copy of MovieStar. n'e could create names for these attributes with a 

of the SELECT clause, evaluated according to that assignment. 
dot and the aliasing tuple variable - e.g., S t a r l  .gender - but for succinct- 
ness, let us invent new symbols and call the attributes simply .-Il : -&, . . . , .&. 

'-x similar problem occurs in Example 6.13 when the same individual is both a star and Thus. ill corresponds to S t a r 1  .name, .A5 correspo~ids to  Star2.name: and SO 

an executive. \Ve could solve that problem by requiring that the two names be unequal. 



An Unintuitive Consequence of SQL Semantics 

Suppose R: S, and T are unary (one-component) relations, each having 
attribute d alone, and we wish to find those elements that are in R and 
also in either S or T (or both). That is, we want to  compute R n (S u T) .  
We might expect the following SQL query would do the job. 

SELECT R. A 
FROM R, S, T 
WHERE R.A = S.A OR R.A = T.A; 

However, consider the situation in which T is empty. Since then R.A = 
T.A can never be satisfied, we might expect the query to  produce exactly 
R n S, based on our intuition about how "OR" operates. Yet whichever of 
the three equivalent definitions of Section 6.2.4 one prefers, we find that the 
result is empty, regardless of how many elements R and S have in common. 
If we use the nested-loop semantics of Figure 6.4, then we see that the loop 
for tuple variable T iterates 0 times, since there are no tuples in the relation 
for the tuple variable to range over. Thus, the if-statement inside the for- 
loops never executes, and nothing can be produced. Similarly, if we look 
for assignments of tuples t o  the tuple variables, there is no way to assign 
a tuple to  T, so no assignments exist. Finally, if we use the Cartesian- 
product approach, we start with R x S x T, which is empty because T is 
empty. 
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Example 6.16: Suppose we wanted the names and addresses of all female 
movie stars I\-ho are  also movie executives with a net ~vorth over $10,000,000. 
Usiilg the following two relations: 

MovieStar (name, address, gender, birthdate) 
MovieExec(name, address, cert#, networth) 

we can write the query as in  Fig. 6.5. Lines (1) through (3) produce a rela- 
tion \vhose schema is (name, address) and whose tuples are the names and 
addresses of all female movie stars. 

1) (SELECT name, address 
2) FROM MovieStar 
3) WHERE gender = 'F') 

INTERSECT 
5) (SELECT name, address 
6) FROM MovieExec 
7) WHERE networth > 10000000); 

Figure 6..5: Intersecting female movie stars with rich executives 

Sinlilarl!: lines ( 5 )  through (7) produce the set of "rich" executives, those 
n-it11 net ~vorth over ~10.000.000. This query also yields a relation whose schema 
has tlle attributes name and address only. Since the two schemas are the same, 
we can intersect them, and Ire d o  so with the operator of line (4). 

Under this naming strategy for attributes, t,he selection condition obtaillrltl E x a m p l e  6.17: In a silnilar vein, we could take the difference of two sets of 
from the WHERE clause is -42 = As and -A1 < As. The projection list is ..ll. .Ar,. 
Thus, 

persons, each selected from a relation. The query 

(SELECT name, address FROM MovieStar) 

Trl.r, (UA,=.~,  n o  r,<.~,(~n~.a,.r,,i,,r~)(MovieS~~) x EXCEPT 
(SELECT name, address FROM ~ovie~xec) ; 

P , \ ~ ( A ~ . A ~ . A ~ , A ~ )  (~oviestar))) 
gives the names and addresses of movie stars who are not also movie executives, 

renders the entire query in relational algebra. regardless of gender or net worth. 

I11 tlle two examples above, the attributes of the relations whose intersection 
6-2.5 Union, Intersection, and Difference of Queries or difference we took ,\-ere con\-eniently the same. However. if necessary to get 

a common E C ~  of attril~utes. I\-e can rename attributes as in Example 6.3. 
SO1netilncs we ~ i s h  to combine relations using the set operations Of relatiullal 

unioll, intersection, and difference. SQL provides corresponding opes- Exalllple 6.18 : Suppose we wanted all the titles and years of movies that 
atOrs that apply to the results of queries, provided those queries produce rela- appeared in either the Movie or StarsIn relation of our running example: 
tiOns with the Same list of attributes and attribute types. The key.sords 
are 

INTERSECT, and EXCEPT for U, n, and -, respectively. Words like Movie(t itle, year, length, incolor, studiolame, ~roducerc#) 
are used bet'veen two queries, and those queries must be parenthesized StarsIn(movieTitle, movieyear, star~ame) 



Readable SQL Queries 

Generally, one writes SQL queries so that each important keyword like 
FROM or WHERE starts a new line. This style offers the reader visual clues 
to  the structure of the query. However, when a query or subquery is short, 
we shall sometimes write it out on a single line, as we did in Example 6.17. 
That style, keeping a complete query compact, also offers good readability. 
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Product (maker, model, type)  
PC(mode1, speed,  ram, hd, r d ,  p r i c e )  
Laptop(mode1, speed,  ram, hd, sc reen ,   rice) 
Printer(mode1,  c o l o r ,  type ,  p r i c e )  

of Exercise 5.2.1, and evaluate your queries using the data  of that exercise. 

* a)  Give the manufacturer and speed of laptops with a hard disk of a t  least 
thirty gigabytes. 

* b) Find the model number and price of all products (of any type) made by 
Ideally, these sets of movies would be the same, but  in practice it  is colnrnon manufacturer B. 
for relations to diverge; for instance we might have movies with no listed stars 
or a S t a r s I n  tuple that mentions a movie not found in the Movie relation.j c) Find those manufacturers that sell Laptops, but not PC's. 

Thus, we might write ! d)  Find those hard-disk sizes that occur in two or more PC's. 

(SELECT t i t l e ,  year FROM Movie) ! e) Find those pairs of P C  models that have both the same speed and RAM. 
U N I O N  .A pair should be listed only once; e.g., list (i, j )  but not (j, i). 

(SELECT movieTitle AS t i t l e ,  movieyear AS year  FROM S t a r s I n ) ;  
!! f) Find those nlanufacturers of a t  least two different computers (PC's or 

The result would be all movies mentioned in either relation, with t i t l e  and laptops) with speeds of a t  least 1000. 
year as the attributes of the resulting relation. 

Exercise  6.2.3 : Write the following queries, based on the database schema 

6.2.6 Exercises for Section 6.2 C l a s s e s ( c l a s s ,  t y p e ,  count ry ,  numGuns, bore ,  displacement) 
Ships (name, c l a s s ,  launched) 

Exercise 6.2.1 : Using the database schema of our running movie example B a t t l e s  (name, d a t e )  
Outcomes ( s h i p ,  b a t t l e ,  r e s u l t )  Movie( t i t l e ,  year ,  l eng th ,  i n c o l o r ,  studioName, producerC#) 

StarsIn(movieTit le ,  movieyear, s ta r lame)  of Esercise 5.2.4, and evaluate your queries using the data of that exercise. 
MovieStar(name, address ,  gender ,  b i r t h d a t e )  
MovieExec(name, address ,  c e r t # ,  networth) a) Find the ships heavier than 35,000 tons. 
Studio(name, address ,  presC#) 

b) List the name. displacement, and number of guns of the ships engaged in 
\\-rite the following queries in SQL. the battle of Guadalcanal. 

* a)  Who were the male stars in Terms of Endearment? c) List all the ships mentioned in the database. (Remember that all these 
ships may not appear in the Ships relation.) 

b) IVhich stars appeared in movies produced by l i G h l  in 1995? 
! d) Find those countries that  have both battleships and battlecruisers. 

c) Who is the president of SIGhI studios? 
! e) Find those ships that \\-ere damaged in one battle: but later fought in 

*! d)  Khich movies are longer than Gone With the Win.$ another. 

! e) Which executives are worth more than hferv Griffin? ! f) Find those battles wit11 a t  least three ships of the same country. 

*! Exercise 6.2.4 : A general form of relational-algebra query is Exercise 6.2.2 : Write the following queries, based on the database schema 

'There are ways to prevent this divergence; see Section 7.1.4. X ~ ( G ~ ( R ~  X L X ... x R*)) 
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Here, L is an arbitrary list of attributes, and C is a n  arbitrary condition. The Example 6.19: Let us recall Example 6.12, where we asked for the producer 
list of relations R1, Rz, . . . , R, may include the same relation repeated several of Star Wars. We had t o  query the two relations 
times, in which case appropriate renaming nlay be assumed applied to  the Ri's. 
Show how to express any query of this form in SQL. M o v i e ( t i t l e ,  y e a r ,  l e n g t h ,  i n c o l o r ,  studioName, producerC#) 

MovieExec(name, a d d r e s s ,  c e r t # ,  networth) 

Exercise 6.2.5 : Another general form of relational-algebra query is because only the former has movie title information and only the latter has 
producer names. The information is linked by "certificate numbers." These 
numbers uniquely identify producers. The query we developed is: 

The same assumptions as in Exercise 6.2.4 apply here; the only differenck is SELECT name 
that the natural join is used instead of the product. Show how t o  express any FROM Movie, MovieExec 
query of this form in SQL. WHERE t i t l e  = ' S t a r  Wars' AND producerC# = c e r t # ;  

There is another way to look a t  this query. We need the Movie relation only 

6.3 Subqueries to get the certificate number for the producer of Star Wars. Once lve have it, 
we can query the relation MovieExec t o  find the name of the person with this 

In SQL, one query can be used in various ~vays t o  help in the evaluation of certificate. The first problem, getting the certificate number, can be written as 

another. A query that is part of another is called a subquey. Subqueries can a subquery, and the result, which we expect will be a single value, can be used 
have subqueries, and so on, down as many levels as we wish. ifre already saw-one in the "main" query to  achieve the  same effect as the query above. This query 

example of the use of subqueries; in Section 6.2.5 we built a union, intersection. is shown in Fig. 6.6. 
or difference query by connecting two subqueries to  form the whole query. There 
are a number of other ways that subqueries can be used: 1) SELECT name 

2) FROM MovieExec 
1. Subqueries can return a single constant, and this constant can be coin- 3) WHERE c e r t #  = 

pared ~vi th another value in a WHERE clause. (SELECT producerC# 

2. Subqueries can return relations that can be used in various ways in WHERE FROM Movie 

clauses. WHERE t i t l e  = ' S t a r  Wars' 

3. Subqueries can have their relations appear in FROM clauses, just like any 
stored relation can. Figure 6.6: Finding the producer of Star I4'ur.s by using a nested subquery 

6.3.1 Subqueries that Produce Scalar Values Lines (4) through (6) of Fig. 6.6 are the subquerx. Looking only at  this 
simple query by itself, we see that the result will be a unary relation ~ ~ i t h  

An ato~nic value that can appear as one component of a tuple is referred attribute producerC#. and we expect to  find only one tuple in this relation. 
as a scalar. A select-from-where expression can produce a relation with all!' 
number of attributes in its schema, and there can he  any number of tuples in 

The tuple \\-ill look like (12345): that  is, a single conlponent with some integer. 

the relation. Ho~vevcr, often we are only intercstcd in values of a single attribute. 
perhaps 12343 or   hat ever George Lucas' certificate number is. If zero tuplrs 

Furthermore. sometimes ~ v c  can deduce from information about keys, or fro111 
or more than one tuple is protluccd by the subquery of lines (4) througll (6). it 
is a run-time error. 

other information, that there xi11 be onl\- a single ~ a l u e  produced for that 
attribute. Having executed this subquery, we can then execute lines (I) througll(3) of 

If so, we can use this select-from-lvhere expression, surrounded by parenthe- 
Fig. 6.6, as if the value 12343 replaced the entire subquery. That is, the "main.' 
query is executed as if it \\-ere 

ses, as if i t  were a constant. In particular, it may appear in a WHERE clause ally 
place 1-e ~ - 0 ~ l d  expect to find a constant or a n  attribute representing a conlpo- SELECT name 
nent of a tuple. For instance, we may compare the result of such a subquery to FROM MovieExec 
a constant or attribute. WHERE c e r t #  = 12345; 
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The result of this query should be George Lucas. of a relation R: we must compare components using the assumed standard order 
for the attributes of R. 

6.3.2 Conditions Involving Relations 
1) SELECT name 

There are a number of SQL operators t.hat we can apply t o  a relation R and 2) FROM MovieExec 
produce a boolean result,. Typically, the relation R will be the result of a select- 3) WHERE c e r t #  I N  
from-where subquery. Some of these operators - I N :  ALL, and ANY - will be (SELECT producerC# 
explained first in their simple form where a scalar value s is involved. In this FROM Movie 
situation, the relation R is required to be a one-column relation. Here are the 
definitions of the operators: 

FROM S t a r s I n  
1. EXISTS R is a condition that is true if and only if R is not empty. WHERE starName = ' H a r r i s o n F o r d '  

2. s I N  R is true if and only if s is equal t o  one of the values in R. Likewise, 
s NOT I N  R is true if and only if s is equal t o  no value in R. Here, we 
assume R is a unary relation. We shall discuss extensions to  the I N  and 
NOT I N  operators where R has more than one attribute in its schema and Figure 6.7: Finding the producers of Harrison Ford's movies 
s is a tuple in Section 6.3.3. 

3. s > ALL R is true if and only if s is greater than every value in unary 
relation R. Similarly, the > operator could be replaced by any of the 

Example 6.20: In Fig. 6.7 is an SQL query on the three relations 

other five comparison operators, with the analogous meaning: s stands in M o v i e ( t i t l e ,  y e a r ,  l e n g t h ,  i n c o l o r ,  studioName, producerC#) 
the stated relationship t o  every tuple in R. For instance, s <> ALL R is S ta rs In(movieTi t le ,  movieyear, starName) 
the same as s NOT I N  R. MovieExec (name, address ,  c e r t # ,  networth)  

1. s > ANY R is true if and only if s is greater than a t  least one value in unary asking for all the producers of movies in which Harrison Ford stars. It consists 
relation R. Similarly, any of the other five comparisons could be used in of a "main" query, a query nested within that,  and a third query nested within 
place of >, with the meaning that s st,ands in the stated relationship to 
a t  least one t,uple of R. For instance: s = ANY R is the same as s I N  R. We should analyze any query with subqueries from the inside out. Thus, let 

The EXISTS, ALL, arid ANY operat,ors can be negated by putting NOT in front us s tar t  with the innermost nested subquery: lines (7) through (9). This query 
exarriines the tuples of the relation S t a r s I n  and finds all those tuples whose 

of the entire expression, just like any other boolean-valued expression. Thus. 
NOT EXISTS R is true if and only if R is empty. NOT s > ALL R is true if and 

starName component is 'Harr ison Ford'.  The titles and years of those movies 
are returned by this subquery. Recall that titlc and year, not title alone, is the 

only if s is not the maximum value in R, and NOT s > ANY R is true if and 
key for movies, so we need to produce tuples with both attributes t o  ident.ify a only if s is the minimum value in R. We shall see several examples of the use 
movie uniquely. Thus, we would expect the value produced by lines (7) through of these operators shortly. 
(9) t o  look something like Fig. 6.8. 

Sow, consider the middle subquery, lines (4) through (6). It searches the 
6.3.3 Conditions Involving Tuples Movie relation for tuples ~vhose title and year are in the relation suggested by 

A tuple in SQL is represented by a parenthesized list of scalar values. Esan~pl(:s Fig. G.8. For each tuple found. the producer's certificate number is returned. 

arc (123, ' foo ' )  and (name, address ,  networth). The first of these has so the result of the middle subquery is the set of certificates of the producers 

constants as co~nponents; the second has attributes as components. llising of of Harrison Ford's movies. 

constants and attributes is permitted. Finally. consider the "main" query of lines (1) through (3). It examines the 

If a tuple t has the same number of components as a relation R. then it tuples of the MovieExec relation t o  find those whose c e r t #  component is one 
makes sense to conlpare t and R in expressions of the type listed in Section 6.3.2. of the certificates in the set returned by the middle subquery. For each of these 
Esan~ples are t I N  R or t <> ANY R. The latter comparison rrleans that there is tuples, the name of the producer is returned, giving us the set of producers of 

solxle tuple in R other than t .  Sotc that when coniparing a tuple with lllenlbers Harrison Ford's movies: as desired. 
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title 

The Fugitive 

Figure 6.8: Title-year pairs returned by inner subquery 

Incidentally. the nested query of Fig. 6.7 can, like many nested queries, be 
written as a single select-from-where expression with relations in the FROM clause 
for each of the relations mentioned in the main query or a subquery. The IN 
relationships are replaced by equalities in the WHERE clause. For instance, the 
query of Fig. 6.9 is essentially that of Fig. 6.7. There is a difference regarding the 
way duplicate occurrences of a producer - e.g., George Lucas - are handled. 
as we shall discuss in Section 6.4.1. 

SELECT name 
FROM MovieExec, Movie, StarsIn 
WHERE cert# = producerC# AND 

title = movieTitle AND 
year = movieyear AND 
starName = 'Harrison Ford'; 

Figure 6.9: Ford's producers without nested subqueries 

6.3.4 Correlated Subqueries 

-4s with other nested queries, let us begin a t  the innermost subquery, lines 
(4) through (6). If Old. title in line (6) were replaced by a constant string 
such as 'King Kong I ,  we would understand it  quite easily as a query asking for 
the year or years in which movies titled King Kong were made. The present 
subquery differs little. The only problem is that we don't know what value 
0ld.title has. However, as we range over Movie tuples of the outer query 
of lines (1) through (3), each tuple provides a value of 0ld.title. We then 
execute the query of lines (4) through (6) with this value for 0ld.title t o  
decide the truth of the WHERE clause that extends from lines (3) through (6). 

1) SELECT title 
2) FROM Movie Old 
3) WHERE year < ANY 
4) (SELECT year 
5 FROM Movie 
6 1 WHERE title = 0ld.title 

1 ; 

Figure 6.10: Finding movie titles that  appear more than once 

The condition of line (3) is true if any movie with the same title as Old. title 
has a later year than the mo\-ie in the tuple that is the current value of tuple 
variable Old. This condition is true unless the year in the tuple Old is the last 
year in which a movie of that title was made. Consequently. lines (1) through 
(3) produce a title one fewer times than there are movies ~vi th that title. A 
movie made tryice rvill be listed once, a movie made three times will be listed 
twice, and so on." 

When writing a correlated query it is important that we be aware of the 
scoping rules for names. In general. an attribute in a subquery belongs to  one 

The simplest subqueries can be evaluated once and for all, and the result used of the tuple variables in that subquery's FROM clause if some tuple variable's 
in a higher-level query. A more complicated use of nested subqueries requires relation has that attribute in its schema. If not, Re look at the immediately 
the subquery to be evaluated many times: once for each assignment of a valuc surrounding subquery. then to the one surrounding that, and so on. Thus, year 
to some term in the subquery that comes from a tuple variable outside thc on line (4) and title on line (6) of Fig. 6.10 refer to the attributes of the tuple 

subquery. .I subqucry of this type is called a correlated subquery. Let us begin ~ariable  that ranges over all the tuples of the copy of relation Movie introduced 
our study with an exanlple. on line ( 5 )  - that is. the cop?- of the Movie relation addressed by the subquery 

of lines (4) through (6). 
Exalnple 6.21 : \\i. shall find the titles that have been used for two or nlorc Hon-ever: we can arrange for an attribute to belong to another tuple variable 
movies. \\e start with an outer query that looks a t  all tuples in the relation if ~ v e  prefis it by that tuple variable and a dot. That is why we introduced 

the alias Old for the Movie relation of the outer query, and why we refer t o  
Movie(title, year, length, incolor, studioName, producerC#) 0ld.title in line (6). r o t e  that  if the two relations in the FROM clauses of lines 

6This example is the first occasion on which we've been reminded that relations in SQL 
For each sut:h tuple, we ask in a subquery whether there is a movie xvith the are bags, not sets. There are several ~r-ays that duplicates may crop up in SQL relations. 1% 
same title and a greater Year. The entire query is shown in Fig. 6.10. shall discuss the matter in detail in Section 6.4. 
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( 2 )  and ( 5 )  were different, we would not need an alias. Rather, in the subquery 
we could refer directly t o  attributes of a relation mentioned in line (2). 

6.3.5 Subqueries in FROM Clauses 

ilnother use for subqueries is as relations in a FROM clause. In a FROM list, instead 
of a stored relation, we may use a parenthesized subquery. Since we don't have 
a name for the result of this subquery, we must give it a tuple-variable alias. 
We then refer to  tuples in the result of the subquery as  we n-ould tuples in any 
relation that appears in the FROM list. 

Example 6.22: Let us reconsider the  problem of Example 6.20, where we 
wrote a query that finds the producers of Harrison Ford's movies. Suppose we 
had a relation that gave the certificates of the producers of those movies. It 
would then be a simple matter to  look up the names of those producers in the 
relation MovieExec. Figure 6.11 is such a query. 

SELECT name 
FROM MovieExec, (SELECT producerC# 

FROM Movie, S t a r s I n  
WHERE t i t l e  = movieTitle AND 

y e a r  = movieyear AND 
starName = 'Harrison Ford' 

) Prod 
WHERE c e r t #  = Prod.producerC#; 

Figure 6.11: Finding the producers of Ford's movies using a subquery in tllc 
FROM clause 

Lines (2) through (7) are the FROM clause of the outer query. In addition 
to the relation MovieExec, it has a subquery. That subquery joins Movie and 
S ta rs In  on lines ( 3 )  through ( 5 ) ,  adds the condition that the star is Harrison 
Ford on line (6), and returns the set of producers of the movies a t  line (2). This 
set is given the alias Prod on line (7). 

all these expressions, since they produce relations, may be used as subqueries 
in the FROM clause of a select-from-where expression. 

The simplest form of join expression is a cross join; that  term is a synonym 
for what we called a Cartesian product or just "product" in Section 5.2.5. For 
instance, if we want the product of the two relations 

M o v i e ( t i t l e ,  year ,  l e n g t h ,  i n c o l o r ,  studioName, producerC#) 
StarsIn(movieTil;le , movielear ,  starName) 

we can say 

Movie CROSS JOIN S t a r s I n ;  

and the result will be a nine-column relation with all the attributes of Movie 
and S t a r s I n .  Every pair consisting of one tuple of Movie and one tuple of 
S t a r s I n  will be a tuple of the resulting relation. 

The attributes in the product relation can be called R.A, where R is one 
of the two joined relations and -4 is one of its attributes. If only one of the 
relations has a n  attribute named .A, then the R and dot can be dropped, as 
usual. In this instance, since Movie and S t a r s I n  have no common attributes, 
the nine attribute names suffice in the product. 

However, the product by itself is rarely a useful operation. X more conven- 
tional theta-join is obtained with the keyword ON. We put JOIN between two 
relation names R and S and follow them by ON arid a condition. The meaning 
of JOIN. . .ON is that the product of R x S is folloxved by a selection for ~vhatever 
condition follows ON. 

Example 6.23 : Suppose Tve want to  join the relations 

M o v i e ( t i t l e ,  y e a r ,  l eng th ,  i n c o l o r ,  studioName, producerC#) 
StarsIn(rnovieTit le ,  movielear,  starName) 

with the condition that  the onl? tuples to  be joined are those that refer to the 
same movie. That is. the titles and years from both relations must be the same. 
Me can ask this query by 

Movie JOIN S t a r s I n  ON 
t i t l e  = movieTitle AND year  = movielear ;  

.it line (8), the relations MovieExec and the subquery aliased Prod are joine(1 The result is again a nine-column relation with the obvious attribute names. 
with the requirement that the certificate numbers be the same. The names of Holvel-er: now a tuple from Movie and one from S t a r s I n  combine t o  forrn a 
the producers from MovieExec that  have certificates in the set aliased by Prod tuple of the result only if the two tuples agree on both the title and year. .Is a 
is returned a t  line (1). result, two of the columns are redundant. hecause every tuple of the result will 

have the same value in both the t i t l e  and movieTit le  components and will 

6.3.6 SQL Join Expressions have the same value in both year  and movieyear. 
If we are  concerned with the fact that the join above has two redundant 

We can construct relations by a number of variations on the join operator components, n-e can use the whole expression as  a subquery in a FROM clause 
applied to two relations. These variants include products, natural joins, theta- and use a SELECT clause to remove the undesired attributes. Thus: we could 
joins, and outerjoins. The result can stand as a query by itself. .iilternativel!. 
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SELECT title, year, length, incolor, studioName, Moviestar NATURAL FULL OUTER JOIN MovieExec; 
producerC#, starName 

FROM Movie JOIN StarsIn ON The result of this operation is a relation with the same six-attribute schema as 
title = movieTitle AND year = movieyear; Example 6.24. The tuples of this relation are of three kinds. Those representing 

individuals who are both stars and executives have tuples with all six attributes 
to  get a seven-column relation which is the Movie relation's tuples, each ex- non-NULL. These are the tuples that  are also in the result of Example 6.24. 
tended in all possible ways with a star of that  movie. The second kind of tuple is one for a n  individual who is a s tar  but not an 

executive. These tuples have values for attributes name, address, gender, and 

6.3.7 Natural Joins birthdate taken from their tuple in Moviestar, while the attributes belonging 
only t o  MovieExec, namely cert# and netblorth, have NULL values. 

As we recall from Section 5.2.6, a natural join differs from a theta-join in that: The third kind of tuple is for an executive who is not also a star. These 
tuples have values for the attributes of Movi-eExec taken from their MovieExec 

1. The join condition is that all pairs of attributes from the two relations tuple and NULL'S in the attributes gender and birthdate that  come only 
having a common name are equated, and there are no other conditions. from MovieStar. For instance, the three tuples of the result relation shown 

2. One of each pair of equated attributes is projected out. in Fig. 6.12 correspond t o  the three types of individuals, respectively. 

The SQL natural join behaves exactly this way. Keywords NATURAL JOIN ap- 
pear between the relations t o  express the cu operator. address gender birthdate cert# networth 

Example 6.24: Suppose we want to compute the natural join of the relations Mary Tyler Moore Maple St. IFJ 9/9/99 12345 $100.. . 
Tom Hanks Cherry Ln. ' M I  8/8/88 NULL NULL 

MovieStar(name, address, gender, birthdate) George Lucas Oak Rd. NULL NULL 23456 $200.. . 
MovieExec(name, address, cert#, networth) 

The result 11-ill be a relation whose schema includes attributes name and address Figure 6.12: Three tuples in the outerjoin of Moviestar and MovieExec 

plus all the attributes that appear in one or the other of the two relations. 
h tuple of the result will represent a n  individual who is both a star and an .ill the variations on the outerjoin that we mentioned in Section 5.4.7 are also 
executive and will have all the information pertinent to  either: a name, address. available in SQL. If Tve want a left- or right-outerjoin, we add the appropriate 
gender, birthdate, certificate number, and net worth. The expression word LEFT or RIGHT in place of FULL. For instance: 

Moviestar NATURAL JOIN MovieExec; Moviestar NATURAL LEFT OUTER JOIN MovieExec; 

succinctly describes the desired relation. mould yield the first t ~ o  tuples of Fig. 6.12 bnt not the third. Similarly, 

MovieStar NATURAL RIGHT OUTER JOIN MovieExec; 
6.3.8 Outerjoins 

The outerjoin operator I\-= introduced in Section 5.4.7 as a way to augment 
n-ould yield the first and third tuples of Fig. 6.12 but not the second. 

the result of a join by the dangling tuples. padded wit,h null values. In SQL. Sext,  suppose n-e want a theta-outerjoin instead of a natural outerjoin. 

n-e can specify a n  outerjoin; NULL is used as the null value. 
Instead of using the keyword NATURAL, rre may follow the join by ON and a 
condition that matching tuples 111ust obey. If we also specify FULL OUTER JOIN. 

Example 6.25 : Suppose we ~vish to take the out~rjoin of the two rtlatiolls then after matching tuples from the two joined relations. we pad dangling tuples 
of either relation with NULL'S and include the padded tuples in the result. 

MovieStar (name, address, gender, birthdate) 

MovieExec(name, address, cert#, networth) Example 6.26 : Let us reconsider Example 6.23, where we joined the relations 
Movie and StarsIn using the conditions that the title and movieTitle at- 

SQL refers to  the standard outerjoin, which pads dangling tuples from both of tributes of the two relations agree and that the year and movieyear attributes 

its arguments, as a full outerjoin. The syntax is u~isurprising: of the t ~ - o  relations agree. If we modify that example to  call for a full outerjoin: 
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Movie FULL OUTER JOIN S t a r s I n  ON 
t i t l e  = movieTi t le  AND year  = movieyear; 

then we shall get not only tuples for movies that have a t  least one star mentioned 
in S ta rs In ,  but we shall get tuples for movies with no listed stars, padded with 
NULL's in attributes movieTit le ,  movieyear, and starName. Likewise, for stars 
not appearing in any movie listed in relation Movie we get a tuple with NULL's 
in the six attributes of Movie. 

The keyword FULL can be replaced by either LEFT or RIGHT in outerjoins of 
the type suggested by Example 6.26. For instance, 

Movie LEFT OUTER JOIN S t a r s I n  ON 
t i t l e  = movieTi t le  AND year  = movieyear; 

gives us the Movie tuples with a t  least one listed star and NULL-padded Movie 
tuples without a listed star, but  will not include stars without a listed movie. 
Conversely, 

Movie RIGHT OUTER JOIN S t a r s I n  ON 
t i t l e  = movieTi t le  AND year  = movieyear; 

will omit the tuples for movies without a listed star but will include tuples for 
stars not in any listed movies, padded with NULL's. 

6.3.9 Exercises for Section 6.3 

Exercise 6.3.1 : Write the following queries, based on the database schema 

Product(maker, model, type)  
PC(mode1, speed,  ram, hd, r d ,  p r ice )  
Laptop(mode1, speed,  ram, hd, screen,  p r i c e )  
Printer(mode1, c o l o r ,  t y p e ,  p r i c e )  

of Esercise 5.2.1. You should use a t  least one subquery in each of your ans~i-ers 
and write each query in two significantly different ways (e.g., using different 
sets of the operators EXISTS. I N .  ALL, and ANY). 

* a) Find the makers of PC's  with a speed of at  least 1200. 

b) Find the printers with the highcst price. 

!! f) Find the maker(s) of the PC(s) with the fastest processor among all those 
PC's that have the smallest amount of RAM. 

Exerc i se  6.3.2 : Write the following queries, based on the database schema 

C l a s s e s ( c l a s s ,  type ,  country,  n d u n s ,  bore ,  displacement)  
Sh ips  (name, c l a s s ,  launched) 
Bat t les(name,  da te )  
Outcomes(ship, b a t t l e ,  r e s u l t )  

of Exercise 5.2.4. You should use a t  least one subquery in each of your answers 
and write each query in two significantly different ways (e.g., using different 
sets of the operators EXISTS, IN, ALL; and ANY). 

a )  Find the countries whose ships had the largest number of guns. 

*! b) Find the classes of ships a t  least one of which was sunk in a battle. 

c) Find the names of the ships with a 16-inch bore. 

d) Find the battles in which ships of the Kongo class participated. 

!! e) Find the names of the ships whose number of guns was the largest for 
those ships of the same bore. 

! Exercise 6.3.3: Write the query of Fig. 6.10 without any subqueries. 

! Exerc i se  6.3.4: Consider espression iir (R1 w Rz w .. . IX R,) of relational 
algebra, where L is a list of attributes all of which belong t o  R1. Show that this 
espression can be written in SQL using subqueries only. Nore precisely, write 
a n  equivalent SQL expression where no FROM clause has more than one relation 
in its list. 

! Exercise 6.3.5: \ b i t e  the following queries without using the intersection or 
difference op~rators:  

* a)  The intersection query of Fig. 6.3. 

b) The difference query of Example 6.17 'P 
!! Exerc i se  6.3.6: We have noticed that certain operators of SQL are redun- 

dant. in the sense that they always can be replaced by other operators. For 'f example. rve sa~v  that s IN R ran be replaced by r = ANY R. Show that EXISTS 
! c) Find the laptops ~vhose speed is slower than that of any PC.  and NOT EXISTS are redundant by esplaining how to replace any expression of 

the form EXISTS R or NOT EXISTS R by an espression tha t  does not in\-olve 
! d) Find the model numher of the item (PC, laptop, or printer) ~vitll the EXISTS (except perhaps in the expression R itself). Hint: Remember that it is 

highest price. permissible to  have a constant in the SELECT clause. 

! e) Find the inaker of the  color printer with the lowest price. Exercise  6.3.7: For these relations from our running movie database schema 
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StarsIn(movieTitle, movieyear, starname) 
biovieStar(name, address, gender, birthdate) 
~ovieExec(name, address, cert#, networth) 
Studio(name, address, presC#) 

describe the tuples that would appear in the following SQL expressions: 

a) Studio CROSS JOIN MovieExec; 

b) StarsIn NATURAL FULL OUTER JOIN MovieStar; 

c) StarsIn FULL OUTER JOIN MovieStar ON name = starName; 

*! Exercise 6.3.8 : Using the database schema 

Product (maker, model, type) 
PC(mode1, speed, ram, hd, rd, price) 
Laptop(mode1, speed, ram, hd, screen, price) 
Printer(mode1, color, type, price) 

write an SQL query that will produce information about all products - PC'\. 
laptops, and printers - including their manufacturer if available, and whatever 
information about that product is relevant (i.e.. found in the relation for that 
type of product). 

Exercise 6.3.9 : Using the two relations 

Classes(class, type, country, numGuns, bore, displacement) 
Ships(name, class, launched) 

6.4 Full-Relation Operations 

In this section we shall study some operations that act on relations as a whole, 
rather than on tuples individually or in small numbers (as do joins of several 
relations, for instance). First, we deal with the fact that SQL uses relations that 
are bags rather than sets, and a tuple can appear more than once in a relation. 
We shall see how to force the result of an operation to be a set in Sectiori 6.4.1, 
and in Section 6.4.2 we shall see that it is also possible to prevent the elimination 
of duplicates in circumstances where SQL systems \~ould normally eliminate 
them. 

Then, we discuss how SQL supports the grouping and aggregation operator 
y that we introduced in Section 5 4.4. SQL has aggregation operators and 
a GROUP-BY clause. There is also a "HAVING" clause that allows selection of 
certain groups in a way that depends on the group as a whole, rather than on 
individual tuples. 

6.4.1 Eliminating Duplicates 

AS mentioned in Section 6.3.4, SQL's notion of relations differs from the abstract 
notion of relations presented in Chapter 3. A relation, being a set, cannot have 
more than one copy of any given tuple. When an SQL query creates a new 
relation, the SQL system does not ordinarily eliminate duplicates. Thus. the 
SQL response to a query may list the same tuple several times. 

Recall from Section 6.2.1 that one of several equivalent definitions of the 
meaning of an SQL select-from-where query is that wve begin lvith the Carte- 
sian product of the relations referred to in the FROM clause. Each tuple of the 
product is tested by the condition in the WHERE clause. and the ones that pass 

from our database schema of Exercise 5.2.4, mite an SQL query that will pro- the test are given tb t,he output for projection according to the SELECT clause. 
duce all available information about ships, including that information available This projection may cause the same tuple to result from different tuples of t,he 
in the Classes relation. You need not produce information about classes if  product, and if so, each copy of the resulting tuple is printed in its turn. Fur- 
there are no ships of t,hat class mentioned in Ships. ther, since there is nothing wrong with an SQL relation having duplicates, the 

relations from ~vhich the Cartesian product is formed may have duplicates. and 
! Exercise 6.3.10: Repeat Exercise 6.3.9, but aleo include in the result, for an!- each identical copy is paired with the tuples from the other relations, yielding 

class C that is not nientioned in Ships, inforniation about the ship that has a proliferation of duplicates in the product. 
the same nanle C as its class. If we do not rvish duplicates in the result, then \ye may follow the key- 

--ord SELECT by the keyword DISTINCT. That word tells SQL to produce only 
! Exercise 6.3.11 : The join operators (other than outerjoin) lye learned in thi- one copy of any tuple and is the SQL analog of applying the 6 operator of 

section arc redundant. in the sense that they call always be replaced by sclcct- Section 3.4.1 to the result of the query. 
from-x~hcre csprc,ssions. Explain how to write expressions of the follo~ing form 
using s e l c r t - f r o ~ n - ~ h ~ ~ ~ :  Example 6.27 : Let us reconsider the query of Fig. 6.9: where we asked for the 

* a) R CROSS JOIN S; producers of Harrison Ford's movies using no subqueries. .Is written, George 
Lucas will appear many times in the output. If \ye want only to see each 

b) R NATURAL JOIN S; producer once: n-e may change line (1) of the query to 

c) R JOIN S ON C ;  : where C is an SQL condition. 1) SELECT DISTINCT name 
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listed in StarsIn (so the movie appeared in three different tuples of StarsIn), 
The Cost of Duplicate Elimination then that movie's title and year would appear four times in the result of the 

One might be tempted to place DISTINCT after every SELECT, on the theory 
that it is harmless. In fact, it is very expensive to eliminate duplicates from As for union, the operators INTERSECT ALL and EXCEPT ALL are intersection 
a relation. The relation must be sorted or partitioned so that identical and difference of bags. Thus, if R and S are relations, then the result of 
tuples appear next to each other. These algorithms are discussed starting 
in Section 15.2.2. Only by grouping the tuples in this way can we determine 
whether or not a given tuple should be eliminated. The time it takes to R INTERSECT ALL S 
sort the relation so that duplicates may be eliminated is often greater than 
the time it takes to execute t.he query itself. Thus, duplicate elimination is the relation in which the number of times a tuple t appears is the minimum 
should be used judiciously if we want our queries to run fast. of the number of times it appears in R and the number of times it appears in 

The result of expression 

Then, t.hc list of producers will have duplicate occurrences of names elirilinated 
before printing. R EXCEPT ALL S 

Incidentally, the query of Fig. 6.7, where we used subqueries, does not nec- 
essarily suffer from the problem of duplicate answers. True, the subquery at has tuple t as many times as the difference of the number of times it appears in 

line (4) of Fig. 6.7 will produce the certificate number of George Lucas several R minus the number of times it appears in S1 provided the difference is positive. 

times. However, in the "main" query of line (I),  we examine each tuple of Each of these definitions is what we discussed for bags in Section 5.3.2. 

MovieExec once. Presumably, there is only one tuple for George Lucas in that 
relation, and if so, it is only this tuple that satisfies the WHERE clause of line (3). 6.4.3 Grouping and Aggregation in SQL 
Thus, George Lucas is printed only once. 

In Section 5.4.4, we introduced the grouping-and-aggregation operator y for 
our extended relational algebra. Recall that this operator allo\\-s us to partition 

6.4.2 Duplicates in Unions, Intersections, and Differences the tuples of a relation into "groups," based on the values of tuples in one or 
more attributes, as discussed in Section .3.4.3. lye are then able to aggregate 

Unlike the SELECT statement, which preserves duplicates as a default and only certain other columns of the relation by applying "aggregation" operators to 
eliminates them when instructed to by the DISTINCT keyword. the union. inter- those columns. If there are groups, t,hen the aggregation is done separately for 
section, and difference operations, which tve introduced in Sectio~l 6.2.3: nor- each goup.  SQL provides all the capability of the 7: operator tlirough the use 
mally eliminate duplicates. That is, bags are converted to sets, and the set of aggregation operators in SELECT clauses and a special GROUP BY clause. 
\-c,rsion of the operation is applied. In order to prevent t,he eliminat,ion of dupli- 
cates, 13-e must follow the operator UNION, INTERSECT, or EXCEPT by the keyn-ord 
ALL. If we do, then we get the bag semantics of these operators as was discussed 6.4.4 Aggregation Operators 
in Section 5.3.2. SQL uses the five aggregation operators SUM, AVG. MIN. MAX. and COUNT that rve 

niet in Section 5.4 2. These operators are used by applying them to a scalar- Exanlpie 6.28 : Consider again the union expression fro111 Esanlple 6.13. but 
ilo\\- add the kq~vord ALL, as: valued espression. typically a colu~iin nanie. in a SELECT clause. One exception , 

is the expression COUNT(*). 11-hich counts all the tuples in the relation that is 

(SELECT title, year FROM Movie) constructed from the FROM clause and WHERE clause of the query. 
UNION ALL In addition, 11-e have the option of eliminating duplicates from the column 

(SELECT movieTitle AS title, movieyear AS year FROM StarsIn); before applying the aggregation operator by using the keyrx-ord DISTINCT. That 
is, an expression such as COUNT(DIST1NCT x) counts the number of distinct 

~o~~~ a title and year will appear as many times in the result as it appears in values in column x. \Ve could use any of the other operators in place of COUNT 
each of the relations Movie and StarsIn put toget,her. For instance, if a movie here, but expressions such as SUM(D1STINCT x) rarely make sense: since it asks 
appeared once irl the Movie relation and there ~i-ere three stars for that movie us to sum the different values in colunin s. 
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Example  6.29 : The following query finds the average net worth of all movie 
executives: 

SELECT AVG(netWorth1 
FROM MovieExec; 

Note that there is no WHERE clause a t  all, so the keyword WHERE is properly 
omitted. This query examines the networth column of the relation 

MovieExec(name, address ,  c e r t # ,  networth) 

sums the values found there, one value for each tuple (even if the tuple is a 
duplicate of some other tuple), and divides the sum by the number of tuples. 
If there are no duplicate tuples, then this query gives the average net worth 
as we expect. If there were duplicate tuples, then a movie executive whose 
tuple appeared n times would have his or her net worth counted n times in the 
average. 

Example  6.30 : The following query: 

SELECT COUNT (*) 
FROM S t a r s I n ;  

counts the number of tuples in the S t a r s I n  relation. The similar query: 

SELECT COUNT (starName) 
FROM S t a r s I n ;  

counts the number of values in the starName column of the relation. Since, 
duplicate values are not eliminated when we project onto the starName coltimn 
in SQL, this count should be the same as the count produced by the query with 
COUNT (*) . 

If we want to be certain that  we d o  not count duplicate values more than 
once, we can use the keyword DISTINCT before the aggregated attribute. as: 

SELECT COUNT(DIST1NCT starName) 
FROM S t a r s I n ;  

Sox~\., each star is counted once, no matter in how many movies they appearcc!. 

6.4.5 Grouping 

6.4. FliLL-RELtlTION OPERATIONS 

E x a m p l e  6.31 : The problem of finding, from the relation 

M o v i e ( t i t l e ,  y e a r ,  l e n g t h ,  i n c o l o r ,  s tudiolame,  producerC#) 

the sum of the lengths of all movies for each studio is expressed by 

SELECT studioName, SUM(1ength) 
FROM Movie 
GROUP BY studioName; 

We may imagine tha t  the tuples of relation Movie arc reorganized and grouped 
so that  all the tuples for Disney studios are together, all those for MGM are 
together, and so on, as  was suggested in Fig. 5.17. The sums of the length 
components of all the tuples in each group are calculated, and for each group, 
the studio name is printed along with that sum. 

Observe in  Example 6.31 how the SELECT clause has t ~ v o  kinds of terms. 

1. Aggregations, where a n  aggregate operator is applied to a n  attribute or 
expression involving attributes. As mentioned, these terms are evaluated 
on a per-group basis. 

2. Attributes, such as studioName in this example, that appear in the GROUP 
BY clause. In a SELECT clause that has aggregations, only those attributes 
that  are mentioned in the GROUP BY clause may appear unaggregated in 
the SELECT clause. 

While queries il~volvi~ig GROUP BY generally have both grouping attributes 
and aggregations in the SELECT clause, it is technically not necessary to have 
both. For example, we could m i t e  

SELECT studioName 
FROM Movie 
GROUP BY studioName; 

This query rvould group the tuples of Movie according t o  their studio name and 
then print the studio name for each group, no matter how many tuples there 
are with a gii-en studio name. Thus, the above query has the same effect as 

SELECT DISTINCT studioName 
FROM Movie; 

To group tuples, vie use a GROUP BY clause; follo~ving the WHERE clause. The It  is also possible to  use a GROUP BY clause in a query about several relations. 
ke~~l-ords GROUP BY are followed by a list of grouping attributes. In tlle simplest Such a query is interpreted by the following sequence of steps: situation, there is only one relation reference in the FROM clause, and t,his relation 

has its tuples grouped according to their values in the grouping attributes. 1. Evaluate the relation R expressed by the FROM and WHERE clauses- That  
li-hateyer aggregation operators are used in the SELECT clause are applied only is, relation R is the Cartesian product of the relations mentioned in the 
within groups. 

FROM clause. t o  which the selection of the WHERE clause is applied. 
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2. Group the tuples of R according to the attributes in the GROUP BY clause. 

3. Produce as a result the attributes and aggregations of the SELECT clause. 
as if the query were about a stored relation R. 

Example 6.32 : Suppose we wish to print a table listing each producer's total 
lcngth of film produced. l i e  need to get information from the two relations 

Movie(title, year, length, incolor, studioName, producerC#) 
MovieExec(name, address, certtt, networth) 

so we begin by taking their theta-join, equating the certificate numbers from 
the two relations. That step gives us a relation in which each MovieExec tuple 
is paired with the Movie tuples for all the movies of that producer. Note that 
an executive who is not a producer will not be paired with any movies: and 
therefore will not appear in the relation. Now, we can group the selected tuplcs 
of this relation according to the name of the producer. Finally, we sum the 
lengths of the movies in each group. The query is shown in Fig. 6.13. 

SELECT name, SUM (length) 
FROM MovieExec, Movie 
WERE producerC# = cert# 
GROUP BY name; 

Figure 6.13: Computing the length of movies for each produce1 

6.4.6 HAVING Clauses 

Suppose that we did not wish to include all of the producers in our table of 
Example 6.32. We could restrict the tuples prior to grouping in a way that 
\\-ould make undesired groups empty. For instance, if we only wanted the total 
length of movies for producers with a net worth of more than $10.000,000. we 
could change the third line of Fig. 6.13 to 

WHERE producerC# = cert# AND networth > 1OOOOOOO 
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- -- - -- - 

Grouping, Aggregation, and Nulls 

When tuples have nulls, there are a few rules we must remember: 

The value NULL is ignored in any aggregation. It does not contribute 
to a sum, average, or count, nor can it be the minimum or masi- 
mum in its column. For example, COUNT(*) is always a count of the 
number of tuples in a relation, but COUNT(A1 is the number of t~iples 
with non-NULL values for attribute A. 

On the other hand, NULL is treated as an ordinary value in a grouped 
attribute. For example, SELECT a, AVG(b) FROM R GROUP BY a 
will produce a tuple with NULL for the value of a and the aI7erage 
value of b for the tuplcs with a = NULL, if there is at  least one tuple 
in R with a component NULL. 

HAVING MIN(year) < 1930 

The resulting quer3; shown in Fig. 6.14, ~vould remove froin the grouped relation 
all those groups in which every tuple had a year component 1930 or lliglier. 

SELECT name, SUM(1ength) 
FROM MovieExec, Movie 
WHERE producerC# = cert# 
GROUP BY name 
HAVING MIN(year) < 1930; 

Figure 6.14: Computing the total length of film for early producers 

There are several rules we must remember about HAVING clauses: 

Ho~ve\-cr: sometinies we want to choose our groups based on some aggrt.gatt3 * i n  aggregation in a HAVING clause applies only to the tuples of the group 

Property of the group itself. Then we follo117 the GROUP BY clause xvith a HAVING being tested. 
clause. The latter clausc consists of the keyword HAVING followed by a conditioll 
about the group. Any attribute of relations in the FROM clause may be aggregated in the 

HAVING clause, but only those attribut,es that are in the GROUP BY list 
Example 6-33: Suppose we want to print the total film length for only thosc may appear unaggregated in the HAVING clause (the same rule as for the 
producers who made at  least one film prior to 1930. I r e  may append to Fig. 6.13 SELECT clause). 
the clause 
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- 
*! f) Find for each manufacturer, the average screen size of its laptops. 

Order of Clauses in SQL Queries 
! g) Find the manufacturers that make at least three different models of PC. 

M7e have now met all six clauses that can appear in an SQL "select-from- 
where" query: SELECT, FROM, WHERE, GROUP BY, HAVING, and ORDER BY. ! h) Find for each manufacturer who sells PC's the maximum price of a PC. 
Only the first two are required, but you can't use a HAVING clause without 
a GROUP BY clause. Whichever additional clauses appear must be in the *! i) Find, for each speed of PC above 800, the average price. 

order listed above. !! j) Find the average hard disk size of a PC for all those manufacturers that 
make printers. 

6.4.7 Exercises for Section 6.4 Exercise 6.4.7 : Write the following queries, based on the database schema 

Exercise 6.4.1: Write each of the queries in Exercise 5.2.1 in SQL, making Classes ( c l a s s ,  type,  country, numGuns , bore,  displacement) 
sure that duplicates are eliminated. Ships(name, c l a s s ,  launched) 

Bat t les  (name, date) 
Exercise 6.4.2: Write each of the queries in Exercise 5.2.4 in SQL, making Outcomes (ship,  b a t t l e ,  r e s u l t )  
sure that duplicates are eliminated. 

! Exercise 6.4.3: For each of your answers to Exercise 6.3.1, determine whether 
or not the result of your query can have duplicates. If so, rewrite the query 
to eliminate duplicates. If not, write a query without subqueries that has the 
same, duplicate-free answer. 

! Exercise 6.4.4: Repeat Exercise 6.4.3 for your answers to Exercise 6.3.2. 

*! Exercise 6.4.5 : In Example 6.27, we mentioned that different versions of the 
query "find the producers of Harrison Ford's movies" can hare different answers 
as bags, even though they yield the same set of answers. Consider the version 
of the query in Example 6.22, where we used a subquery in the FROM clause. 
Does this version produce duplicates, and if so, why? 

Exercise 6.4.6: Write the following queries, based on the database schema 

Product (maker, model, type) 
PC(mode1, speed, ram, hd, r d ,  price) 
Laptop(mode1, speed, ram, hd, screen, price) 
Printer(mode1, color,  type, price) 

of Exercise 5.2.4, and evaluate your queries using the data of that exercise. 

a) Find the number of battleship classes. 

b) Find the average number of guns of battleship classes. 

! c) Find the average number of guns of battleships. Xote the difference be- 
t~veen (b) and (c); do 11-e weight a class by the number of ships of that 
class or not'? 

! d) Find for each class the year in which the first ship of that class was 
launched. 

! e) Find for each class the number of ships of that class sunk in battle. 

!! f)  Find for each class with at least three ships the number of ships of that 
class sunk in battle. 

!! g) The n-eight (in pounds) of the shell fired from a naval gun is approximately 
one half the cube of the bore (in inches). Find the average weight of the 
shell for each country's ships. 

of Exercise 3.2.1. and evaluate your queries using the data of that exercise. 

Exercise 6.4.8 : In Example 5.23 Xve gave an example of the query: "find? for * a) Find the average speed of PC's. 
each star ~ h o  has appeared in at least threc movies, the earliest year in which 

1)) Find the at-erage speed of laptops costing over $2000. they appeared." \\e wrote this query as a y operation. Write it in SQL. 

c) Find the average price of PC's made by manufacturer "A." *! Exercise 6.4.9 : The y operator of estended relational algebra does not have 
a feature that corresponds to the HAVING clause of SQL. Is it ~ossible to mimic ! d) Find the average price of PC's and laptops made by manufacturer '.D..' 
an SQL query n-ith a HAVING clause in relational algebra? If so, how n'ould we 

e) Find, for each different speed the average price of a PC. do it in general? 



286 CHAPTER 6. THE DATABASE LANGUAGE SQL -5. DATABASE AIODIFIC.4TIOiS 287 

6.5 Database Modifications ~ f ,  as in Example 6.34, we p r o ~ i d e  values for all attributes of the relation, 
n we may omit. the list of attributes that follows the relation name. That is, 

To t.his point, we have focused on the normal SQL query form: the select-from- 
where st,atement. There are a number of other statement forms that do not 
return a result, but rather change the state of the database. In this section, we INSERT INTO S t a r s I n  
shall focus on three types of st.atements that  allow us to  VALUES('The Maltese Fa lcon ' ,  1942, 'Sydney G r e e n s t r e e t ' ) ;  

1. Insert tuples into a relation. Howvever, if we take t,his option, we must be  sure tha t  the order of the values 
is the same as the standard order of attributes for the relation. We shall see in 2. Delete certain tuples from a relation. 
Section 6.6 how relation schemas are declared, and we shall see that  as we d o  so 

3. Update values of certain components of certain existing tuples. we provide an order for the attributes. This order is assumed when matching 
values t o  attributes, if the list of attributes is missing from a n  INSERT statement. We refer to  these three types of operations collectively as modifications. 

If you are not sure of the  standard order for the attributes, it is best to  
6.5.1 Insertion list them in the INSERT clause in the order you choose for their values in 

the VALUES clause. 
The basic form of insertion statement consists of: 

1. The keywords INSERT INTO, The simple INSERT described above only puts one tuple into a relation. 
Instead of using explicit values for one tuple, we can compute a set of tuples to  

2. The name of a relation R, . be inserted, using a subquery. This subquery replaces t,he keyrvord VALUES and 
the tuple expression in the INSERT statement form described above. 3. A parenthesized list of attributes of the relation R, 

4. The keyword VALUES, and E x a m p l e  6.35 : Suppose we want to  add t o  the relation 

5. A tuple expression, that is, a parenthesized list of concrete values, one for Studio(name, address, presC#) 
each attribute in the list (3). 

all movie studios that  are mentioned in the relation 
That is, the basic insertion form is 

M o v i e ( t i t l e ,  y e a r ,  l e n g t h ,  i n c o l o r ,  studioName, producerC#) 
INSERT INTO R(.41,. . . , A,) VALUES (vl;. . . ,v,) ; 

but do not appear in Studio.  Since there is no way t o  determine a n  address or A tuple is created using the value vi for attribute Ai, for i = 1,2, .  . . , n. I f  
a president for such a studio, we shall have to  be content with value NULL for the list of attributes does not include all attributes of the relation R,  then the 
attributes address  and presC# in the inserted S t u d i o  tuples. -4 Ivay t o  make tuple created has default values for all missing attributes. The most common 
this insertion is shown in Fig. 6.15. default wlue is NULL, the null value, but there are other options to be discussed 

in Sect,ion 6.6.4. 
. 1 )  INSERT INTO Studio(name) 

Example  6.34: Suppose we wish to  add Sydney Greenstreet to  t,he list of SELECT DISTINCT studioName 
stars of The hfaltese Falcon. IVe say: FROM Movie 

1) INSERT INTO StarsIn(movieTit le ,  movieyear, starName) WHERE studioName NOT I N  
2 )  VALUES('The Maltese Falcon ' ,  1942, 'Sydney Greens t ree t ' )  ; (SELECT name 

FROM Studio)  ; 
The effect of executing this statement is that a tuple with the three components 
on line (2) is inserted into the relation S ta rs In .  Since all attributes of S t a r s I n  
are mentioned on line (I), there is no need to add default components. The Figure 6.1.5: Xdding new studios 
values on line (2) are matched with the attributes on line (1) in the order given, 

so 'The Maltese Falcon' becomes the value of the component for attribute Like most SQL statements with nesting, Fig. 6.1.5 is easiest t o  examine from 
movieTitle,  and so on. 0 the inside out. Lines (5) and (6) generate all the studio names in the relation 
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That  is, the form of a deletion is 
The Timing of Insertions 

DELETE FROM R WHERE <condition> ; 

Figure 6.15 illustrates a subtle point about the semantics of SQL state- 
The effect of executing this statement is that  every tuple satisfying the condition ments. In principle, the evaluation of the query of lines (2) through (6)  

should be accomplished prior to  executing the insertion of line (1). Thus? (4) will be deleted from relation R. 

there is no possibility that  new tuples added to Studio a t  line (1) will Example 6.36 : We can delete from relation 
affect the condition on line (4). However, for efficiency purposes, it is pos- 
sible that an implementation will execute this statement so that  changes S ta rs In(movieTi t le ,  movieyear, starName) 
t o  Studio are made as soon as new studios are found, during the execution 
of lines (2) through (6). the fact that  Sydney Greenstreet was a star in The Maltese Falcon by the SQL 

In this particular example, it does not matter whether or not inser- 
tions are delayed until the query is completely evaluated. However, there 
are other queries where the result can be changed by varying the timing DELETE FROM S t a r s I n  

of insertions. For example, suppose DISTINCT were removed from line (2) WHERE movieTit le  = 'The Maltese Falcon' AND 

of Fig. 6.15. If we evaluate the query of lines (2) through (6) before doing movieyear = 1942 AND 

any insertion, then a new studio name appearing in several Movie tuples starName = 'Sydney G r e e n s t r e e t ' ;  

would appear several times in the result of this query and therefore would Notice that unlike the insertion statement of Example 6.34, we cannot sirnply 
be inserted several times into relation Studio. However, if we inserted specify a tuple t o  be  deleted. Rather, we must describe the tuple exactly by a 
new studios into Studio as soon as we found them during the evaluation 
of the query of lines (2) through (6), then the same new studio would not WHERE clause. 

be inserted twice. Rather, as soon as the new studio was inserted once, its Example 6.37: Here is another example of a deletion. This time, we delete 
name would no longer satisfy the condition of lines (4) through (6), and from relation 
it would not appear a second time in the result of the query of lines (2) 
through (6). MovieExec(name , address ,  c e r t #  , networth) 

several tuples at  once by using a condition that can be satisfied by more than 
one tuple. The statement 

Studio. Thus, line (4) tests that a studio name from the Movie relation is none 
of these studios. DELETE FROM MovieExec 

Now, we see that lines (2) through (6) produce the set of studio names WHERE networth < 10000000; 
found in Movie but not in Studio.  The use of DISTINCT on line (2) assures 
that each studio will appear only once in this set, no matter how many movies it deletes all movie eseciltives whose net worth is low - less than ten million 
0'-ns. Finally, line (1) inserts each of these studios, with NULL for the attributes dollars. 

address  and presC#, into relation Studio. 0 

6.5.3 Updates 

6.5.2 Deletion U-hile we migllt think of both insertions and deletions of tuples as  "updates" 
to  the d a t a b a ~ r .  an ~lprlate in SQL is a very specific kind of change to the 

-4 deletion statement consists of: database: olle or lllore t,lplcs that alreatly esist in thc database have some of 

1. The keywords DELETE FROM, their colnponcIits changed. The general form of an update statement is: 

1. The keyword UPDATE, 2. The name of a relation, say R, 

3. The keyword WHERE, and 2. .A relation name, say I?, 

1. A condition. 3. The key\\-ord SET, 



290 CHAPTER 6. THE DATABASE LANGUAGE SQ . DriTABASE MODIFIC-4TIOXS 291 

4. A list of formulas that each set an attribute of the relation R equal to til Exercise 5.2.1. Describe the effect of the modifications on the data  of that  
value of a n  expression or constant, 

5. The keyword WHERE, and a) Using two INSERT statements store in the database the fact that  P C  model 
1100 is made by manufacturer C, has speed 1800, RAM 256, hard disk 

6. A condition. 80, a 20x DVD, and sells for $2499. 

That is, the form of an update is ) Insert the facts that  for every P C  there is a laptop with the same manu- 

UPDATE R SET <new-vdue assignments, WHERE <condition> ; facturer, speed, RAM, and hard disk, a 15-inch screen, a model number 
1100 greater, and a price 5500 more. 

Each new-value assignment (item 4 above) is an attribute, an equal sign, and a c) Delete all PC's with less than 20 gigabytes of hard disk. 
formula. If there is more than one assignment, they are separated by commas. 

The effect of this statement is to find all the tuples in R that satisfy the d) Delete all laptops made by a manufacturer that doesn't make printers. 
condition (6). Each of these tuples are then changed by having the formulas of 

e) Manufacturer A buys manufacturer B. Change all products made by B so 
(4) evaluated and assigned to the components of the tuple for the corresponding 

they are now made by .-\. 
attributes of R. 

f) For each PC, double the amount of RAM and add 20 gigabytes t o  the 
Example 6.38 : Let us modify the relation amount of hard disk. (Remember that several attributes can be changed 

MovieExec(name, address, cert#, networth) by one UPDATE statement.) 

! g) For each laptop made by manufacturer B, add one inch t o  the screen size by attaching the title Pres. in front of the name of every movie executive ~vlio 
is the president of a studio. The condition the desired tuples satisfy is tliat 

and subtract 5100 from the price. 

their certificate numbers appear in the presC# component of some tuple in the Exercise 6.5.2: Write the follo~ving database modifications, based on the 
Studio relation. We express this update as: database schema 

1) UPDATE MovieExec Classes(class, type, country, numGuns, bore, displacement) 

2) SET name = 'Pres. ' l l  name Ships (name, class, launched) 
3) WHERE cert# IN (SELECT presC# FROM Studio); Battles(name, date) 

Outcomes(ship, battle, result) 
Line (3) tests whether the certificate number from the MovieExec tuplt' is 

one of those that appear as a president's certificate number in Studio. of Exercise 5.2.4. Describe the effect of the modifications on the data  of that 

Line (2) performs the update on the selected tuples. Recall that  the operator 
I I denotes concatenation of strings, so the expression following the = sign in * a) The two British battleships of the Selson class -- Nelson and Rodney - 
line (2) places the characters Pres. and a blank in front of the old value of tile viere bot,h launched iil 1927; had nine 16-inch guns, and a displacement 
name component of this tuple. The new string becomes the value of the name of 34,000 tons. Insert these facts into the database. 
component of this tuple; the effect is that  'Pres. ' has been prepended to the 
old value of name. b) Two of the three battleships of the Italian Vittorio Veneto class - Vit- 

torio Veneto and Italia - were launched in 1940; the third ship of that 

6.5.4 Exercises for Section 6.5 class, Roma, was launched in 1942. Each had nine 15-inch guns and a 
displacement of 41,000 tons. Insert these facts into the database. 

Exercise 6.5.1 : 11-rite the follo~ving database nlodifications. based on the 
database schema * c) Delete from Ships all ships sunk in battle. 

* d) Modify the Classes relation so that gun bores are measured in centime- 
Product(maker, model, type) ters (one inch = 2. j centimeters) and displacements are measured in met- 
PC(model, speed, ram, hd, rd, price) ric tons (one metric ton = 1.1 tons). 
Lapto~(mode1, speed, ram, hd, screen, price) 
Printer (model, color, type, price) e) Delete all classes with fewer than three ships. 



- - 

292 CHAPTER 6. THE DATABASE LANGUAGE SQL DEFI;I'IXTG 4 RELATION SCHEAM IN SQL 293 

6.6 Defining a Relation Schema in SQL of bits permitted may be less, depending on the inlplementation (as with 
the types i n t  and s h o r t  i n t  in C). 

In this section we shall begin a discussion of data definition, the portions of SQL 
that involve describing the structure of information in the database. In contrast, 5. Floating-point numbers can be represented in a variety of ways. We may 
the aspects of SQL discussed previously - queries and modifications - are use the type FLOAT or REAL (these are synonyms) for typical floating- 
often called data m a n i p ~ l a t i o n . ~  point numbers. A higher precision can be obtained with the type DOUBLE 

The subject of this section is declaration of the schemas of stored relations. PRECISION; again the distinction between these types is as in C. SQL also 
We shall see how to describe a new relation or table as it  is called in SQL. has types that are real numbers with a fixed decimal point. For exam- 
Section 6.7 covers the declaration of "views," which are virtual relatiorls thar ple, DECIMAL(n,d) allolvs values that consist of n decimal digits, with the 
are not really stored in the database, while some of the more complex issues decimal point assumed to be d positions from the right. Thus, 0123.45 
regarding constraints on relations are deferred to Chapter 7. is a possible value of type DECIMAL(6,2). NUMERIC is almost a syllollym 

for DECIMAL, although there are possible implementation-dependent dif- 

6.6.1 Data Types 
6. Dates and times can be represented by the data  types DATE and TIME, 

To begin, let us introduce the principal atomic'data types that are supported respectively. Recall our discussion of date and time values in Section 
by SQL systems. All attributes must have a data  type. 

6.1.4. These values are essentially character strings of a special form. itre 
may, in fact, coerce dates and times to  string types, and we may do the 

1. Character strings of fixed or varying length. The type CHAR(n) dcnoies 
reverse if the string "makes sense" as a dabe or time. a fixed-length string of n characters. That is, if an attribute has type 

CHAR(n1, then in any tuple the component for this attribute will be a 
string of n characters. VARCHAR(n1 denotes a string of up  t o  n characters. 6.6.2 Simple Table Declarations 
Components for a n  attribute of this type will he strings of between 0 

The simplest form of declaration of a relation schema consists of the keyrl-ords and n characters. SQL permits reasonable coercions between values of 
CREATE TABLE follo\$:ed by the name of the relation and a parenthesized list of character-string types. Sormally, a string is padded by trailing bl;lnks 

if it becomes the value of a component t,hat is a fixed-length st,ring of the attribute names and their types. 

greater length. For example, the string f oo ' ,  if it became the value of 
Example 6.39: The relation schema for our example Moviestar relation, 

a component for an attribute of type CHAR(5), would assume the valiie 
which ,\-as described informally in Section 5.1, is expressed in SQL as in Fig. 'foo ' (with two blanks following the second 0). The padding blanks 
6.16. The first two attributes, name and address ,  have each been declared t o  be can then be ignored if the value of this conlponent were compared (see 
character strings. However, with the name, we have made the decision t o  use a Section 6.1.3) with another string. 
fixed-length string of 30 characters: padding a name out with blanks a t  the end 

2. Bit strings of fixed or varying length. These strings are analogous to fised if necessary and truncating a name to 30 characters if it is longcr. In contrast, 
and varying-length character st,rings, but their values are strings of bits ti-e have declared addresses t o  be variable-length character strings of up to 255 
rather than characters. The type BIT(n) denotes bit strings of length n .  c h a r a ~ t e r s . ~  It is not clear that these two choices are the best possible, but we 
while BIT   VARYING(^) denotes bit.strings of length up to n. use them to illustrate two kinds of string dat,a types. 

The gender attribute has values that are a single letter, M or F. Thus: we 
3. The type BOOLEAN denotes an attribute ~i-hose value is logical. The po.4- can safe1)- use a single character as the type of this attribute. Fi~lally. the 

ble values of such an attribute are TRUE. FALSE, and - although it ~~-oulrl b i r t h d a t e  attribute naturally deserves the data type DATE. If this type w r e  
surprise George Boole - UNKNOWN. not available ill a system that did not conforrn to  the SQL standard, we could 

use CHAR(10) instead, since all DATE values arc actual1:- strings of 10 characters: 
The type INT or INTEGER (these nanies are synonj-ms) denotes typical eight digits and two hyphens. 
integer values. The type SHORTINT also denotes integers, but the number 

SThe number 255 is not the result of some weird notion of what typical addresses look like. 
the material of this section is in the realm of database design, and thus should r\ single byte can store integers between 0 and 255, so it is ~ o s s i b l e  to represent a v a ~ i n g -  

have been 'Overed earlier in the book, like the analogous ODL for object-oriented databases. length character string of rip to 255 bytes by a single byte for the count of characters pills the 
H"'vever7 there are good reasons to group all SQL study together, so we took the liberty of bytes to  store the string itself. Commercial systems generally support longer varying-length 
\-iolating our own organization. strings, howe\-er. 
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1) CREATE TABLE MovieStar ( 
2) name CHAR(BO), 
3) address VARCHAR(255) , 
4) gender CHAR( 1) , 
5) b i r thda te  DATE 

1; 

Figure 6.16: Declaring the relation schema for the MovieStar relation 

6.6.3 Modifying Relation Schemas 

We can delete a relation R by the SQL statement: 

DROP TABLE R; 

Relation R is no longer part of the database schema, and we can no longer 
access any of its tuples. 

Xlore frequently than we would drop a relation that is part of a long-lived 
database, we may need to modify the schema of an existing relation. These 
modifications are done by a statement that begins with the key~vords ALTER 
TABLE and the name of the relation. \Ve then have several options, the most 
important of which are 

1. ADD followed by a column name and its data type. 

2. DROP follolved by a column name. 

Example 6.40 : Thus, for instance, we could modify the MovieStar relation 
by adding an attribute phone with 
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6.6.4 Default Values 

When we create or modify tuples, we sometimes do not have values for all 
components. For example, we mentioned in Example 6.40 that when s-e add 
a column to a relation schema, the esisting tuples do not have a known value, 
and it was suggested that NULL could be used in place of a "real" wlue. Or, 
n-e suggested in Example 6.35 that we could insert new tuples into the Studio 
relation knowing only the studio name and not the address or president's cer- 
tificate number. Again, it would be necessary to use some value that says "I 
don't know" in place of real values for the latter two attributes. 

To address these problems, SQL provides the NULL wlue, which becomes 
the value of any component whose value is not specified, with the exception 
of certain situations where the NULL value is not permitted (see Section 7.1). 
However, there are times when we ~vould prefer to use another choice of default 
value, the value that appears in a column if no other value is known. 

In general, any place lye declare an attribute and its data type, we may add 
the keyword DEFAULT and an appropriate value. That value is either NULL or 
a constant. Certain other values that are provided by the system, such as the 
current time, may also be options. 

Example 6.41: Let us consider Esample 6.39. We might wish to use the 
character ? as the default for an unknown gender, and n-e might also wish to - - 
use t,he earliest possible date. DATE '0000-00-00' for an unknown bi r thdate .  
We could replace lines (4) and (5) of Fig. 6.16 by: 

4) gender CHAR(1) DEFAULT I? ' ,  
5) birthdate DATE DEFAULT DATE JOOOO-OO-OO' 

-4s another esample. n-e could have declared the default value for new at- 
tribute phone to be 'unl is tedJ  when 11-e added this attribute in Example 6.10. 
The alteration statement m-ould then look like: 

ALTER TABLE MovieStar ADD phone CHAR(16) DEFAULT Jun l i s t ed ' ;  

ALTER TABLE Moviestar ADD phone CHAR(16); 0 

.is a result, the Moviestar schema now has five attributes: the four mentioned 
' in Fig. 6.16 and the attribute phone, which is a fised-length string of 16 bytes. 6.6.5 Indexes 

In the actual relation, tuples ~vould all have con~potients for phone, but xx-e knoty An index on an attribute .-I of a relation is a data structure that makes it 
of no phone numbers to put there. Thus, the value of each of these components efficient to find those tuples that have a fixed value for attribute -4. Iildexes 
~vouid be IIULL. In Section 6.6.1: we shall see how it is possible to choose another usually help with queries in ~vhich their attribute .-l is compared with a constant: 
"default" value to be used instead of NULL for unknown values. for instance -4 = 3, or even -4 5 3. The technology of implementing indexes 

-4s another example, we could delete the b i r thdate  attribute by on large relations is of central importance in the implementation of DBMS's. 
Chapter 13 is devoted to this topic. 

ALTER TABLE Moviestar DROP bir thdate ;  When relations are very large, it becomes expensive to scan all the tuples of 
a relation to find those (perhaps very few) tuples that match a given condition. 
For example, consider the first query we examined: 
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SELECT * 
FROM Movie 
WHERE studioName = 'Disney' AND year = 1990; 

from Example 6.1. There might be 10,000 Movie tuples, of which only 200 were 
made in 1990. 

The naive way t o  implement this query is to  get all 10,000 tuples and test 
the condition of the WHERE clause on each. It  would be much more efficient if we 
had some way of getting only the 200 tuples from the year 1990 and testing each 
of them to see if the studio was Disney. It  would be even more efficient if n-e 
could obtain directly only the 10 or so tuples that satisfied both the conditions 
of the WHERE clause - that  the studio be Disney and the year be 1990; see the 
discussion of "multiattribute indexes," below. 

Although the creation of indexes is not part of any SQL standard up to 
and including SQL-99, most commercial systems have a way for the database 
designer to  say that the system should create an index on a certain attribute 
for a certain relation. The following syntax is typical. Suppose we want to  have 
an index on attribute year  for the relation Movie. Then we say: 

CREATE INDEX YearIndex ON ~ o v i e ( y e a r ) ;  

The result will be that  a n  index whose name is YearIndex ~vill be created on 
attribute year of the relation Movie. Henceforth, SQL queries that  specify a 
year may be executed by the SQL query processor in such a way that only those 
tuples of Movie with the specified year are ever esamined: there is a resulting 
decrease in the time needed t o  answer the query. 

Often, a DBMS allows us to  build a single index on multiple attribute> 
This type of index takes values for several attributes and efficiently finds the 
tuples with the given values for these attributes. 

Example 6.42 : Since t i t l e  and year  form a key for Movie, we might expect 
it to be common that values for both these attributes will be specified, or neithcr 
will. The following is a typical declaration of an index on these two attributes: 

CREATE INDEX KeyIndex ON Moviec t i t l e ,  y e a r ) ;  

Since ( t i t l e :  year) is a key, then when 1-e are given a title and year. n(' 
know the index will find only one tuple. and that will be the desired tuple. 111 
contrast. if the query specifies both the title and year, but only YearIndex ic 
available. then the best the system can do is retrieve all the movies of that year 
and cheek through them for the giren title. 

If: as is often the case, the key for the multiattribute index is really the 
concatenation of the attributes in some order, then we can even use this index 
to find all the tuples with a given value in the first of the the attributes. Thus. 
Part of the design of a multiattribute index is the choice of the order in ~vhich 
the attributes are listed. For instance, if we were more likely t o  specify a title 
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than a year for a movie, then we would prefer to order the  attributes as above; 
if a year were more likely t o  be specified, then we would ask for a n  index on 
(year ,  t i t l e ) .  

If we wish to delete the index, we sirnply use its name in a statement like: 

DROP INDEX YearIndex; 

6.6.6 Introduction to Selection of Indexes 

Selection of indexes requires a trade-off by the database designer, and in prac- 
tice, this choice is one of the principal factors that  influence whether a database 
design is acceptable. Two important factors t o  consider are: 

The existence of an index on a n  attribute greatly speeds up queries in 
which a value for that attribute is specified. and in some cases can speed 
up joins involving that attribute as  well. 

On the other hand, every index built for a n  attribute of some relation 
makes insertions, deletions, and updates t o  that  relation more complex 
and time-consuming. 

Index selection is one of the hardest parts of database design, since it requires 
estimating what the typical mix of queries and other operations on the database 
will be. If a relation is queried much more frequently than it  is modified, then 
indexes on the attributes that are most frequently specified in queries make 
sense. Indexes are useful for attributes that  tend to be compared with constants 
in WHERE clauses of queries, but indeses also are useful for attributes that appear 
frequently in join conditions. 

E x a m p l e  6.43 : Recall Figure 6.3. ~vhere we suggested a n  exhaustive pairing 
of tuples to  compute a join. . in index on M o v i e . t i t l e  would help us find 
the Movie tuple for Star Tf~'ars q~~ickly,  and then. after finding its producer- 
certificate-number. an index on MovieExec. c e r t #  ~ o u l d  help us quickly find 
that  person in the MovieExec relation. 

If modifications are the predominant action. then we should be very con- 
servative about creating indeses. Even then. it may be a n  efficiency gain t o  
create a n  indes on a frequently used attribute. In fact. since some modification 
commands involve querying the datahasc (e.g.. a n  INSERT tvith a select-from- 
where subquery or a DELETE with a condition) one must be very careful ho~v  
one estimates the relative frequency of modifications and queries. 

We d o  not yet have the details - how data  is typically stored and how 
indexes are implemented - that are needed t o  see the complete picture. HOW- 
ever, we can see part of the problem in the follo\ving example. We should be 
aware that  the typical relation is stored over many disk blocks. and the prin- 
cipal cost of a query or modification is often the number of disk blocks that  
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need to be brought to main memory (see Section 11.4.1). Thus, indexes that 3. Since the tuples for a given star or a given movie are likely to be spread 
let us find a tupIe without examining the entire relation can save a lot of time. over the 10 disk blocks of StarsIn, even if we have an index on starName 
However, the indexes themselves have to be stored, at  least partially, on disk, or on the combination of movieTitle and movieyear, it will take 3 disk 
so accessing and modifying the indexes themselves cost disk accesses. In fact, accesses to find the (average of) 3 tuples for a star or movie. If me have no 
modification, since it requires one disk access to read a block and another disk index on the star or movie, respectively, then 10 disk accesses are required. 

access to write the changed block, is about twice as expensive as accessing the 1. One disk access is needed to read a block of the index every t,ime we use 
index or the data in a query. that index to locate tuples with a given value for the indexed attribute(s). 

If the index block must be modified (in the case of an insertion), then 
Example 6.44 : Let us consider the relation another disk access is needed to write back the modified block. 

StarsIn(movieTit;le, movieyear, starlame) 5. Likewise, in the case of an insertion, one disk access is needed to read a 
block on which the new tuple will be placed, and another disk access is 

Suppose that there are three database operations that we sometimes perform needed to write back this block. \Ye assume that, even without an index, 
on this relation: 

scanning the entire relation. 
Q1: Uic look for the title and year of movies in which a given star appeared. 

That is, we execute a query of the form: 

SELECT movieTitle, movieyear 
FROM StarsIn  
WHERE starName = S ;  

for some constant s. 

Q2: \?'e look for the stars that appeared in a given movie. That is, we esecut? Figure 6.li: Costs associated with the three actions, as a function of which 
a query of the form: indexes are selected 

SELECT starName 
Figure 6.17 gives the costs of each of the three operations: Q1 (query given a 

FROM StarsIn 
star), 9 2  (query given a movie), and I (insertion). If there is no index, then we 

WHERE movieTitle = t AND movieyear = y ;  
nlust scan the entire relation for Q1 or Qz (cost 10): while an insertion requires 
merely that we access a block with free space and relyrite it with the new t,uple 
(cost of 2, since n-e assume that block can be found n-itllout an indes). These 

for constants t and y. observations esplain the column labeled -So Index." 

I: \Ye insert a new tuple into StarsIn.  That is, we execute an insertio~l of If there is an index on stars only, then Qg still requires a scan of the entire 

the form: relation (cost 10). Howeyer, Q1 can be answered by accessing one index block 
to find the tliree tuples for a given st:ar and then making three more accesses to 
find those tuples. Ilisertion I requires that n-e read and mite  both a disk block 

INSERT INTO StarsIn  VALUES(t, ?/, s); for the indes and a disk block for the data. for a total of 1 disk accesses. 
The case \\-here there is an indes on movies o1i1y is 5:-mmetric to the case 

for constants t :  y,  and s. for stars only. Finally. if there are irideses on both stars and movies. then it 
takes 4 disk accesses to ansxver either Q1 or Q2. I*on-ever. insertion I requires 

Let us make the following assumpt,ions about the data: that we read and write t~vo index blocks as n-ell as a data block, for a total of 

1. StarsIn is stored in 10 disk blocks, so if we need to exanline the entire 6 disk accesses. That observation explains the last column in Fig. 6.17. 

relation the cost is 10. The final roTv in Fig. 6.17 gives the average cost of an action, on the as- 
sumption that the fraction of the time \ye do Q1 is pl and the fraction of the 

2. On the average, a star has appeared in 3 niovies and a movie has 3 stars. time we do Qy is p p :  therefore, the fraction of the time 11.e do I is 1 - pl - p2. 
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Depending on pl and pz,  any of the four choices of indexlno index can yield 
the best average cost for the three actions. For example, if pl = pz = 0.1. then 
the expression 2 + 8p1 f 8p2 is the smallest, so we would prefer not to  create any 
indexes. That is, if we are doing mostly insertion, and very few queries, then 
we don't want an index. On the other hand, if pl = p.2 = 0.4, then the formula 
6 - 2pl - 2pz turns out t o  be  the smallest, so we would prefer indexes on both 
starName and on the (movieTit le ,  movieyear) combination. Intuitively, if 
we are doing a lot of queries, and the number of queries specifying mo\-ies and 
stars are roughly equally frequent, then both indexes are desired. 

If we have pl = 0.5 and pz = 0.1, then it  turns out that an index 011 

stars only gives the best average value, because 4 + 6p2 is the formula with the 
smallest value. Likewise, pl = 0.1 and pz = 0.5 tells us t o  create an index on 
only movies. The intuition is that  if only one type of query is frequent, create 
only the index that helps that type of query. C] 

6.6.7 Exercises for Section 6.6 

* Exercise 6.6.1: In this section, we gave a formal declaration for only the 
relation Moviestar among the five relations of our running example. Give 
suitable declarations for the other four relations: 

Movie( t i t le ,  y e a r ,  l e n g t h ,  i n c o l o r ,  studioName, producercit) 
StarsIn(movieTit le ,  movieyear, starName) 
MovieExec(name, address ,  c e r t # ,  networth) 
Studio(name, address ,  presC#) 

Exercise 6.6.2: Below we repeat once again the informal database scllc.nl;i 
from Exercise 5.2.1. 

Product (maker, model, type)  
PC(mode1, speed, ram, hd,  r d ,  p r i c e )  
Laptop(mode1, speed, ram, hd, s c r e e n ,  p r i c e )  
Printer(mode1, c o l o r ,  t y p e ,  p r i c e )  

\\rite the following declarations: 

a) A suitable schema for relation Product.  

11) -4 suitable schema for relation PC. 

* c) -4 suitable schenla for relation Laptop. 

* f )  An alteration to  your Laptop schema from (c) t o  add the attribute cd. 
Let the default value for this attribute be 'none' if the laptop does not 
have a CD reader. 

Exercise  6.6.3 : Here is the informal schema from Exercise 5.2.4. 

C l a s s e s ( c l a s s  , type ,  country,  numGuns , bore,  displacement)  
Sh ips  (name, c l a s s ,  launched) 
Bat t les(name,  d a t e )  
Outcomes(ship, b a t t l e ,  r e s u l t )  

Write the following declarations: 

a )  A suitable schema for relation Classes .  

b) A suitable schema for relation Ships 

c) .A suitable schema for relation B a t t l e s .  

d) A suitable schema for relation Outcomes. 

e) An alteration t o  your Classes  relation from (a) to delete the  attribute 
bore. 

f) An alteration t o  your Ships relation from (b) to include the attribute 
yard giving the shipyard rvhere the ship was built. 

Exerc i se  6.6.4 : Explain the difference between the statement DROP R and the 
statement DELETE FROM R. 

Exerc i se  6.6.5 : Suppose that the relation S t a r s I n  discussed in Exanlple 6.44 
required 100 bloclcs rather than 10, but all other assu~llptions of that  exanlple 
continued to hold. Give formulas in terms of pl and p.2 to  measure the cost of 
queries Q1 and Q1 and illsertioll I. under the four combinations of index/no in- 
des  discussed there. 

6.7 View Definitions 

Relations that are defined with a CREATE TABLE statement actually esist in the 
database. That is. an SQL systeln stores tables in some physical organization. 
Thev are r)ersistent. in the sense that thev can be expected to esist indefinitely 
and not t o  change unless they ale explicitly told t o  change by an INSERT or one 
of the other modification statements 11-e discussed in Section 6.5. 

d)  -4 suitable schema for relation P r i n t e r .  There is another class of SQL relationsl called views: that d o  not esist 
physically. Rather, they are defined by an expression much like a query. Vie~t-s~ 

e, An  to your P r i n t e r  schema from (d) to  delete the attribute in turn, can be queried as if they existed physically, and in some cases, lve can 
color. el-en ~nodify v iew.  
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6.7.1 Declaring Views 

The simplest form of view definition is Relations, Tables, and Views 

1. The keywords CREATE VIEW, SQL programmers tend t o  use the term "table" instead of "relation." The 
reason is that  it is important to make a distinction between stored rela- 

2. The name of the view, tions, which are  "tables," and virtual relations, which are "views." Now 
that  we know the distinction between a table and a view, we shall use "re- 3. The keyword AS, and 
lationv only where either a table or view could be used. When we want t o  

4. A query Q. This query is the definition of the view. Any tirne we query emphasize that  a relation is stored, rather than a view, we shall sometimes 
the view, SQL behaves as if Q were executed a t  that  time and the cluer!. use the  term "base relation" or '.base table." 
were applied to  the relation produced by Q. There is also a third kind of relation, one that is neither a view nor 

stored permanently. These relations are temporary results, as might be 
That is, a simple view declaration has the form constructed for some subquery. Temporaries will also be referred t o  as 

"relations" subsequently. CREATE VIEW <view-name> AS <view-definition> ; 

Example  6.45: Suppose we want to have a view that is a part of the 

Movie( t i t l e ,  y e a r ,  l e n g t h ,  i n c o l o r ,  studioName, producerC#) The definition of the view ParamountMovieis used t o  turn the query above into 
a new query that addresses only the base table Movie. We shall illustrate how 

relation, specifically, the titles and years of the movies made by Paramoullt to  convert queries on views to queries on base tables in Section 6.7.5. Hon-erer, 
Studios. We can define this view by in this simple case it is riot hard to deduce what the example query about the 

view means. We observe that ParamountMovie differs from Movie in only t ~ v o  
1) CREATE VIEW ParamountMovie AS 
2) SELECT t i t l e ,  year  
3) FROMMovie 1. Only attributes t i t l e  and year are produced by ParamountMovie. 
4) WHERE studioName = 'Paramount' ; 

2. The condition studioName = 'Paramount' is part of any WHERE clause 
First, the name of the view is ParamountMovie, as we see from line (1). Tlir about ParamountMovie. 

attributes of the view are those listed in line (2), namely t i t l e  and year. T!ic 
definition of the view is the query of lines (2) through (4). Since our query xvants only the t i t l e  produced, (1) does not, present a problem. 

For (2): we need only t o  introduce the condit,ion studioName = 'Paramount' 
into the WHERE clause of our query. Then, we can use Movie in place of 

6.7.2 Querying Views ParamountMovie in the FROM clause. assured that the meaning of our query 

Relation ParamountMovie does not contain tuples in the usual sense. Rathcr. if is preserved. Thus, the query: 
lve query ParamountMovie, the appropriate tuples are obtained from the hiis(? 

table Hovie, so the query can be answered. As a result, we can ask the s;l;li{' 
SELECT t i t l e  

query about ParamountMovie twice and get different answcrs. The reas011 i , ~  FROM Movie 
that. even though we have not changed the definition of view ParamountMovie. WHERE studioName = 'Paramount' AND year  = 1979; 
the base table Movie may have changed in the interim. 

is a query about the base table Movie that has the same effect as  our origi~lal 
Example 6-46 : 11-e may query the view ParamountMovie just as if it \,-ere a quer>- about the vielv ParamountMovie. Sote  that it is the job of the SQL 
stored table, for instance: system t o  do this translation. We show the reasoning process only t o  indicate 

what a query about a view means. SELECT t i t l e  
FROM ParamountMovie E x a m p l e  6.47: It is also possible to write queries inrrolving both views and 
WHERE year = 1979; 

base tables. An example is 



304 CHAPTER 6. THE DATABASE LAhTGUAGE SQL 6.7, V I E W  DEFINITIONS' 

SELECT DISTINCT starName CREATE VIEW MovieProd(movieTitle, ~rod~ame) AS 
FROM ParamountMovie, StarsIn SELECT title, name 
WHERE title = movieTitle AND year = movieyear; FROM Movie, MovieExec 

WHERE producerC# = cert#; 
This query asks for the name of all stars of movies made by Paramount. Sote  
that the use of DISTINCT assures that stars will be listed only once, even if they The view is the same, but its columns are headed by attributes movieTitle 
appeared in several Paramount movies. mid prodName instead of title and name. 

Example 6.48: Let us consider a more complicated query used to define a 
view. Our goal is a relation MovieProd with movie titles and the names of their 

6.7.4 Modifying Views 

producers. The query defining the view involves both relation In limited circumstances it is possible t o  execute an insertion, deletion, or up- 
date to  a view. At first, this idea makes no sense a t  all, since the view does not 

Movie(title, year, length, incolor, studioName, producerC#) exist the way a base table (stored relation) does. What could it mean, say, t o  
insert a new tuple into a view? Where would the tuple go, and how would the 

from which we get a producer's certificate number, and the relation database system remember that it !&-as supposed to be in the view? 
For many views, the anslrer is simply "you can't do that." However: for MovieExec(name, address, cert#, networth) 

sufficiently simple views, called updatable views, it is possible to translate the 
where we connect the certificate t o  the name. We may mite:  modification of the view into an equivalent modification on a base table: and 

the modification can be done to the base table instead. SQL provides a for- 
CREATE VIEW Movieprod AS ma1 definition of when modifications to  a view are permitted. The SQL rules 

SELECT title, name are complex, but r o u g h l ~  they permit modifications on views that are defined 
FROM Movie, MovieExec by selecting (using SELECT, not SELECT DISTINCT) some attributes from one 
WHERE producerC# = cert#; relation R (which may itself be an updatable view). TITO important technical 

\Ve can query this view as  if it were a stored relation. For instance, to  find 
the producer of Gone With the Wind, ask: The WHERE clause must not i~irolve R in a subquery. 

SELECT name The list in the SELECT clause must include enough attributes that for every 
FROM Movieprod tuple inserted into the \rie\v: \ve can fill the other attributes out with NULL 
WHERE title = 'Gone With the Wind'; values or the proper default and have a tuple of the base relation that will 

yield the inserted tuple of the view. 
AS with any view, this query is treated as if it were an equivalent query ovcr 

the base tables alone, such as: Example 6.49 : Suppose we try to  insert into view ParamountMovie of Exam- 
ple G.43 a tuple like: 

SELECT name 
FROM Movie, MovieExec INSERT INTO ParamountMovie 
WHERE producerC# = cert#.AND title = 'Gone With the Wind'; VALUES('Star Trek', 1979) ; 

\.ie~v ParamountMovie ahnost meets the SQL uptlatability conditions, since the 
view asks only for sorne components of some tuples of one base table: 

6-73 Renaming Attributes 
Movie(title, year, length, incolor, studioName, ~roducerc#) 

Solnetinles, we might prefer t o  give a viexv's attributes names of our own choos- 
ing, rather than use the names that come out of the query defining the view. The only problem is that since attribute studioName of Movie is not an at- 

may specify the attributes of the view by listing them, surrounded by paren- tribute of the view, the tuple we insert into Movie ~vould have NULL rather 
theses, after the name of the view in the CREATE VIEW statement. For instance. than 'Paramount as its value for studioName. That tuple docs not meet the 
we could rewrite the view defi1lition of Elample 6.48 as: condition that its studio be Paramount. 
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~ h u s ,  t o  make the view ParamountMovie updatable, we shall add attribute 
studioName to its SELECT clause, even though it is obvious to  us that the studio 
name will be Paramount. The revised definition of view ParamountMovie is: 

CREATE VIEW ParamountMovie AS 
SELECT studiolame, t i t l e ,  year  
FROM Movie 
WHERE studioName = 'Paramount'; 

Then, we write the insertion into updatable view ParamountMovie as: 

INSERT INTO ParamountMovie 
VALUES('Paramount', ' S t a r  Trek ' ,  1979); 

To effect the insertion, we invent a Movie tuple that  yields the inserted view 
tuple when the view definition is applied t o  Movie. For the particular insertion 
above, the studioName component is 'Paramount', the t i t l e  component is 
' S t a r  Trek ' ,  and the year component is 1979. 

The  other three attributes that do not appear in the view - length. 
inco lor ,  and producerC# - surely exist in the inserted Movie tuple. Ho\vevcr. 
we cannot deduce their values. As a result, the new Movie tuple must have in 
the components for each of these three attributes the appropriate default value: 

. either NULL or some other default that was declared for an attribute. For ex- 
ample. if thc default value 0 was declared for attribute l eng th ,  but the other 
t11-o use NULL for thc default, then the resulting inserted Movie tuple would he: 

title I year I length I inColor I studioName I producerC# 
' S t a r  Trek' 1 1979 1 0 I NULL I 'Paramount' I NULL 

\Ye nlay also delete from an updatable view. The deletion, like the insertion. 
is passed through to the underlying relation R and causes the deletion of ever! 
tuplc of R that gives rise to a deleted tuple of the ricw. 

Why Some Views Are ~ o t  Updatable 

Consider the view MovieProd of Example 6.48, which relates movie titles 
and producers' names. This view is not updatable according to the SQL 
definition, because there are two relations in the FROM clause: Movie and 
MovieExec. Suppose ~ v e  tried to insert a tuple like 

( 'Grea tes t  Show on E a r t h ' ,  'Cec i l  B. DeMille') 

We would have to insert tuples into both Movie and MovieExec. \ire 
could use the default value for attributes like l e n g t h  or address ,  but 
what could bc done for the two equated attributes producerC# and c e r t #  
that both represent the unknown certificate number of Dehlille? We could 
use NULL for both of these. However, when joining relations with NULL'S, 
SQL does not recognize two NULL values as equal (see Section 6.1.5). 
Thus. 'Grea tes t  Show on Ear th '  would not be connected with 'Cec i l  
B. DeMille' in the MovieProd view, and our insertion would not have 
been done correctly. 

is the resulting delete statement. 

Similarly. an update on an updatable view is passed through to the under- 
lying relation. The view update thus has the effect of updating all tuples of the 
underlying relation that give rise in the view t o  updated view tuples. 

Example 6.51 : The view update 

UPDATE ParamountMovie 
SET year = 1979 
WHERE t i t l e  = ' S t a r  Trek t h e  MovieJ; 

is turned into the base-table update 

Example 6.50: Suppose we wish to  delete from the updatable Paramount- 
Movie view all movies with "Trek" in their titles. L\'e may issue the deletion UPDATE Movie 

statement SET year = 1979 
WHERE t i t l e  = ' S t a r  Trek t h e  Movie' AND 

DELETE FROM ParamountMovie studioName = 'Paramount'; 
WHERE t i t l e  LIKE '%Trek%'; 

This deletion is translated into an equivalent deletion on the Movie base table: 
the 0111~ difference is that the condition defining the view ParamountMovie is -4 final liind of modification of a vie\\- is to  delete it altogether. This mod- 
added to the conditions of the WHERE clause. ification ma!- be done whether or not the view is updatable. -4 typical DROP 

statement is 
DELETE FROM Movie 
WHERE t i t l e  LIKE '%Trek%' AND studioName = 'Paramount'; DROP VIEW ParamountMovie; 
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Note that this statement deletes t,he definition of the view, so we may no longer 
make queries or issue modification commands involving this view. However 
dropping the view does not affect any tuples of the underlying relation Movie. 
In contrast, 

DROP TABLE Movie 

would not only make the Movie table go away. It would also make the view 
ParamountMovie unusable, since a query that used it would indirectly refer to 
the nonexistent relation Movie. 

6.7.5 Interpreting Queries Involving Views 

We can get a good idea of what view queries mean by following the way a query 
involving a view would be processed. The matter is taken up in more generality 
in Section 16.2, when nre examine query processing in general. 

The basic idea is illustrated in Fig. 6.18. A query Q is there represented 
by its expression tree in relational algebra. This expression tree uses as leaves 
some relations that are views. We have suggested two such leaves, the view 
V and W. To interpret Q in terms of base tables, we find the definition of 
the views V and W. These definitions are also expressed as expression trees of 
relational algebra. 

Figure 6.18: Substituting view definit,ions for view references 

To form the query over base tables, we substitute, for each leaf in the tree 
for Q that is a view, the root of a copy of the tree that defines that view. 
Thus. in Fig. 6.18 we have shown the leaves labeled V and 1.V replaced by the 
definitions of these views. The resulting tree is a query over base tables that i q  

equiralerit to the original query about views. 

Example 6.52 : Let us consider the view definition and qurry of Example 6.46. 
Recall thc definition of view ParamountMovie is: 

title, yeor 

I 
' ~nrdioName = ' Paramount ' 

Movie 

Figure 6.19: Expression tree for view ParamountMovie 

SELECT t i t l e  
FROM ParamountMovie 
WHERE year = 1979; 

asking for the Paramount movies made in 1979. This query has the expression 
tree shown in Fig. 6.20. Sote that the one leaf of this tree represents the view 
ParamountMovie. 

Figure 6.20: Expression tree for the query 

\re therefore interpret the query by substituting the tree of Fig. 6.19 for the 
leaf ParamountMovie in Fig. 6.20. The resulting tree is shown in Fig. 6.21. 

The tree of Fig. 6.21 is an acceptable interpretation of the query. However, 
it is expressed in an unnecessarily complex way. .An SQL system would apply 
transformations to this tree in order to make it look like the expression tree for 
the query ~ v e  suggested in Example 6.46: 

SELECT t i t l e  
FROM Movie 
WHERE studioName = 'Paramount' AND year = 1979; 

CREATE VIEW ParamountMovie AS 
SELECT t i t l e ,  year For example, ne can move the projection xtitles year above the selection 

FROM Movie Uyear=lo;e The reason is that delaying a projection until after a selection can 

WHERE studioName = 'Paramount'; never change the result of an expression. Then, we have two projections in a 
row, first onto t i t l e  and year and then onto t i t l e  alone. Clearly the first of 

- in  expression tree for the query that defines this view is shown in Fig. 6.19. these is redundant, and we can eliminate it. Thus: the two projections can be 
The query of Example 6.46 is replaced by a single projection onto t i t l e .  



Figure 6.21: 

The two selections can also be combined. In general, two consecutive se- 
lections can be replaced by one selection for the AND of their conditions. The 
resulting expression tree is shown in Fig. 6.22. It is the tree that we would 
obtain from the query 

6.7. VIEW DEFINITIONS 

Moviestar (name, address, gender, b i r thdate)  
MovieExec(name, address, ce r t# ,  networth) 
Studio(name, address, presC#) 

Construct the following views: 

* a) A view RichExec giving the name, address, certificate number and net 
worth of all executives with a net worth of a t  least $10,000,000. 

b) A view StudioPres giving the name, address, and certificate number of 
all executives who are studio presidents. 

c) A view Executivestar giving the name, address, gender, birth date, cer- 
tificate number, and net worth of all individuals who are both executives 
and stars. 

Exercise 6.7.2 : Which of the views of Exercise 6.7.1 are updatable? 

Exercise 6.7.3: Write each of the queries below, using one or more of the 
views from Exercise 6.7.1 and no base tables. 

a) Find the names of females who are both stars and executives. 

* b) Find the names of those executives who are both studio presidents and 
 worth at least $10,000,000. 

SELECT t i t l e  ! c) Find the names of studio presidents who are also stars and are worth at  
FROM Movie least $50,000,000. 
WHERE studioName = 'Paramount' AND year = 1979; 

*! Exercise 6.7.4 : For the view and query of Example 6.48: 
directly. 0 I a) Show the expression tree for the view Movieprod. 

(T year = 1979 AND smdioName = ' Paramount ' 

I 
Movie 

Figure 6.22: Simplifying the query over base tables 

I b) Show the expression tree for the query of that example. 

I c) Build from your answers to (a) and (b) an expression for the query in 
terms of base tables. 

I d) Explain how to change your expression from (c) so it is an equivalent 
expression that matches the suggested solution in Example 6.48. 

! Exercise 6.7.5 : For each of the queries of Exercise 6.7.3, express the query and 
views as relational-algebraexpressions, substitute for the uses of the view in the 
query expression, and simplify the resulting expressions as best you can. Write 
SQL queries corresponding to your resulting expressions on the base tables. 

Exercise 6.7.6 : Using the base tables 
6.7.6 Exercises for Section 6.7 

Classes(class,  type,  country, numGuns, bore, displacement) 
Exercise 6.7.1 : From the following base tables of our running example Ships (name, c l a s s ,  launched) 
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from Exercise 5.2.4: + Outerjoins: SQL provides an OUTER JOIN operator that joins relations 
but also includes in the result dangling tuples from one or both relations; 

a) Define a view BritishShips that gives for each ship of Great Britain its the dangling tuples are padded with NULL'S in the resulting relation. 
class, type, number of guns, bore, displacement, and year launched. + The Bag Model of Relations: SQL actually regards relations as bags of 

b) Write a query using your view from (a) asking for the number of guns and tuples, not sets of tuples. We can force elimination of duplicate tuples 
displacements of all British battleships launched before 1919. with the keyword DISTINCT, while keyword ALL alloxvs the result to be a 

bag in certain circumstances where bags are not the default. 
! c) Express the query of (b) and view of (a) as relational-algebra exprt%sions, 

substitute for the uses of the view in the query expression, and simplify + Aggregations: The values appearing in one column of a relation can be 
the resulting expressions as best you can. summarized (aggregated) by using one of the keywords SUM, AVG (average 

value), MIN, MAX, or COUNT. Tuples can be partitioned prior to aggregation 
! d) Write an SQL query corresponding to your expression from (c) on the with the keywords GROUP BY. Certain groups can be eliminated with a 

base tables Classes and Ships. clause introduced by the keyword HAVING. 

+ Modification Statements: SQL allo~vs us to change the tuples in a relation. 
6.8 Summary of Chapter 6 We may INSERT (add new tuples), DELETE (remove tuples)? or UPDATE 

(change some of the existing tuples); by writing SQL statements using + SQL: The language SQL is the principal query language for relational one of these three keywords. 
database systems. The current standard is called SQL-99 or SQL3. Com- 
mercial systems generally wry from this standard. + Data Definition: SQL has statements to declare elements of a database 

schema. The CREATE TABLE statement allows us to declare the schema for + Select-From- Where Queries: The most common form of SQL query has stored relations (called tables), specifying the attributes and their types, 
the form select-from-where. It allows us to take the product of several and default values. 
relations (the FROM clause), apply a condition to the tuples of the rcsult 
(t,he WHERE clause), and produce desired components (the SELECT rlausc). + Altering Schemas: TVe can change aspects of the database schema with an 

ALTER statement. These changes include adding and removing attributes + Subqueries: Select-from-where queries can also be used as subqucric+ from relation schemas and changing the default value associated with an 
within a WHERE clause or FROM clause of another query. The operator> attribute or domain. TVe may also use a DROP statement to completely 
EXISTS, IN, ALL, and ANY may be used to express boolean-valued con- eliminate relations or other schema  element,^. 
ditions about the relations that are the result of a subquery in a WHERE 
clause. + Indexes: While not part of the SQL standard, comn~erical SQL systems 

allow the declaration of indexes on attributes; these indexes speed up 
+ Set Operations on Relations: We can take the union, intersection, or certain queries or modifications that involve specification of a value for 

difference of relations by connecting the relations, or connecting queries the indexed attribute. 
defining the relations, with the keywords UNION, INTERSECT, and EXCEPT. 
respectively. + Views: -1 view is a definition of how one relation (the view) nlay be 

constructed from tables stored in the database. T'iews may be queried as 
4 Join Expressions: SQL has operators such as NATURAL JOIN that may be if they were stored relations, and an SQL svstem modifies queries about a 

applied to relations, either as queries by themselves or to define relation. view so the query is instead about the base tables that are used to define 
in a FROM clause. the view. 

+ l h l l  Values: SQL provides a special value NULL that appears in compo- 
nents of tuples for which no concrete value is available. The arithmetic 6.9 References for Chapter 6 
and logic of NULL is unusual. Comparison of any value to NULL, even 
another NULL, gives the truth value UNKNOWN. That truth value, in turn. The SQL2 and SQL-99 standards are published on-line via anonymous FTP. 
behaves in boolean-valued expressions as if it were halfway between TRUE The primary site is f tp: //j erry . ece . umassd. edu/isowg3, with mirror sites 
and FALSE. at ftp: //math0 .rnath.ecu.edu/isowg3 and ftp: //tiu. ac. jp/iso/wg3. In 
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each case the subdirectory is dbl/BASEdocs. As of the time of the printing of 
this book, not all sites were accepting F T P  requests. ?fie shall endeavour to 
keep the reader up t o  date on the situation through this book's iVeb site (set 
the Preface). 

Several books are available that  give more details of SQL programming. 
Some of our favorites are [2], [4], and [6]. [5] is an early exposition of the recent 
SQL-99 standard. 

SQL was first defined in [3]. I t  was implemented as part of System R [I], 
one of the first generation of relational database prototypes. 

1. Astrahan, 14. h,1. et a]., "System R: a relational approach to data manage- 
ment," ACM Trcmsactions on Database Systems 1:2, pp. 97-137, 1976. 

2. Celko, J., SQL for Smarties, Morgan-Icaufmann, San Francisco, 1999. 
Constraints and Triggers 

3. Chamberlin, D. D., e t  a]., "SEQUEL 2: a unified approach to data defi- 
nition, manipulation, and control," IBhl Journal of Research and Devel- 
opment 20:6, pp. 560-575, 1976. In this chapter we shall cover those aspects of SQL that  let us  create "active" 

elements. An active element is an expression or statement that  we write once, 3. Date, C. J. and H. Darwen, A Guide to the SQL Standard, .4dtlisc,ll- 
Wesley, Reading, SIA, 1997. store in the database, and expect the  element to  execute a t  appropriate times. 

The time of action might be when a certain event occurs, such as a n  insertion 

3. Gulutzan, P. and T. Pelzer, SQL-99 Complete, Really, R&D Books, La\\-- into a particular relation, or it might be whenever the database changes so  that  
rence, I<.$, 1999. a certain boolean-valued condition becomes true. 

6. Melton, J. and -1. R. Simon, Understanding the New SQL: A Corrrplete One of the serious problems faced by writers of applications that update 
Guide, Xforgan-Icaufmann, San Francisco, 1993. the database is that the new information could be wrong in a variety of ways. 

For example, there are often typographical or transcription errors in manually 
entered data. The most straightforward way to make sure that  database mod- 
ifications do not a l l o ~  inappropriate tuples in relations is to  write application 
programs so every insertion, deletion, and update command has associated with 
it the checks necessary to assure correctness. Unfortunately, the correctness re- 
quirements are frequently complex, and they are al\+-ass repetitive; application 
programs must malie the same tests after every modification. 

Fortunately. SQL provides a wriety of techniques for expressing integrity 
constmints as part of the database schema. In this chapter we shall study 
the principal methods. First are key constraints, where a n  attribute or set of 
attributes is declared t o  be a key for a relation. Sext ,  we consider a form of 
referential integrity. called "foreign-key constraints," ~vhich are the requirement 
that a value in an attribute or attributes of one relation (e.& a presC# in 
Studio)  must also appear as a value in an attribute or attributes of another 
relation (e.g., c e r t #  of MovieExec). 

Then, we consider constraints on attributes, tuples, and relations as  a whole, 
and we cover interrelation constraints called "assertions." Finally, we discuss 
"triggers," which are a form of active element that is called into play on certain 
specified events? such as  insertion into a specific relation. 
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7.1 Keys and Foreign Keys 

Perhaps the most important kind of constraint in a database is a declaration 
that a certain attribute or set of attributes forms a key for a relation. If a set of 

attributes S is a key for relation R, then any two tuples of R must disagree in 
a t  least one attribute in the set S. Note that this rule applies even to duplicate 
tuples; i.e., if R has a declared key, then R cannot have duplicates. 

-4 key constraint, like many other constraints, is declared within the CREATE 
TABLE comrna~id of SQL. There are two similar ways to declare keys: using tfle 
keywords PRIMARY KEY or the keyword UNIQUE. However, a table may have only 
one primary key but any number of "unique" declarations. 

SQL also uses the term "key" in connection with certain referential-integrity 
constraints. These constraints, called "foreign-key constraints," assert that a 
value appearing in one relation must also appear in the primary-key compo- 
nent(~)  of another relation. We shall take up foreign-key constraints in Sec- 
tion 7.1.4. 

7.1.1 Declaring Primary Keys 

A relation may have only one primary key. There are two ways to  declare a 
primary key in the CREATE TABLE statement that defines a stored relation. 

1. We may declare one attribute to be a primary key n-hen that attributr is 
listed in the relation schema. 

2. We may add t o  the list of items declared in the schema (which so far 
have only been attributes) an additional declaration that says a particular 
attribute or set of attributes forms the primary key. 

For method (1): we append the keywords PRIMARY KEY after the attribute 
and its type. For method (2), we introduce a new clement in the list of attributes 
consisting of the keywords PRIMARY KEY and a parenthesized list of the attribute 
or attributes that form this key. Kote that if the key consists of more than one 
attribute, we need to use method (2). . , 

The effect of declaring a set of attributes S t o  be a primary key for relation 
R is t~vofold: 
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1) CREATE TABLE Moviestar ( 
2) name CHAR(30) PRIMARY KEY, 
3) address VARCHAR(255) , 
4) gender CHAR(i), 
5) birthdate DATE 

1 ; 

Figure 7.1: Making name the primary key 

fact to  the line declaring name. Figure 7.1 is a revision of Fig. 6.16 that  reflect.^ 
this change. 

Alternatively, we can use a separate definition of the primary key. After . *.- 
line (5) of Fig. 6.16 we add a declaration of the primary key, and we have no 
need to declare it in line (2). The resulting schema declaration would look like 
Fig. 7.2. 

1) CREATE TABLE Moviestar ( 

2) name CHAR(301, 
3) address VARCHAR(255), 
4) gender CHAR(1) , 
5) birthdate DATE, 
6) PRIMARY KEY (name) 

1 ; 

Figure 7.2: A separate declaration of the primary key 

Note that in Example 7.1, the form of either Fig. 7.1 or Fig. 7.2 is acceptable. 
because the primary key is a si~lgle attribute. However. in a situation \\-here 
the primary key has more than one attribute. rye must use the style of Fig. 7.2. 
For instance, if we declare the schema for relation Movie, \\-hose key is the pair 
of attributes title and year. n-e should add. after the list of attributes. the 
line 

1. Two tuples in R cannot agree on all of the attributes in set S. . l n ~  PRIMARY KEY (title, year) 
attempt to  insert or update a tuple that violates this rule causes the 

D B l I S  to reject the action that caused the violation. 7.1.2 Keys Declared With UNIQUE 

2. Attributes in S are not allowed to have NULL as a value for their conlpo- .Another \yay to declare a key is to use the keyn-ord UNIQUE. This ~vord can ap- 
nents. pear exactly where PRIMARY KEY can appear: either fo l lo~ing  a n  attribute and 

its type or  as  a separate item within a CREATE TABLE statement. The mealling 
7.1 : Let us reconsider the schema for relation Moviestar fro111 Ex- of a UNIQUE declaration is almost the same as the meaning of a I%IMARY KEY 

amp1e 6.39. primary key for this relation is name. Thus, ~ v e  can add this declaration. There are t ~ v o  distinctions, ho~vever: 



318 CHAPTER 7. COArSTRAINTS AND TRIGGERS 

1. ?Ve may have any number of UNIQUE declarations for a table, but only one 
primary key. 

2. While PRIMARY KEY forbids NULL'S in the attributes of the key, UNIQUE 
permits them. Moreover, the rule that two tuples may not agree in all of 
a set of attributes declared UNIQUE may be violated if one or more of the 
components involved have NULL as a value. In fact, it is even permitted 
for both tuples to have NULL in all corresponding attributes of the UNIQUE 
key. 

The implementor of a DBMS has the option to make additional distinctions. 
For instance, a database vendor might always place an index on a key declared 
to be a primary key (even if that key consisted of more than one attribute), but 
require the user to call for an index explicitly on other attributes. Alternatively, 
a table might always be kept sorted on its primary key, if it had one. 

Example 7.2 : Line (2) of Fig. 7.1 could have been written 

2) name CHAR(30) UNIQUE, 

?Ve could also change line (3) to 

3) address VARCHAR(255) UNIQUE, 
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n-ould have the same effect as the esample index-creation statement in Sec- 
tion 6.6.5, but it would also declare a uniqueness constraint on attribute year 
of the relation Movie (not a reasonable assumption). 

Let us consider for a moment how an SQL system would enforce a key 
constraint. In principle, the constraint must be checked every time we try to 
change the database. However, it should be clear that rhe only time a key 
constraint for a relation R can become violated is when R is modified. In fact, 
a deletion from R cannot cause a violation; only an insertion or update can. 
Thus, it is normal practice for the SQL system to check a key constraint only 
when an insertion or update to that relation occurs. 

An index on the attribute(s) declared to be keys is vital if the SQL system 
is to enforce a key constraint efficiently. If the index is available, then whenever 
we insert a tuple into the relation or update a key attribute in some tuple, we 
use the index to check that there is not already a tuple with the same value 
in the attribute(s) declared to be a key. If so, the system ]nust prevent the 
modification from taking place. 

If there is no index on the key attribute(s), it is still possible to enforce a key 
constraint. Sorting the relation by key-value helps us search. However, in the 
absence of any aid to searching, the system must examine the entire relation, 
looking for a tuple with the given key value. That process is extremely time- 
consuming and would render database modification of large relations virtually 
impossible. 

if we felt that two movie stars could not have the same address (a dubious 
assumption). Similarly, we could change line (6) of Fig. 7.2 to 7.1.4 Declaring Foreign-Key Constraints 

6) UNIQUE (name) ;\ second important kind of constraint on a database schema is that values for 
certain attributes must make sense. That is, an attribute like presC# of relation 

should we choose. Studio is expected to refer to a particular niovie executive. The implied "ref- 
erential integrity" constraint is that if a studio's tuple has a certain certificate 

7.1.3 Enforcing Key Constraints number c in the presC# component. then c is the certificate of a real movie 
executive. In terms of the database, a "real': executive is one mentioned in the 

Recall our discl~ssion of indexes in Section 6.6.5, ~vhere ~ve learned that although MovieExec relation. Thus, there must be some MovieExec tuple that has c in 
they are not part of any SQL standard, each SQL implementation has a way of the ce r t#  attribute. 
creating indexes as part of the database schema definition. It is normal to build In SQL we may declare an attribute or attributes of one relation to be a 
an index on the primary key, in order to support the common type of query foreign key, referencing s6me attribute(s) of a second relation (possibly the same 
that specifies a value for the primary key. LVe may also want to build indeses relation). The implication of this declaration is twofold: 
on other attributes declared to be UNIQUE. 

Then, when the WHERE clause of the query includes a condition that rquat(>s 1. The referenced attribute(s) of the second relation must be declared UNIQUE 
a key to a particular value - for instance name = )Audrey Hepburn' in thf or the PRIMARY KEY for their relation. Orher~vise: ne  cannot make the 
case-of the Moviestar relation of Example 7.1 - the rnatchi~lg tuple ~vill be foreign-key declaration. 
f ~ u n d  wry qllickl~-; tvithout a search through all the tuples of t,he relation. 

sfany SQL implementations offer an index-creation statement using the key- 2. Values of t,he foreign key appearing in the first relation must also appear 
UNIQUE that declares an attribut.e to be a key at the same time it creates in the referenced attributes of sollie tuple. More precisely, let there be a 

an index on that attribute. For example, the statement foreign-key F that references set of attributes G of some relation. Suppose 
a tuple t of the first relation has non-NULL values in all the attributes of F;  

CREATE UNIQUE INDEX Year Index ON Movie(year) ; call the list oft 's values in these attributes t [F] .  Then in the referenced 
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relation there must be some tuple s that  agrees with t [F]  on the attributes 7.1.5 Maintaining Referential Integrity 
G. That is, s[G] = t [ F ] .  

iVe have seen how t o  declare a foreign key, and we learned that  this declaration 
As for primary keys, we have two ways t o  declare a foreign key. implies that  any set of values for the attributes of the foreign key, none of which 

a) If the foreign key is a single attribute we may follow its name and type by are NULL, must also appear in the corresponding attribute(s) of the  referenced 

a declaration that i t  "references" some-attribute (which must be a key - relation. But how is this constraint t o  be maintained in the face of modifications 

primary or unique) of some table. The  form of the declaration is to the database? The database implementor may choose from among three 

REFERENCES <table> (<attribute>) 

b) i\lternatively, we may append to the list of attributes in a CREATE TABLE The Default Policy: R e j e c t  Violat ing Modif icat ions 
statement one or more declarations stating that a set of attributes is a 
foreign key. We then give the table and its attributes (which must be a SQL has a default policy that any modification violating the referential integrity 

key) to  which the foreign key refers. The form of this declaration is: constraint is rejected by the system. For instance, consider Example 7.3, where 
it is required that  a presC# value in relation S tud io  also be a c e r t #  value 

FOREIGN KEY (<attributes>) REFERENCES <table> (<attributes>) in MovieExec. The following actions will be rejected by the system (i.e., a 
run-time exception or error will be generated). 

Example  7.3 : Suppose we wish to  declare the relation 

Studio(name, address ,  presC#) 1. We try to  insert a new Stud io  tuple whose presC# value is not NULL and 
is not the c e r t #  component of any MovieExec tuple. The  insertion is 

whose primary key is name and rvhich has a foreign key presC# that references rejected by the system, and the tuple is never inserted into S tud io .  
c e r t #  of relation 

MovieExec(name, address ,  c e r t # ,  networth) 2. We try to update a S tud io  tuple to  change the presC# component t o  a 
non-NULL value that is not the c e r t #  component of any MovieExec tuple. We may declare presC# directly to reference c e r t #  as follows: 
The update is rejected. and the tuple is unchanged. 

CREATE TABLE Stud io  ( 
name CHAR(30) PRIMARY KEY, 3. We try to  delete a MovieExec tuple, and its c e r t #  component appears 
address VARCHAR(2551, a s  the presC# component of one or more S t u d i o  tuples. The deletion is 
presC# INT REFERENCES MovieExec(cert#) rejected, and the tuple remains in MovieExec. 

1; 

- in  alternative form is to  add tlie foreign key declaration separately, as 4. We try to update a MovieExec tuple in a \\-ay that  changes the c e r t #  
value: and the old c e r t #  is the value of presC# of some movie studio. 

CREATE TABLE Stud io  ( The system again rejects the change and leaves MovieExec as it was. 
name CHAR(3O) PRIMARY KEY, 
address VARCHAR(255), 
presC# INT, The Cascade Policy 
FOREIGN KEY (presC#) REFERENCES MovieExec(cert#) There is another approach to handling deletions or updates to  a referenced 

1; relation like MovieExec (i.e., the third and fourth types of modifications de- 
rotice that the referenced attribute, c e r t #  in MovieExec. is a key of that rela- scribed above). called the cascade ~ol icy.  Intuitively: changes t o  the referenced 
tion.,as it must be. The meaning of either of these two foreign key declarations attriBrite(s) are lnimicked a t  the foreign key. 
is that \\.henever a value appears in the presC# component of a Studio tuple. Cnder the cascade policy. when n-c delete the MovieExec tuple for the pres- 
that value must also appear in the c e r t #  component of some MovieExec tuple. ident of a studio, then to maintain referential integrity the system will delete 
The one esception is that, should a particular S tud io  tuple have NULL as the the referencing tuple(s) from Studio.  Updates are  handled analogously. If we 
value of its presC* component. there is no requirement that NULL appear as change the c e r t #  for some movie executive from cl t o  c2, and there u-as some 
the value of a component (in fact, c e r t #  is a primary key and therefore S t u d i o  tuple with el as the  value of its presC# component, then the system 
cannot have NULL'S anyway). ~vill also update this presC# component to have ~ a l u e  c2. 
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- - - -  

The Set-Null Policy 

Yet another approach to handling the problem is to  change the presC# value 
from that of the deleted or updated studio president to  NULL; this policy is 
called set-null. 

These options may be chosen for deletes and updates, independently, and 
they are stated with the declaration of the foreign key. We declare them wit11 
ON DELETE or ON UPDATE followed by our choice of SET NULL or CASCADE. 

Example 7.4: Let us see how we might modify the declaration of 

Studio (name, address, presC#) 

in Example 7.3 to  specify the handling of deletes and updates in the 

MovieExec(name, address, cert#, networth) 

relation. Figure 7.3 takes the first of the CREATE TABLE statements in that 
example and expands it with ON DELETE and ON UPDATE clauses. Line (5) says 
that when we delete a MovieExec tuple, we set the presC# of any studio of 
which he or she was the president to NULL. Line (6) says that if we update tlic 
cert# component of a MovieExec tuple, then any tuples in Studio with the 
same value in the presC# component are changed similarly. 

7.1.6 Deferring the Checking of Constraints 

1) CREATE TABLE Studio ( Let us assume the situation of Example 7.3,  here presC# in Studio is a foreign 

2) name CHAR(30) PRIMARY KEY, key referencing cert# of MovieExec. Bill Clinton decides, after his national 

3) address VARCHAR(2551, presidency, to  found a movie studio, called Redlight Studios, of which he will 

4) presC# INT REFERENCES MovieExec(cert#) naturally be the president. If we execute the insertion: 

5) ON DELETE SET NULL 
6) ON UPDATE CASCADE 

INSERT INTO Studio 

) ;  
VALUES ('Redlight', 'New York' , 23456) ; 

n-e are in trouble. The reason is that there is no tuple of MovieExec with cer- 

Figure 7.3: Choosing policies to preserve referential integrity tificate number 23-156 (the presumed newly issued certificate for Bill Clinton), 
so there is an obvious violation of the foreign-key constraint,. 

 sot^ that in this example, the set-null policy makes Inore sense for deletcs. One possible fix is first to  insert the tuple for Redlight without a president's 

while the cascade policy seems preferable for updates. We rvould cspect that certificate. as: 

if. for instance, a studio president retires, the studio will exist wit11 a "null" 
INSERT INTO Studio(name, address) president for a while. Ho~vever: an update t o  the certificate number of a studio 
VALUES ( ' Redlight ' , 'New York' ) ; president is most likely a clerical change. The person continues t o  exist and to 

be the presidelit of the studio, so we ~ o u l d  like the presC# attribute ill Studio This change avoids the constraint violation, because the Redlight tuple is in- to follow the change. 
serted with NULL as the value of presC#, and NULL in a foreign key does not 
require that  we check for the existence of any value in the referenced column. 

Dangling Tuples and Modification Policies 

.A tuple with a foreign key value that does not appear in the referenced 
relation is said t o  be a dangling tuple. Recall that a tuple which fails t o  
participate in a join is also called "dangling." The two ideas are closely 
related. If a tuple's foreign-key value is missing from the referenced rela- 
tion, then the tuple will not participate in a join of its relation with the  
referenced relation. 

The dangling tuples are exactly the tuples that  violate referential 
integrity for this foreign-key constraint. 

T h e  default policy for deletions and updates t o  the referenced rela- 
tion is that  the action is forbidden if and only if i t  creates one or 
more dangling tuples in the referencing relation. 

The  cascade policy is to delete or update all dangling tuples created 
(depending on whether the modification is a delete or update to  the 
referenced relation, respectively). 

The  set-null policy is to set the foreign key to NULL in each dangling 
tuple. 
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However, we must insert a tuple for Bill Clinton into MovieExec, ~vith his tor- b) If a constraint is deferrable, then we may also declare it  to  be INITIALLY 
rect certificate number before we can apply an update statement such as DEFERRED or INITIALLY IMMEDIATE. In the former case, checking will be 

deferred t o  the end of the current transaction, unless we tell the system 
UPDATE Studio t o  stop deferring this constraint. If declared INITIALLY IMMEDIATE, the 
SET presC# = 23456 check will be made before any modification, but because the constraint is 
WHERE name = 'Redlight'; deferrable, we have the option of later deciding t o  defer checking. 

If we do not fix HovieExec first, then this update statement will also violate Example 7.6: Figure 7.4 shows the declaration of Studio modified to  allow 
the foreign-key constraint. the checking of it,s foreign-key constraint to  be deferred until after each trans- 

Of course, inserting Bill Clinton and his certificate number into MovieExec action. \Ve have also declared presC# t o  be UNIQUE, in order that  it majr be 
before inserting Redlight into Studio will surely protect us against a foreign- referenced by other relations' foreign-key constraints. 
key violation in this case. However, there are cases of circular constraints that 
cannot be fixed by judiciously ordering the database modification steps \ye take. 

CREATE TABLE Studio ( 
Example 7.5 : If movie executives were limited to  studio presidents, t,hen \ye name CHAR(30) PRIMARY KEY, 
might want to declare cert# to be a foreign key referencing Studio(presC#); address VARCHAR(255), 
we would then have to declare presC# t o  be UNIQUE, but that declaration rnakcs presC# INT UNIQUE 
sense if you assume a person cannot be the president of tmo studios at  the sanlc REFERENCES MovieExec (cert#) 
time. DEFERRABLE INITIALLY DEFERRED 

Now, it is impossible to insert new studios with new presidents. \Ye can'c 
insert a tuple with a new value of presC# into Studio, because that tuple ~vould 
violate the foreign-key constraint from presC# to  MovieExec (cert#). \T:c can't 
insert a tuple with a new value of cert# int20 MovieExec, because t,hat nor~ltl Figure 7.4: Making presC# unique and deferring the checking of its foreign-key 
violate the foreign-key constraint from cert# t o  Studio(presC#). 0 

The problem of Example 7.5 has a solution, but it involves several e le~~lc~i~ t>  If n-e made a similar declaration for the hypothetical foreign-key constraint 
of SQL that we have not yet seen. from MovieExec(cert#) to  Studio(presC#) mentioned in Example 7.5, then 

1%-e could write transactions that inserted two tuples, one into each relat,ion, and 
1. First,, Ive need the ability t,o group several SQL statements (the two in- the t\vo foreign-key constraints ~vould not be checked until after both insertions 

sertions - one into Studio and the other into MovieExec) into one i ~ i i i r .  had been done. Then, if \re insert both a new studio and its new president, and 
called a "transaction." We shall meet transactions as a n  indivisible unit use the same certificate number in each tuple, we 1%-ould avoid violation of any 
of work in Section 8.6. constraint. 

2. Then, \re need a way to tell the SQL system not to check the constraints There are  two additional points about deferring constraints that  we should 
until after the whole transaction is finished ("committed" in the tcrmi- bear in mind: 
 lol log?. of transactions). 

Constraints of ally type can be given names. \Ye shall discuss boa. to do ma?. take point (1) on faith for the moment, but there are two details n-[a 
must learn to  handle point (2): so ill Section 7.3.1. 

If a constraint has a name. say- MyConstraint, then 11-e can change a a)- .iny collstraint - key, foreign-ke); or other const,raint types 15-c shall mcot deferrable constraint from itnmediate to  deferred by the SQL statemellt later in this chapter -may be declared DEFERRABLE or NOT DEFERRABLE. 
The latter is the default, and means t,hat every time a database modi- 
fication occurs, the constraint is checked immediately aft,er\~rards, if thfl SET CONSTRAINT MyConstraint DEFERRED; 
modification requires that it be checked a t  all. However, if we declarc a 
constraint to  be DEFERRABLE, then we have the option of telling it to ~vait and x\-e can reverse the process by changing DEFERRED in the above to 
until a transaction is complete before checking the constraint. IMMEDIATE. 
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7.1.7 Exercises for Section 7.1 C l a s s e s ( c l a s s ,  type ,  country,  numGuns, b o r e ,  displacement)  
S h i p s  (name, c l a s s ,  launched) 

* Exercise 7.1.1 : Our running example movie database of Sect.ion 5.1 has keys B a t t l e s  (name, da te )  
defined for all its relations. Outcomes ( s h i p ,  b a t t l e ,  r e s u l t )  

Movie(-, year ,  l e n g t h ,  i n c o l o r ,  studioName, producerC#) 
StarsIn(movieTit le ,  movieyear, starName) of Exercise 5.2.1. I\,Iodify your SQL schema from Exercise 6.6.3 to include 
Moviestar(-, address ,  gender ,  b i r t h d a t e )  declarations of these keys. 
MovieExec(name, address ,  cert#, networth)  
Studio(-, address ,  presC#) Exerc i se  7.1.6 : Write the follo~ving referential integrity constraints for the 

battleships database as in Exercise 7.1.5. Use your assumptions about keys 
Modify your SQL schema declarations of Esercise 6.6.1 to  include declarations from that  exercise, and handle all violations by setting the referencing attribute 
of the keys for each of these relations. Recall that  all three attributes are the value t o  NULL. 
key for S ta rs In .  

Exercise 7.1.2 : Declare the following referential integrity constraints for the * a) Every class mentioned in Ships must be mentioned in Classes .  
movie database as in Exercise 7.1.1. 

b) Every battle mentioned in Outcomes must be mentioned in B a t t l e s .  
* a) The producer of a movie must be someone mentioned in MovieExec. Ifotl- 

ifications t o  MovieExec that violate this constraint are rejected. c) Every ship mentioned in Outcomes must be mentioned in Ships.  

b) Repeat (a), but violations result in the producerC# in Movie being set to 
NULL. 

c) Repeat (a), but violations result in the deletion or update of the offentlirig 
7.2 Constraints on Attributes and Tuples 

Movie tuple. I\'e have seen key constraints, which force certain attributes to have distinct 

(1) A movie that appears in S t a r s I n  nlust also appear in Movie. Handlc values among all the tuples of a relation, and we have seen foreign-key con- 
violations by rejecting the modification. straints, which enforce referential integrity between attributes of two relations. 

Sow, we shall see a third important kind of constraint: one that limits the 
e) A star appearing in S t a r s I n  must also appear in Moviestar. Handlc values that  may appear in components for some attributes. These constraints 

violations by deleting violating tuples. may be  expressed as either: 

*! Exercise 7.1.3: I i e  would like t o  declare the constraint that every movie in 
I .  A constraint on the attribute in the definition of its relation's schema, or the relation Movie must appear 1%-it11 at  least one st.ar in S ta rs In .  Can we do 

so tvith a foreign-key constraint? Why or 11-hy not? 
2. d constraint on a tuple as  a ~vl-hole. This constraint is part of the relation's 

Exercise 7.1.4: Suggest suitablekeys for the relations of the PC database: schema. not associated with any of its attributes. 

Product (maker, model, type)  In Section 7.2.1 we shall introduce a simple type of constraint on an attribute's 
PC(mode1, speed, ram, hd,  r d ,  p r i c e )  value: the constraint that the attribute not have a NULL value. Then in Sec- 
Laptop(mode1, speed, ram, hd, sc reen ,  p r i c e )  ti011 7.2.2 \\-e cover the principal for111 of constraints of type (1): attribute-based 
Printer(mode1, c o l o r ,  t y p e ,  p r i c e )  CHECK constraints. The second type. the tuple-based constraints, are covered 

in Section 7.2.3. of Exercise 5.2.1. XIodify your SQL schema from Esercise 6.6.2 to include 
declarations of these keys. There are  other, rnore general kinds of constraints that we shall meet in 

Section 7.4. These constraints can be used to restrict changes t o  whole relations 
Exercise 7-1.5: Suggest suitable keys for the relations of the battleships or even several relations, as  well as to constrain the value of a single attribute 
database 
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7.2.1 Not-Null Constraints Studio(name, address ,  presC#) 

One simple constraint to  associate with an attribute is NOT NULL. The effect is to 
disallow tuples in which this attribute is NULL. The constraint is declared by the 
keywords NOT NULL following the declaration of the attribute in a CREATE TABLE 4) presC# INT REFERENCES ~ o v i e ~ x e c ( c e r t # )  
statement. CHECK (presC# >= 100000) 

Example 7.7 : Suppose relation Studio required presC# not to be NULL, per- For another example, the attribute gender of relation 
haps by changing line (4) of Fig. 7.3 to: 

MovieStar(name, address ,  gender ,  b i r t h d a t e )  
4) presC# INT REFERENCES HovieExec(cert#) NOT NULL 

was declared in Fig. 6.16 to be of data  type  CHAR(^) - that  is, a single charac- This change has several consequences. For instance: 
ter. However, we really expect that the only characters that  will appear there 

We could not insert a tuple into S tud io  by specifying only the name are ' F1 and ' M '  . The following substitute for line (4) of Fig. 6.16 enforces the 
and address, because the inserted tuple would have NULL in the presC# 
component. 

4) gender CHAR(1) CHECK (gender I N  ('F' , 'M')), 
We could not use the set-null policy in situations like line (5) of Fig. 7.3, 
which tells the systcm to fix foreign-key violations by making presC# hc The above condition uses an explicit relation with two tuples, and says that  the 
NULL. value of any gender component must be in this set. 

0 I t  is permitted for the condition being checked t o  mention other attributes or 
tuples of the relation, or even to mention other relations, but doing so requires 

7.2.2 Attribute-Based CHECK Constraints a subquery in the condition. -1s we said, the condition can be anything that 
could follo~v WHERE in a select-from-where SQL statement. However, we should 

More complex constraints can be  attached to an attribute declaration by the be aware that the checking of the constraint is associat,ed wit'h the attribute in 
keyword CHECK, followed by a parenthesized condition that must hold for ev- question only, not with every relation or attribute ment,ioned by the constraint. 
ery value of this attribute. In practice, an attribute-based CHECK constraint is As a result,, a complex condition can become false if some element other than 
likely to  be a simple limit on values, such as a n  enumeration of legal values or the checked attribute changes. 
an arithmetic inequality. However, in principle the condition can be anything 
that could follow WHERE in a n  SQL query. This condition may refer to  the at- Example 7.9 : \I.'e might suppose that  we could simulate a referential integrity 
tribute being constrained, by using the name of that attribute in its expression. constraint by an attribute-based CHECK constraint that requires the existence 
However, if the condition refers to  any other relations or attributes of relations. of the referred-to value. The following is an erroneous attempt t o  simulate the 
then the relation must be introduced in the FROM clause of a subquery (even if requirement that the presC# value in a 
the relation referred to  is the one to  which the checked attribute belongs). 

An attribute-based CHECK constraint is checked whenever any tuple gets a Studio (name, address ,  presC#) 

new value for this attribute. The new w-alue could be introduced by an update 
tuple must appear in the c e r t #  component of some for the tuple, o r  it  could be part of an inserted tuple. If the constraint is 

violated by the new value. then the modification is rejected. As xve shall see in MovieExec (name, address ,  c e r t # ,  networth) 
Example 7.9, the attribute-based CHECK constraint is not checked if a database 
modification does not change a value of the attribute with xvhicll the constraint tuple. Suppose line (4) of Fig. 7.3 were replaced by 
is associated, and this linlitation can result in the constraint becoming violated. 
First, let us consider a simple example of an attribute-based check. 4) presC# INT CHECK 

(presC# I N  (SELECT c e r t #  FROM MovieExec)) 
Example 7.8 : Suppose we want to  require that certificate numbers be at  least 

six digits. We could modify line (4) of Fig. 7.3, a declaration of the schema for This statement is a legal attribute-based CHECK constraint, but let us look a t  
relation 
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If we attempt to insert a new tuple into Studio, and that tuple has a 
presC# value that is not the certificate of any movie executive, then the 1) CREATE TABLE MovieStar ( 

insertion is rejected. 2) name CHAR(3O) PRIMARY KEY, 
3) address VARCHAR(255), 

If we attempt to update the presC# component of a Studio tuple, and the 4) gender CHAR(l), 
new value is not the cert# of a movie executive, the update is rejected. 5) birthdate DATE, 

6) CHECK (gender = IF' OR name NOT LIKE 'Ms.%') 
However, if we change the MovieExec relation, say by deleting the tuple 
for the president of a studio, this change is invisible to the above CHECK 
constraint. Thus, t,he deletion is permitted, even though the attribute- 
based CHECK constraint on presC# is now violated. Figure 7.5: A constraint on the table Moviestar 

We shall see in Section 7.4.1 how more powerful constraint forms can correctly 
express this condition. 

7.2.3 Tuple-Based CHECK Constraints 

TO declare a constraint on the tuples of a single table R, when we define that 
table with a CREATE TABLE statement we may add to the list of attributes slid 
key or foreign-key declarations the keyword CHECK followed by a parenthesizeci 
condition. This condition can be anything that could appear in a WHERE clause. 
It is interpreted as a condition about a tuple in the table R, and the attributes 
of R may be referred to by name in this expression. However, as for attribute- 
based CHECK constraints, the condition may also mention, in subqueries, other 
relations or other tuples of the same relation R. 

The condition of a tuple-based CHECK constraint is checked every time a tuple 
is inserted into R and every time a tuple of R is updated, and is evaluated for 
the nevi or updated tuple. If the condition is false for that tuple, then t h r  
constraint is violated and the insertion or update statement that caused tlir 
violation is rejected. Ho~vever, if the condition mentions some relation (even In line (2): name is declared the primary key for the relation. Then line (6) 
R itself) in a subquery, and a change to that relation causes the condition declares a constraint. The condition of this constraint is true for every female 
to become false for some tuple of R, the check does not inhibit this change. movie star and for every star \!-hose name does not begin n-ith 'Ms ' . The only 
That is, like an attribute-based CHECK, a tuple-based CHECK is invisible to other tuples for it is not true are those where the gender is nlale and the name 
relations. does begin with 1 MS. ' . Those are esactly the tuples 11-e wish to esclude from 

-4lthough tuple-based checks can involve some very complex conditions, it  Moviestar. 
is often best to leave complex checks to SQL's "assertions," which Ive discus 
in Section 7.4.1. The reason is that, as discussed above, tuple-based checks 
can be violated under certain conditions. However, if the tuple-based check 7.2.4 Exercises for Section 7.2 
involves only attributes of the tuple being checked and has no subqueries, then 

Exercise 7.2.1 : m i t e  the follo~vin constraints for attributes of the rclatioll its constraint will always hold. Here is one example of a simple tuple-based 
CHECK constraint that involves several attributes of one tuple. Movie(title, year, length, incolor, studioName, producerC#) 

Example 7-10 : Recall Example 6.39, where we declared the schema of table 
Moviestar. Figure 7.5 repeats the CREATE TABLE statement with the addition * a) The year cannot be before 1895. 

of a primary-key declaration and one other constraint, which is one of several b) The length cannot be less than 60 nor more than 230. 
possible "consistency conditions" that we might wish to check. This constraint 

says that if the star's gender is male, then his name must not begin tvith 'Ms. '. * c) The studio name can only be Disney, Fox, AIGlI, or Paramount. 

Writing Constraints Correctly 

Many constraints are like Example 7.10, where we want to forbid tuples 
that satisfy two or more conditions. The expression that should follorv 
the check is the OR of the negations, or opposites, of each condition; this 
transformation is one of ..Dellorgan's laws": the negation of the AND of 
terms is the OR of the negations of the same terms. Thus, in Example 7.10 
the first condition mas that the star is male, and we used gender = 'FJ 
as a suitable negation (although perhaps gender <> 'MI ~vould be the 
more normal way to phrase the negation). The second condition is that 
the name begins with 'Ms. ', and for this negation we used the NOT LIKE 
comparison. This conlparison negates the condition itself. which would be 
name LIKE 'Ms .%' in SQL. 



Limited Constraint Checking: Bug or Feature? 

One might wonder why attribute- and tuple-based checks are allolved to 
be violated if they refer to other relations or other tuples of the same re- 
lation. The reason is that such constraints can be implemented more effi- 
ciently than more general constraints such as assertions (see Section 7.4.1) 
can. With attribute- or tuple-based checks, we only have to evaluate that 
constraint for the tuple(s) that are inserted or updated. On the other 
hand, assertions must be evaluated every time any one of the relations 
they mention is changed. The careful database designer will use attribute- 
and tuple-based checks only when there is no possibility that they will be 
violated, and will use another mechanism, such as assertions or triggers 
(Section 7.4.2) otherwise. 

~- 
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If the constraint actually involves two relations, then you should put constraints 
in both relations so that whichever relation changes, the constraint will be 
checked on insertions and updates. Assume no deletions; it is not possible to 
maintain tuple-based constraints in the face of deletions. 

* a) A movie may not be in color if it was made before 1939. 

b) A star may not appear in a movie made before they were born. 

! c) No two studios may have the same address. 

*! d) -4 name that appears in Moviestar must not also appear in MovieExec. 

! e) .A studio name that appears in Studio must also appear in at least one 

!! f) If a producer of a movie is also the president of a studio, then they nlust 
be the president of the studio that made the movie. 

Exercise 7.2.2 : Illrite the following constraints on attributes from our esalli- 
ple schema Exercise 7.2.5: Write the follo~\-ing as tuple-based CHECK constraints about 

our "PC" schema. 
Product (maker, model, type) 
PC(mode1, speed, ram, hd, rd, price) a) A PC with a processor speed less than 1200 must not sell for more than 
Laptop(mode1, speed, ram, hd, screen, price) 
Printer(mode1, color, type, price) 

b) -1 laptop with a screen size less than 15 inches must have at  least a 20 
of Exercise 5.2.1. gigabyte hard disk or sell for less than $2000. 

a) The speed of a laptop must be at  least 800. 
Exercise 7.2.6: II'rite the follolving as tuple-based CHECK constraints about 

b) A removable disk can only be a 32x or 4Ox CD, or a 12x or 16x D\-D. our "bat,tleships" schema Exercise 5.2.4: 

C) The only types of printers are laser, ink-jet, and bubble. Classes(class, type, country, numGuns, bore, displacement) 

d) The only types of products are PC's, laptops, and printers. Ships(name, class, launched) 
Battles(name, date) 

! c )  -4 niodel of a product must also be the model of a PC, a laptop, or a Outcomes(ship, battle, result) 
printer. 

a) S o  class of ships may have guns with larger than 16-inch bore. 
Exercise 7.2.3: We mentioned in Example 7.13 t,hat the tuple-based CHECK 
constraint of Fig. 7.7 does only half the job of the assertion of Fig. 7.6. !hit(' b) If a class of ships has more than 9 guns, then their bore must be no larger 

the CHECK constraint on MovieExec that is necessary to con~plete the job. than 14 inches. 

Exercise 7.2.4: \\iite the following constraints as tuple-based CHECK con- ! c) S o  ship can be in battle before it is launched. 
srraints on one of the relations of our running movies example: 

#ovie(title, year, length, incolor, studioName, producerC#) 7.3 Modification of Constraints 
StarsIn(movie~itle, movieyear, starlame) 
Moviestar (name, address, gender, birthdate) It is possible to add, modify, or delete constraints at  any time. The n-ay to 
MovieExec(name, address, cert#, networth) express such modifications depends on whether the constraint involved is asso- 
Studio(name, address, presC#) ciated with an attribute, a table, or (as in Section 7.4.1) a database schema. 



Name Your Constraints 

Remember, it is a good idea to give each of your constraints a name, even 
if you do not believe you will ever need to refer to it. Once the constraint 
is created without a name, it is too late to give it one later, should you 
wish to alter it. However, should you be faced with a situation of having 
to alter a nameless constraint, you will find that your DBZIIS probably has 
a way for SOU to query it for a list of all your constraints, and that it has 
given your unnamed constraint an internal name of its o~vn, which you 
may use to refer to the constraint. 

334 CHAPTER 7. CONSTRAINTS AND TRIGGERS 7.3. AfODIFIC,1TION OF COlVSTRtlINTS 335 

7.3.1 Giving Names to Constraints 

In order to modify or delete an existing constraint, it is necessary that the 
constraint have a name. To do so, we precede the constraint by the keyword 
CONSTRAINT and a name for the constraint. 

Example 7.11 : We could rewrite line (2) of Fig. 7.1 to name the constraint 
that says attribute name is a primary key, as 

2) name CHAR(30) CONSTRAINT NameIsKey PRIMARY KEY, 

Similarly, we could name the attribute-based CHECK constraint that appeared 
in Example 7.8 by: 

4) gender CHAR(1) CONSTRAINT NoAndro 
CHECK (gender IN ('F', 'M')), ALTER TABLE Moviestar ADD CONSTRAINT NameIsKey 

PRIMARY KEY (name) ; 
Finally, the following constraint: ALTER TABLE MovieStar ADD CONSTRAINT NoAndro 

6) CONSTRAINT RightTitle CHECK (gender IN ( 'F ' ,  'M')); 

CHECK (gender = 'F' OR name NOT LIKE 'Ms .%') ; ALTER TABLE MovieStar ADD CONSTRAINT RightTitle 
CHECK (gender = > F J  OR name NOT LIKE 'Ms.%'); 

is a rewriting of the tuple-based CHECK constraint in line (6) of Fig. 7.5 to give 
that constraint a name. These constraints are now tuple-based, rather than attribute-based checks. \Ye 

could not bring them back as attribute-based constraints. 
The name is optional for these reintroduced constraints. Hoxvever, we cannot 7.3.2 Altering Constraints on Tables rely on SQL remembering the dropped constraints. Ttlus, when we add afornrer 

\Ve mentioned in Section 7.1.6 that we can switch the checking of a constraint constraint we need to ~vrite the constraint again; we cannot refer to it by its 
from immediate to deferred or vice-versa with a SET CONSTRAINT statement. former name. 
Other changes to constraints are effected with an ALTER TABLE statement. 11.c 
previously discussed some uses of the ALTER TABLE statement in Section 6.6.3. 
where we used it to add and delete attributes. 7.3.3 Exercises for Section 7.3 

These statements can also be used to alter constraints; ALTER TABLE is used 
Exercise 7.3.1 : Shorn- how to alter your relation schemas for the movie esam- for both attribute-based and tuple-based checks. We may drop a constraint 
ple: 

with keyword DROP and the name of the constraint to be dropped. We may also 
add a constraint with the keyword ADD, followed by the constraint to be added. Movie(title, year, length, incolor, studioName, producerC#) 
Note, however, that you cannot add a constraint to a table unless it holds for StarsIn(movieTitle, movieyear, starName) 
the current instance of that table. Moviestar (name, address, gender, birthdate) 

Example 7.12: Let us see how we would drop and add the constraints of EX- MovieExec(name, address, cert#, networth) 

ample 7.11 on relation MovieStar. The fo!lowing sequence of three statements Studio(name, address, presC#) 

drops them: in the follolving 11-ays. 

ALTER TABLE MovieStar DROP CONSTRAINT NameIsKey; * a) 3Iake title and year the key for Movie. 
ALTER TABLE MovieStar DROP CONSTRAINT NoAndro; 
ALTER TABLE Moviestar DROP CONSTRAINT RightTitle; b) Require the referential integrity constraint that the producer of every 

movie appear in MovieExec. 
Should we wish to reinstate these const,raints, we would alter the schema 

for relation Moviestar by adding the same constraints, for example: C) Require that no movie length be less than 60 nor greater than 230. 
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*! d) Require that no name appear as both a movie sfar and movie executive 
(this constraint need not be maintained in the face of deletions). 

! e) Require that no two studios have the same address. 

Exercise 7.3.2 : Show how to alter the schemas of the "battleships" database: 

Classes(class, type, country, numGuns, bore, displacement) 
Ships(name, class, launched) 
Battles (name, date) 
Outcomes(ship, battle, result) 

to have the following tuple-based constraints. 

a) Class and country form a key for relation Classes. 

b) Require the referential integrity const.raint that every ship appearing in 
Battles also appears in Ships. 

c) Require the referential integrity constraint that every ship appearing in 
Outcomes appears in Ships. 

d) Require that no ship has more than 14 guns. 

! e) Disallow a ship being in battle before it is launched. 

7.4 Schema-Level Constraints and Triggers 

The most powerful forms of active elements in SQL are not associated with 
particular tuples or components of tuples. These elements, called "triggers" 
and "assertions," are part of the database schema, on a par with the relations 
and views themselves. 

An assertion is a boolean-valued SQL expression that must be true at all 
times. 

.I trigger is a series of actions that are associated with certain events. such 
as insertions into a particular relation, and that are perfortned lvhenevcr 
these events arise. 

7.4.1 Assertions 

The SQL standard proposes a simple form of assertion (also called a "general 
constraint") that allows us to enforce any condition (expression that can follow 
WHERE). Like other schema elements, we declare an assertion with a CREATE 
statement. The form of an assertion is: 

1. The keywords CREATE ASSERTION, 

2. The name of the assertion, 

3. The keyword CHECK, and 

4. A parenthesized condition. 

That is, the form of this statement is 

CREATE ASSERTION <name> CHECK (<condition>) 

The condition in an assertion must be true when the assertion is created and 
must always remain true: ally database modification whatsoever that causes it 
to become false will be rejected. Recall that the other types of CHECK constraints 
we have covered can be violated under certain conditions, if they involve sub- 
queries. 

There is a difference bet~veen the way we write tuple-based CHECK constraints 
and the way \ve write assertions. Tuple-based checks can refer to the attributes 
of that rclation in whose declaration they appear For instance, in line ( 6 )  of 
Fig. 7.5 we used attributes gender and name without saying \\-here they came 
From. They refer to coniponellts of a tuple being inserted or updated in the table 
Moviestar, because that table is the one being declared in the CREATE TABLE 
statement. 

The condition of an assertion has no such privilege. Any attributes referred 
to in the condition must be introduced in the assertion, typically by mentioning 
their relation in a select-from-tvllere expression. Since the condition ~nust  have a 
boolean value. it is normal to aggregate the results of the condition in some way 
to make a single truelfalse choice. For example. we might write the condition 
as an expression producing a relation, to which NOT EXISTS is applied; that 
is. the constraint is that this relation is always empty. .Ilternativel?; we might 
apply an aggregate operator like SUM to a colunln of a relation and compare it 
to a constant. For instancr. this way we could require that a sum al\va>-s be 
less than some limiting value. 

Example 7.13: Suppose we ~ i s h  to require that no one can become the pres- 
while assertions are easier for the programmer to use, since they merely require ident of a studio unless their net rvorth is at least S10,000,000. We declare an 
the programmer to state what must be true, triggers are the feature DBMS's assertion to the effect that the set of movie studios with presidents having a net 
typically provide as general-purpose, active elements. The reason is that it is I\-orth less than $10~000~000 is empty. This assertion in\-olves the two relations 
very hard to implement assertions efficiently. The DBXIS must deduce whether 
any given database modification could affect the truth of an assertion. Triggers. MovieExec (name, address, cert#, networth) 
On the other hand, tell exactly when the DBkIS needs to deal with them. Studio(name, address, presC#) 
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CREATE ASSERTION RichPres CHECK 
(NOT EXISTS 

(SELECT * 
FROM Studio, MovieExec 
WHERE presC# = cert# AND networth < 10000000 

) 
1; 

Figure 7.6: Assertion guaranteeing rich studio presidents 

The assertion is shown in Fig. 7.6. 
Incidentally, it is worth noting that even though this constraint involves 

two relations, we could write it as tuple-based CHECK constraints on the t,wo 
relations rather than as a single assertion. For instance, we can add to the 
CREATE TABLE statement of Example 7.3 a constraint on Studio as shown in 
Fig. 7.7. 

CREATE TABLE Studio ( 
name CHAR(30) PRIMARY KEY, and says the total length of all movies by a given studio shall not exceed 10,000 
address VARCHAR(255), minutes. 
presC# INT REFERENCES MovieExec(cert#), 
CHECK (presC# NOT IN 

(SELECT cert# FROM MovieExec 
WHERE networth < 10000000) 

1 
1; 

Figure 7.7: A constraint on Studio mirroring an assertion 

Sote, however, that the constraint of Fig. 7.7 will only be checked ~vhen a 
change to its relation, Studio occurs. It would not catch a situation where the 
net worth of some studio president, as recorded in relation MovieExec, dropprtf 
belot\. ~10,000~000. To get the full effect of the assertion, we would have to add 
another constraint to the declaration of the table MovieExec, requiring that the 
net n-orth be at least S10.000,000 if that executive is the president of a studio. 

Example 7.14: Here is another example of an assertion. It involves the rela- 
tion 

Movie(title, year, length, incolor, studioName, producerC#) 

Type of Where When Guaranteed 
Constraint Declared Activated to Hold? 
Attribute- With On insertion Not if 
based CHECK attribute to relation or subqueries 

attribute update 
Tuple- Element of On insertion Not if 
based CHECK relation schema to relation or subqueries 

tuple update 
Assertion Element of On any change to Yes 

database schema any mentioned 
relation 

Comparison of Constraints 

The following table lists the principal differences among attribute-based 
checks, tuple-based checks, and assertions. 

CREATE ASSERTION SumLength CHECK (10000 7= ALL 
(SELECT SUM(1ength) FROM Movie GROUP BY studioName) 

1 ; 

-1s this collstraint involves only the relation Movie, it could have been ex- 
pressed as a tuple-based CHECK constraint in the schen~a for Movie rather than 
as an assertion. That is. we could add to the definition of table Movie the 
tuple-based CHECK constraint 

CHECK (10000 >= ALL 
(SELECT SUM(1ength) FROM Movie GROUP BY studioName)); 

Xotice that in principle this condition applies to every tuple of table Movie. 
Ho~vevcr. it does not mention any attributes of the tuple esplicitly, and all the 
n-ork is done in the subquery. 

.1lso observe that if inlplelnented as a tuple-based constraint, the check 
viould not be made on deletion of a tuple from the relation Movie. In this 
example, that difference causes no harm, since if the constraint n-as satisfied 
before the deletion, then it is surely satisfied after the deletion. Holvever, if the 
constraint were a l o ~ e r  bound on total length, rather than an upper bound as 
in this example, then we could find the constraint violated had we written it as 
a tuple-based check rather than an assertion. U 
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As a final point, it is possible to drop an assertion. The statement to do so Before giving the details of the syntax for triggers, let us consider an  example 
follo\vs the pattern for any database schema element: that will illustrate the most important syntactic as well as semantic points. In 

this example, the trigger executes once for each tuple that is updated. 
DROP ASSERTION <assertion name> 

Example 7.15 : M'e shall write an SQL trigger that applies to the 

7.4.2 Event-Condition-Action Rules MovieExec (name, address, cert# , networth) 
Sggers, sometimes called event-condition-action mles or ECA rules, differ table. It is triggered by updates to the networth attribute. The effect of this 
from the kinds of constraints discussed previously in three ways. trigger is to foil any attempt to lower the net worth of a movie executive. The 

trigger declaration appears in Fig. 7.8. 1. Triggers are only awakened when certain events, specified by the database 
programmer, occur. The sorts of events allowed are usually insert, delete, 
or update to a particular relation. Another kind of event allowed in many 1) CREATE TRIGGER NetWorthTrigger 
SQL systems is a transaction end (we mentioned transactions briefly in 2) AFTER UPDATE OF networth ON MovieExec 
Section 7.1.6 and cover them with more detail in Section 8.6). 3) REFERENCING 

OLD ROW AS OldTuple, 
2. Instead of immediately preventing the event that awakened it, a trigger NEW ROW AS NewTuple 

tests a condition. If the condition does not hold, then nothing else asso- 6) FOR EACH ROW 
ciated with the trigger happens in response to this event. 7) WHEN (OldTuple. networth > NewTuple . networth) 

3. If the condition of the trigger is satisfied, the action associated with the UPDATE MovieExec 

trigger is performed by the DBMS. The action may then prevent the event SET networth = 0ldTuple.netWorth 

from taking place, or it could undo the event (e.g., delete the tuple in- WHERE cert# = NewTuple.cert#; 

serted). In fact, the action could be any sequence of database operations, 
perhaps even operations not connected in any way to the triggering e\:ellt. Figure 7.8: .An SQL trigger 

7.4.3 Triggers in SQL Line (1) introduces the declaration \\.it11 the keywords CREATE TRIGGER and 
the name of the trigger. Line (2) then gives the triggering event, namely the 

The SQL trigger statement gives the user a number of different options in thc update of the networth attribute of the MovieExec relation. Lines (3) through 
event, condition, and action parts. Here are the principal features. (3) set up a way for the condition and action portions of this trigger to talk 

about both the old tuple (the tuple before the update) and the new tuple 
1. The action may be executed either before or after the triggering event. (the tuple after the update). These tuples will be referred to as OldTuple and 

2. The action can refer to both old and/or new values of tuples that w r e  NewTuple, according to the declarations in lines (4) and (3): respectively. In the 

inserted, deleted, or updated in the event that triggered the action. condition and action, these names can be used as if they were tuple variables 
declared in the FROM clause of an ordinary SQL query. 

3. Update events may be limited to a particular attribute or set of attributes. Line (6). the phrase FOR EACH ROW; expresses the requirement that this 
trigger is executed once for each updated tuple. If this phrase is missing or it is 

4. A condition may be specified by a WHEN clause; the action is executed only replaced b~ the default FOR EACH STATEMENT. then the triggering ~vould occur 
if the rule is triggered and the condition holds when the triggering event once for an SQL statement. no matter how many triggering-event changes to 
occurs. tuples it made. \ \e  \-ould not then declare alias for old and new ro\t-s: but 11-e 

might use OLD TABLE and NEW TABLE. introduced below. 5 .  The programmer has an option of specifying that the action is performed 
either: Line (7) is the condition part of the trigger. It says that we only perform 

the action when the new net worth is lower than the old net worth; i.e., the net 

(a) Chce for each modified tuple, or worth of an executive has shrunk. 
Lines (8) through (10) form the action portion. This action is an ordinary 

(b) Once for all the tuples that are changed in one database operation. SQL update statement that has the effect of restoring the net worth of the 
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executive to what it was before the update. Note that in principle, every tuple of 
MovieExec is considered for update, but the WHERE-clause of line (10) guarantees 
that only the updated tuple (the one with t.he proper cer ts )  will be affected. 

Of course Example 7.15 illustrates only some of the features of SQL triggers. 
In the points that follow, we shall outline the options that are offered by triggers 
and how to express these options. 

Line (2) of Fig. 7.8 says that the action of the rule is executed after the 
triggering event, as indicated by the keyword AFTER. We may replace 
AFTER by BEFORE, in which case the WHEN condition is tested before the 
triggering event, that is, before the modification that awakened the trigger 
has been made to the database. If the condition is true, then the action 
of the trigger is executed. Then, the event that awakened the trigger is 
executed, regardless of whether the condition is true. 

Besides UPDATE, other possible triggering events are INSERT and DELETE. 
The OF networth clause in line (2) of Fig. 7.8 is optional for UPDATE 
events, and if present defines the event to be only an update of the at- 
tribute(~) listed after the keyword OF. An OF clause is not permitted for 
INSERT or DELETE events; these events make sense for entire tuples only. 

The WHEN clause is optional. If it is missing, then the action is executed 
whenever the trigger is awakened. 

While we showed a single SQL statement as an action, there can be any 
number of such statements, separated by semicolons and surrounded by 
BEGIN.. .END. 

row- or statement-level - can refer to the relation of old tuples (deleted 
tuples or old versions of updated tuples) and the relation of new tuples 
(inserted tuples or new versions of updated tuples), using declarations 
suchas OLD TABLE AS OldStuffandNEW TABLE AS NewStuff. 

Example 7.16 : Suppose we want to prevent the average net worth of movie 
executives from dropping below $500,000. This constraint could be violated by 
an insertion, a deletion, or an update to the networth column of 

MovieExec(name, address, cer t# ,  networth) 

The subtle point is that we might, in one INSERT or UPDATE statement insert 
or change many tuples of MovieExec, and during the modification, the average 
net worth might temporarily dip below $500,000 and then rise above it by the 
time all the modifications are made. 1% only want to reject the entire set of 
modifications if the net worth is below $500,000 at the end of the statement. 

I t  is necessary to write one trigger for each of these three events: insert, 
delete, and update of relation MovieExec. Figure 7.9 shows the trigger for the 
update event. Thc triggers for the insertion arid deletion of tuples are similar 
but slightly simpler. 

CREATE TRIGGER AvgNetWorthTrigger 
AFTER UPDATE OF networth ON MovieExec 
REFERENCING 

OLD TABLE AS OldStuff, 
NEW TABLE AS NewStuff 

FOR EACH STATEMENT 
WHEN (500000 > (SELECT AVG (networth) FROM MovieExec) ) 
BEGIN 

When the triggering event is an update, then there will be old and new tu- 9 1 DELETE FROM MovieExec 
ples, which are the tuple before the update and after, respectively. We give 10) WHERE (name, address, ce r t# ,  networth) I N  Newstuff; 
these tuples names by the OLD ROW AS and NEW ROW AS clauses seen in 11) INSERT INTO MovieExec 
lines (4) and (5). If the triggering event is an insertion, then we may use a 12) (SELECT * FROM Oldstuff);  
NEW ROW AS clause to give a name for the inserted tuple, and OLD ROW AS 13) END; 
is disallowed. Conversely, on a deletion OLD ROW AS is used to name the 
deleted tuple and NEW AS is disallowed. 

If we omit the FOR EACH ROW on line (6), then a row-level trigger such 
as Fig. 7.8 becomes a statement-level trigger. .\ statement-level trigger is 
esecuted once whenever a statement of the appropriate type is executed. 
no matter how many rows - zero, one, or many - it actually affects. 
For instance, if we update an entire table with an SQL update statement, 
a statement-level update trigger would execute only once, while a tuple- 
level trigger would execute once for each tuple to which an update is 
applied. In a statement-level trigger, we cannot refer to old and new tuples 
directly, as we did in lines (4) and ( 5 ) .  However: any trigger - whether 

Figure 7.9: Constraining the average net xvorth 

Lines (3) through ( 5 )  declare that NewStuff arid OldStuff are the names 
of relations containing the new tuples and old tuples that are involved in the 
database operation that awakened our trigger. Sotc that one database state- 
ment can modify many tuples of a relation, and if such a statement executes: 
there can be many tuples in NewStuf f and OldStuf f .  

If the operation is an update, then NewStuff and OldStuff are the nevi and 
old versions of the updated tuples. respectively. If an analogous trigger were 
written for deletions, then the deleted tuples T\-ould be in OldStuff, and there 



344 CHAPTER 7. CONSTRAINTS AND TRIGG 

would be no declaration of a relation name like NewStuf f for NEW TABLE in 
trigger. Likewise, in the analogous trigger for insertions, the new tuples n. 
be in NewStuf f ,  and t,here would be no declaration of OldStuf f .  

Line (6) tells us that this trigger is executed once for a statement, regardless 
of how many tuples are modified. Line (7) is the condition. This condition is 
satisfied if the average net worth after the update is less than $500,000. 

The action of lines (8) through (13) consists of two statements that restore 
the old relation MovieExec if the condition of the WHEN clause is satisfied; i.e., 
the new average net worth is too low. Lines (9) and (10) remove all the new 
tuples, i.e., the updated versions of t,he tuples, while lines (11) and (12) restore 
the tuples as they were before the update. 

7.4.4 Instead-Of Triggers 

There is auseful feature of triggers that did not make the SQL-99 standard, but 
figured into the discussion of the standard and is supported by some commercial 
systems. This extension allows BEFORE or AFTER to be replaced by INSTEAD OF; 
the meaning is that when an event awakens a trigger, the action of the trigger 
is done instead of the event itself. 

This capability offers little when the t,rigger is on a stored table, but it is 
very powerful when used on a view. The reason is that we cannot really modify 
a view (see Section 6.7.4). An instead-of trigger intercepts attempts to modify 
the view and in its place performs \x-hatever action the database designer deems 
appropriate. The following is a typical example. 

Example 7.17: Let us recall the definit,ion of the view of all movies olviied by 
Paramount: 

CREATE VIEW ParamountMovie AS 
SELECT t i t l e ,  year 
FROM Movie 

7.4. SCHEMA-LEVEL CONSTRAINTS AND TRIGGERS 

1) CREATE TRIGGER ParamountInsert 
2) INSTEAD OF INSERT ON ParamountMovie 
3) REFERENCING NEW ROW AS NewRow 
4) FOR EACH ROW 
5) INSERT INTO Movie(title, year, studioName) 
6) VALUES (NewRow . t i t l e ,  NewRow. year, 'Paramount' ) ; 

Figure 7.10: Trigger to replace an insertion on a view by an insertion on the 
underlying base table 

value of attribute studioName is the constant 'Paramount'. This value is not 
part of the inserted tuple. Rather, we assume it is the correct studio for the 
inserted movie, because the insertion came through the view ParamountMovie. 

7.4.5 Exercises for Section 7.4 

Exercise 7.4.1 : Write the triggers analogous to Fig. 7.9 for the insertion and 
deletion events on MovieExec. 

Exercise 7.4.2: b'rite the following as triggers or assertions. In each case, 
disallow or undo the modification if it does not satisfy the stated constraint. 
The database schema is from the "PC" example of Exercise 5.2.1: 

Product (maker, model, type) . . 

PC(mode1, speed, ram, hd, rd,  pr ice)  
Laptop(mode1, speed, ram, hd, screen, pr ice)  
P r in te r  (model, color, type, pr ice)  

WHERE studioName = 'ParamountJ ; * a) When updating the price of a PC, check that there is no lower ~ r i ced  PC 
with the same speed. 

from Example 6.45. -1s we discussed in Example 6.49, this view is updatable. 
but it has the unexpected flaw that when you insert a tuple into Paramount- * b) S o  manufacturer of PC's may also make laptops. 
Movie, the system cannot deduce that the studioName attribute is surely 
Paramount, so that attribute is NULL in the inserted Movie tuple. *! c) -1 manufacturer of a PC must also make a laptop with at least as great a . 

A better result can be obtained if we create an instead-of trigger on tills processor speed. 
vien7, as shown in Fig. 7.10. 1.1~~11 of the trigger is unsurprising.-nh see the 
keyword INSTEAD OF on line (2), establishing that an attempt to insert into d) IVhen inserting a new printer. check that the model number exists in 

ParamountMovie 15-ill never take  lace. Product. 

Rather, rye see in lines (3) and (6) the action that replaces the attempted ! e) When making any modification to the Laptop relation, check that the 
insertion. There is an insertion into Movie, and it specifies the three attributes average price of laptops for each manufacturer is at  least $2000. 
that n-e know about. Attributes t i t l e  and year come from the tuple we tried 
to insert into the rierv; we refer to these values by the tuple variable NewRow ! f) When updating the RAM or hard disk of any PC, check that the updated 
that was declared in line (3) to represent the tuple we are trying to insert. The PC has a t  least 100 times as much hard disk as RAIL 



346 CHAPTER 7. CONSTRAINTS AND TRIGGERS 7.5. SUMMARY OF CHAPTER 7 347 

! g) If a laptop has a larger main memory than a PC, then the laptop must Movie( t i t le ,  year, length, incolor,  studioName, producerC#) 
also have a higher price than the PC. StarsIn(movieTitle, movieyear, starName) 

MovieSt ar (name, address, gender, b i r thdate)  
! h) When inserting a new PC, laptop, or printer, make sure that the model MovieExec (name, address, cert#,  networth) 

number did not previously appear in any of PC, Laptop, or Printer. Studio (name, address, presC#) 

! i) If the relation Product mentions a model and its type, then this model 
must appear in the relation appropriate to that type. You may assume that the desired condition holds before any change to the 

database is attempted. Also, prefer to modify the database, eyen if it means 
Exercise 7.4.3: 'Ci7rite the following as triggers or assertions. In each case, inserting tuples with NULL or default values, rather than rejecting the attempted 
disallow or undo the modification if it does not satisfy the stated constraint. 
The database schema is from the battleships example of Exercise 5.2.4. 

a) Assure that at all times, any star appearing in S ta r s In  also appears in 
Classes(class,  type, country, nmGuns, bore, displacement) Moviestar. 
Ships(name, c l a s s ,  launched) 
Batt les (name, date) b) Assure that at all times every m o ~ i e  executive appears as either a studio 
Outcornes(ship, b a t t l e ,  r e s u l t )  president, a producer of a movie: or both. 

* a) When a new class is inserted into Classes, also insert a ship with the c) *Assure that every movie has at least one male and one female star. 
name of that class and a NULL launch date. 

d) -issure that the number of movies made by any studio in any year is no 
b) When a new class is inserted with a displacement greater than 35,000 more than 100. 

tons, allow the insertion, but change the displacement to 35,000. 

c) No class may have more than 2 ships. e) Assure that the average length of all movies made in an)- year is no more 

! d) No country may have both battleships and battlecruisers. 

! e) No ship with more than 9 guns may be in a battle with a ship having 
fewer than 9 guns that was sunk. 

7.5 Summary of Chapter 7 

! f) If a tuple is inserted into Outcomes, check that the ship and battle arc + Key Constraints: We can declare an attribute or set of attributes t.o be a 
listed in Ships and Bat t les ,  respectively, and if not, insert tuples into key with a UNIQUE or PRIMARY KEY declaration in a relation schema. 

one or both of these relations, with NULL components where necessary. + Referential Integrity Constraints: lye can declare tha,t a value appearing 
! g) When there is an insertion into Ships or an update of the c l a s s  attribute in some attribute or set of attributes must also appear in the correspond- 

of Ships, check that no country has more than 20 ships. ing attributes of some tuple of another relation wit,h a REFERENCES or 
FOREIGN KEY declaration in a relation schema. 

! h) S o  ship may be launched before the ship that bears the name of the first 
ship's class. + Attribute-Based Check Constrain,ts: We can place a constraint on the 

! i) For every class, there is a ship with the name of that class. value of an attribute by adding the key~vord CHECK and the condition to 
be checked after the declaration of that attribute in its relation schema. 

!! j) Check: under all circumstances that could cause a violation, that no ship 
fought in a battle that was at  a later date than another battle in ~vhicll + Tuple-Based Check Constraints: IVe can place a constraint on the tuples 
that ship mas sunk. of a relation by adding the keyxl-ord CHECK and the condition to be checked 

to the declaration of the relation itself. 
! Exercise 7.4.4: \bi te the following as triggers or assertions. In each case, 

disalloh- or undo the modification if it does not satisfy the stated constraint. + Modifyirzg Constraints: A tuple-based check can be added or deleted \\-it11 
The problems are based on our running movie example: an ALTER statement for the appropriate table. 
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+ Assertions: We can declare an assertion as an element of a &tabse 
schema with the keyword CHECK and the condition to be checked. This 
condition may involve one or more relations of the database schema, and 
may involve the relation as a whole, e.g., with aggregation, as well as 
conditions about individual tuples. 

+ Invoking the Checks: Assertions are checked whenever there is a chang 
to one of the relations involved. Attribute- and tuple-based checks are 
only checked when the att,ribute or relation to which they apply changes 
by insertion or update. Thus, these constraints can be violated if they 
have subqueries. 

+ Diggers: The SQL standard includes triggers that specify certain events 
System Aspects of SQL 

(e.g., insertion, deletion, or update to a particular relation) that awaken 
them. Once awakened, a condition can be checked, and if true, a spec- 
ified sequence of actions (SQL statements such as queries and database Ifre now turn to the question of how SQL fits into a complete progran~ming 
modifications) will be executed. environment. In Section 8.1 we see how to embed SQL in programs that are 

written in an ordinary programming language, such as C. X critical issue is how 

7.6 References for Chapter 7 we move data betxveen SQL relations and the variables of the surrounding, or 
"host," language. 

The reader should go to the bibliographic notes for Chapter 6 for information Section 8.2 considers another way to combine SQL with general-purpose 
about how to get the SQL2 or SQL-99 standards doctnnents. References [j] programming: persistent stored modules, which are pieces of code stored as part 
and (41 surrey all aspects of active elements in database systems. [I] discusses of a database schema and executable on colnmand from the user. Sect,ion 8.3 
recent thinking regarding active elements in SQL-99 and future standards. Ref- covers additional system issues; such as support for a client-server model of 
erences [2] and [3] discuss HiPAC, an early prototype system that offered artircs 
database elements. I third progranlming approach is a "call-level interface," ~vhere we program 

in some conventional language and use a library of functions to access the 
1. Cochrane, R. J., K. Pirahesh, and N. Mattos, "Integrati~lg triggers anrl database. In Section 8.4 we discuss the SQL-standard library called SQLICLI, 

declarative constraints in SQL database systems," Int2. Conf. on V c y  for making calls from C programs. Then, in Section 8.5 we meet Java's JDBC 
Large Database Systems, pp. 567-579, 1996. (database connectivity), which is an alternative call-level interface. 

Then, Section 8.6 introduces us to the "transaction," an atomic unit of work. 
2. Dayal, U., et al., "The HiPAC project: combining active databases and IIany database applications, such as banking, require that operations on the 

timing constraints," SIGMOD Record 17:1, pp. 51-71), 1988. data appear atomic: or indivisible, even though a large number of concurrent 
3. lIcCarthy, D. R., and U. Dayal, "The architecture of an active database operations may be in progress at once. SQL provides features to allow us to 

management system," Proc. ACM SIGMOD Intl. Conf. on Monngemcr~t specify transactions, and SQL systems have mechanisms to make sure that 

of Data, pp. 215-224, 1989. what we call a tra~lsaction is indeed executed atomically. Finally, Section 8.7 
discusses how SQL controls unauthorized access to data, and how rve can tell 

4. x. I?'. Paton and 0. Diaz, "-lctive database systems," Computirtg Su1z~y.s the SQL systen~ what accesses arc authorized. 
31:l (March, 1999); pp. 63-103. 

5 .  lvidom, J. and S. Ceri, Active Database Systems, Itlorgan-Kaufiliann. San 8.1 SQL in a Programming Environment 
Francisco, 1996. 

To this point, lve have used the generic SQL interface in our examples. That is, 
Tve have assunled there is an SQL interpreter, which accepts and executes the 
sorts of SQL queries and commands that we have learned. Although provided 
as an option by almost all DBlIS's, this mode of operatio11 is actually rare. In 
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The Languages of the SQL Standard 

Implementations conforming to the SQL standard are required to support 
at  least one of the following seven host languages: ADA, C, Cobol, For- 
tran, ?\.I (formerly called Mumps), Pascal, and PL/I. Each of these should 
be familiar to the student of computer science, with the possible excep- 
tion of 11 or Mumps, which is a language used primarily in the medical 
community. We shall use C in our examples. 

- 
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practice, most SQL statements are part of some larger piece of software. A more 
realistic view is that there is a program in some conventional host language such 
as  C, but some of the steps in this program are actually SQL statements. In 
this section we shall describe one way SQL can be made to operate within a 
conventional program. 

A sketch of a typical programming system that involves SQL s ta ten~e~~ts  is 
Object-code in Fig. 8.1. There, we see the programmer writing programs in a host language. 

program but with some special "embedded" SQL statements that are not part of the 
host language. The entire program is sent to a preprocessor, which changes 

Figure 8.1: Processing programs with SQL statements embedded the embedded SQL statements into something that makes sense in the host 
language. The representation of the SQL could be as simple as a call to a 
function that takes the SQL statement as a character-string argunletlt and 
executes that SQL statement. One might first suppose that it is preferable to use a single h $ W F ;  either 

The preprocessed host-language program is then compiled in the usual man- do all colnputation in S$L or forget SQL and do all cornputation in a conven- 
ner. The DBMS vendor normally provides a library that supplies the ~lecessary tional language. Hall-ever, we can quickly dispense with the idea of omitting 
function definitions. Thus, the functions that implement SQL can be esecutcd. SQL when there are database operations involved. SQL systems greatly aid the 
and the whole program behaves as one unit. We also show in Fig. 8.1 the pos- programmer in writing database operations that can be executed efficiently, yet 
sibility that the programmer writes code directly in the host language, using that can be expressed at  a very high level. SQL takes from the programnler's 
these function calls as needed. This approach, often referred to as a call-level shoulders the need to understand how data is organized in storage or how to 
interface or CLI, will be discussed in Section 8.4. exploit that storage structure to operate efficiently on the database. 

On the other hand; there are many important things that SQL cannot do at 
8.1.1 The Impedance Mismatch Problem all. For esample, one cannot write an SQL query to compute the factorial of a 

The basic problem of connecting SQL statements with those of a con~entional number n [12! = n (li - 1) x . . . x 2 x 11, something that is an easy exercise in C Or 

Programming language is impedance mismatch, the fact that the data model of similar languages.l As another esample. SQL cannot format its output directly 
SQL differs so much from the models of other languages. .is we know. SQL into a convenient form such as a graphic. Thus, real database programming 
uses the relational dat,a model at  its core. Hoxvever, C and other common requires both SQL and a con~entional language; the latter is often referred to 

progralnmirig languages use a data model with int,egers, reals, arithn~etic. char- as the host language. 
acters, pointers, record structures, arrays, and so on. Sets are not represented 
directly in C or these other languages, while SQL does not use pointers. loops 
and branches, Or many other common programming-language constructs. -4s '\\Ie should be careful here. There are extensions to the basic SQL language, such as 
a jumping or passing data between SQL and other languages is not recursive SQL discussed in section 10.4 or the SQL/PS\I discussed in Section 8.2, that do 

~ ~ ~ ~ ~ g h t f o r ' v a r d ,  and a mechanism must be devised to allow the developn~ent of offer "Turing completeness,:' i.e.; the ability to compute anything that can be in 
any other programnling language. I{oxe\.er, these extensions Were nelrer intended for general programs that use both SQL and another language. 
purpose calculation, and we do not regard them as general-purpose languages. 
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8.1.2 The SQL/Host Language Interface 

The transfer of information between the database, which is accessed only by 
SQL statements, and the host-language program is through variables of the 
host language that can be read or written by SQL statements. All such shared 
variables are prefixed by a colon when they are referred to within an SQL 
statement, but they appear without the colon in host-language statements. 

When we wish to use an SQL statement within a host-language program. 
we warn that SQL code is coming with the keywords EXEC SQL in front of the 
statement. A typical system will preprocess those statements and replace them 
by suitable function calls in the host language, making use of an SQL-related 
lihrary of functions. 

A special variable, called SQLSTATE in the SQL standard, serves to con- 
nect the host-language program with the SQL execution system. The type of 
SQLSTATE is an array of five characters. Each time a function of the SQL library 
is called, a code is put in the variable SQLSTATE that indicates any problenls 
found during that call. The SQL standard also specifies a large number of 
five-character codes and their meanings. 

For example, '00000' (five zeroes) indicates that no error condition oc- 
curred, and '02000' indicates that a tuple requested as part of the answer to 
an SQL query could not be found. We shall see that the latter code is very 
important, since it allows us to create a loop in the host-language program that 
examines tuples from some relation one-at-a-time and to break the loop after 
the last tuple has been examined. The value of SqLSTATE can be read bj- the 
host-language program and a decision made on the basis of the value found 
there. 

8.1. SQL IAT A PROGR.4XfAIING ENVIROAWEArT 

EXEC SqL BEGIN DECLARE SECTION; 
char studioName C501, studioAddr C2561; 
char SQLSTATECGI ; 

EXEC SQL END DECLARE SECTION; 

The first and last statements are the required beginning arid end of the declare 
section. In the rriiddle is a statement declaring two va~iables studioName and 
studiobddr. These are both character arrays and, as we shall see, they can be 
used to hold a name and address of a studio that are made into a tuple and 
inserted into the Studio relation. The third statement declares SQLSTATE to 
be a six-character array." 

8.1.4 Using Shared Variables 

A shared valiable can be used in SQL statements in places where we expect or 
allow a constant. Recall that shared variables are preceded by a colon when 
so used. Here is an example in which we use the variables of Example 8.1 as 
components of a tuple to be inserted into relation Studio. 

Example 8.2 : In Fig. 8.2 is a sketch of a C function getstudio that prompts 
the user for the name and address of a studio, reads the responses, and inserts 
the appropriate tuple into Studio. Lines (1) through (4) are the declarations 
we learned about in Example 8.1. 1% omit the C code that prints requests and 
scans test to fill the t~vo arrays studioName and studioAddr. 

Then, in lines (5) and (6) is an embedded SQL statement that is a conven- 
tional INSERT statement. This statement is preceded by the key~vords EXEC SQL 
to indicate that it is indeed an embedded SQL statement rather than ungram- 
matical C code. The preprocessor suggested in Fig. 8.1 will look for EXEC SQL 

8.1.3 The DECLARE Section to detect statements that must be preprocessed. 
The values inserted by lines ( 5 )  and (6) are not explicit constants, as they 

To declare shared variables, we place their declarat,ions between two embedded n-ere in previous esamples such as in Example 6.34. Rather, the values appear- 
SQL statements: ing in line (6) are shared variables ~vhose current values become components of 

the inserted tuple. 

EXEC SQL BEGIN DECLARE SECTION; There are many kinds of SQL statements besides an INSERT statement that 
... call be embedded into a host language, using shared variables as an interface. 

EXEC SQL END DECLARE SECTION; Each embedded SQL statement is preceded by EXEC SqL in the host-language 
program and may refer to shared ~ariables in place of constants. .kny SQL 

Khat appears between them is called the declare section. The form of rari- statelnellt that does not return a result (i.e., is not a cluer~) can be embedded. 
able declarations in the declare section is whatever the host language requires. Esa~nplcs of embeddable SQL statements include delete- and update-statements 
.\loreover, it ollly makes sense to declare variables to have types that both the and those statetnellts that create: modify, or drop schema elements such as 
host language and SQL can deal with, such as integers, reals, and character tables and views. 
strings or arrays. 2iVe shall use six characters for the five-character value of SQLSTATE because in programs 

to follo\v we want to use the C function strcrtip to  test whether SQLSTATE has a certain \due.  
Since strcmp expects strings to be terminated by ' \ O 1 ,  we need a sixth character for this 

8-1: The following statements might appear in a C function that endmarker. The sixth character must be set initially to ' \ O J ,  but we shall not show this updates the Studio relation: assignment in programs to follow. 
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void g e t s t u d i o 0  { 

1 1 EXEC SQL BEGIN DECLARE SECTION; 
2) char  studioName [50] , s t u d i o ~ d d r  [2561 ; 
3) char  SQLSTATE [GI ; 
4) EXEC SQL END DECLARE SECTION; 

/* p r i n t  reques t  t h a t  s t u d i o  name and address  
be en te red  and read  response i n t o  v a r i a b l e s  
studioName and studioAddr */ 

5 EXEC SQL INSERT INTO Studio(name, address)  
6 )  VALUES (:studioName, :s tudioAddr);  

1 

Figure 8.2: Using shared variables to  insert a new studio 

However, select-from-where queries are not embeddable directly into a host 
language, because of the "impedance mismatch." Queries produce sets of tuples 
as a result, while none of the major host languages supports a set data type 
directly. Thus, embedded SQL must use one of two mechanisms for connecting 
the result of queries with a host-language program. 

1. A query that produces a single tuple can have that  tuple stored in shared 
variables, one variable for each component of the tuple. To do so. 11-e us0 
a modified form of select-from-where statement called a single-row select. 

2. Queries producing more than one tuple can be executed if we declare a 
cursor for the query. The cursor ranges over all tuples in the answer 
relation, and each tuple in turn can be fetched into shared variables and 
processed by the host-language program. 

We shall consider each of these mechanisms in turn. 

Example 8.3 : We shall write a C function to read the name of a studio and 
print the net worth of the studio's president. A sketch of this function is sho~x-n 
in Fig. 8.3. It begins with a declare section, lines (1) through (S), for the 
variables we shall need. Sext ,  C statements that TX-e do not show explicitly 
obtain a studio name from the standard input. 

Lines (6) through (9) are the single-row select statement. It is quite similar 
to  queries we have already seen. The two differences are that the value of 
variable studioName is used in place of a constant string in the condition of 
line (9), and there is an INTO clause a t  line (7) that tells us where to  put the 
result of the query. In this case, we expect a single tuple, and tuples have only 
one component, that for attribute networth. The value of this one component 
of one tuple is stored in the shared variable presNetWorth. 

void pr in tNetWor th0  { 

EXEC SQL BEGIN DECLARE SECTION; 
char  studioName C501; 
i n t  presNetWorth; 
char  SQLSTATE [GI ; 

EXEC SQL END DECLARE SECTION; 

/* p r i n t  r e q u e s t  t h a t  s t u d i o  name be en te red .  
r e a d  response i n t o  studioName */ 

EXEC SQL SELECT networth 
INTO :presNetWorth 
FROM S t u d i o ,  MovieExec 
IV'HERE presC# = c e r t #  AND 

Studio.name = :studioName; 

/* check t h a t  SOLSTATE h a s  a l l  0 ' s  and i f  s o ,  p r i n t  
t h e  va lue  of presNetWorth */ 

1 

8.1.5 Single-Row Select Statements Figure 8.3: -1 single-row select embedded in a C function 
The form of a single-row select is the same as an ordinary select-from-n-h~r~ 
statement, except that following the SELECT clause is the keyword INTO alld a 
list of shared ~ariables. These shared variables are preceded by colons, as is the 8.1.6 Cursors 
case for all shared variables within an SQL statement. If the result of the query 
is a single tuple, this tuple's components become the values of these variables. The most versatile way to connect SQL queries to a host language is with a 
If the result is either no tuple or more than one tuple, then no assignmelit to cursor that runs through the tuples of a relation. This relation can be a stored 
the shared variables are made, and an appropriate error code is written in the table, or it  can be something that  is generated by a query. To create and use a 
variable SQLSTATE. cursor, xve need the follo~ving statements: 
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1. A cursor declaration. The simplest form of a cursor declaration consists Example 8.4 : Suppose we wish to determine the number of movie executives 
of: whose net worths fall into a sequence of bands of exponentially growing size, 

each band corresponding to a number of digits in the net worth. We shall 
(a) An introductory EXEC SQL, like all embedded SQL statements. design a query that retrieves the networth field of all the MovieExec tuples 

into a shared variable called worth. A cursor called execcursor will range over 
(b) The keyword DECLARE. all these one-component tuples. Each time a tuple is fetched, we compute the 
(c) The name of the cursor. number of digits in the integer worth and increment the appropriate element 

(d) The keywords CURSOR FOR. of an array counts. 
The C function worthRanges begins in line (1) of Fig. 8.4. Line (2) declares 

(e) An expression such as a relation name or a select-from-where expres- some variables used only by the C function, not by the embedded SQL. The 
sion, whose value is a relation. The declared cursor ranges over the array counts holds the counts of executives in the various bands, digits coullts 
tuples of this relation; that is, the cursor refers to each tuple of this the number of digits in a net worth, and i is an index ranging over the elements 
relation, in turn, as we "fetch" tuples using the cursor. of array counts. 

In summary, the form of a cursor declaration is 
1) void worthRanges0 C 

EXEC SQL DECLARE <cursor> CURSOR FOR <query> 
int i, digits, counts[15] ; 
EXEC SQL BEGIN DECLARE SECTION; 

2. .4 statement EXEC SQL OPEN, followed by the cursor name. This state- int worth; 
ment initializes the cursor to a position where it is ready to retrieve the char SqLSTATE [6] ; 
first tuple of the relation over which the cursor ranges. EXEC SqL END DECLARE SECTION; 

EXEC SqL DECLARE execcursor CURSOR FOR 
3. One or more uses of a fetch statement. The purpose of a fetch statenlent SELECT networth FROM MovieExec; 

is to get the next tuple of the relation over which the cursor ranges. If 
t,he tuples have been exhausted, then no tuple is returned, and the valuc EXEC SQL OPEN execcursor; 
of SQLSTATE is set to ' 02000 ' , a code that means "no tuple found." The for(i=O; i<15; i++) countsCi1 = 0; 
fetch statement consists of the following components: while(1) I 

EXEC SQL FETCH FROM execcursor INTO :worth; 
(a) The keywords EXEC SQL FETCH FROM. if (NO-MORE-TUPLES) break ; 
(11) The name of the cursor. digits = 1; 

while((worth /= 10) > 0) digits++; 
(c) The keyword INTO. 

if (digits <= 14) counts [digits] ++; 
(d) A list of shared variables, separated by commas. If there is a tuple to 

fetch, then the components. of this tuple are placed in these variables. EXEC SQL CLOSE execcursor; 
in order. for(i=O; i<15; i++) 

printf("digits = %d: number of execs = %d\nV, 
That is, the form of a fetch statement is: i , counts Cil ) ; 

EXEC SQL FETCH FROM <cursor> INTO <list of variables> 

4. The statement EXEC SQL CLOSE follo~ed by the name of the cursor. This 
statement closes the cursor, which now no longer ranges over tuples of the 
relation. It can, however, be reinitialized by another OPEN statement, in 
which case it ranges anew over the tuples of this relation. 

Figure 8.4: Grouping executive net norths into exponential bands 

Lines (3) through (6) are an SQL declare section in which shared vari- 
able worth and the usual SQLSTATE are declared. Lines (7) and (8) declare 
execcursor to be a cursor that ranges over the values produced by the query 
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on line (8). This query simply asks for the networth components of all the tu- 
ples in MovieExec. This cursor is then opened at  line (9). Line (10) completes 
the initialization by zeroing the elements of array counts. 

The main work is done by the loop of lines (11) through (16). At line (12) 
a tuple is fetched into shared variable worth. Since tuples produced by the 
query of line (8) have only one component, we need only one shared variable, 
although in general there would be as many variables as there are components 
of the retrieved tuples. Line (13) tests whether the fetch has been successful. 
Here, uTe use a macro NOBORE-TUPLES, which we may suppose is defined by 

#define NO-MORE-TUPLES !(strcmp(SQLSTATE,u02000")) 

Recall that "02000" is the SQLSTATE code that means no tuple was found. 
Thus, line (13) tests if all the tuples returned by the query had previously been 
found and there was no "next" tuple to be obtained. If so, we break out of the 
loop and go to line (17). 

If a tuple has been fetched, then at line (14) we initialize the number of digits 
in the net worth to 1. Line (15) is a loop that repeatedly divides the net rvorth 
by 10 and increments digits by 1. When the net worth reaches 0 after division 
by 10, digits holds the correct nu~nber of digits in the value of worth that was 
originally retrieved. Finally, line (16) increments the appropriate element of the 
array counts by 1. We assume that the number of digits is no more than 11. 
However, should there be a net worth with 13 or more digits, line (16) rvill not 
increment any element of the counts array. since there is no appropriate range: 
i.e., enormous net worths are thrown away and do not affect the statistics. 

Line (17) begins the wrap-up of the function. The cursor is closed: and lincs 
(18) and (19) print the values in the counts array. O 

8.1.7 Modifications by Cursor 

When a cursor ranges over the tuples of a base table (i.e., a relation that is stored 
in the database, rather than a view or a relation constructed by a query). then 
one can not only read and process the value of each tuple, but one can update or 
delete tuples. The syntax of these UPDATE and DELETE statements are the same 
as we encountered in Section 6.5, with the exception of the WHERE clause. Thai 
clause may only'be WHERE CURRENT OF folloxed by the name of the cursor. Of 
course it is possible for the host-language program reading the tuple to appl? 
whatever condition it likes to the tuple before deciding whether or not to delete 
or update it. 
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relation that was the result of some query, we can only have a lasting effect on 
the database if the cursor ranges over a stored relation such as MovieExec. 

1) void changeworth() { 

2) EXEC SQL BEGIN DECLARE SECTION; 
3) int certNo, worth; 
4) char execName [311, execAddr C2561, SQLSTATECG] ; 
5) EXEC SQL END DECLARE SECTION; 
6) EXEC SQL DECLARE execcursor CURSOR FOR MovieExec; 

EXEC SQL OPEN execcursor; 
while(1) { 

EXEC SQL FETCH FROM execcursor INTO :execName, 
:execAddr, :certNo, :worth; 

if (NO-MORE-TUPLES) break; 
if (worth < 1000) 

EXEC SQL DELETE FROM MovieExec 
WHERE CURRENT OF execcursor; 

else 
EXEC SQL UPDATE MovieExec 

SET networth = 2 * networth 
WHERE CURRENT OF execcursor; 

1 
EXEC SQL CLOSE execcursor; 

Figure 8.5: Modifying executive net worths 

Lines (8) through (14) are the loop, in which the cursor execcursor refers 
to each tuple of MovieExec, in turn. Line (9) fetches the current tuple into 
the four variables used for this purpose; note that only worth is actually used. 
Line (10) tests whether rve have exhausted the tuples of MovieExec. lire have 
again used the macro N0910RE-TUPLES for the condition that variable SqLSTATE 
has the "no more tuples" code 1102000w. 

Example 8.5: In Fig. 8.5 we see a C function that looks a t  each tuple of 
MovieExec and decides either to delete the tuple or to double the net worth. 111 In the test of line (11) we ask if the net worth is under $1000. If so, the 
lines (3) and (4) we declare variables that correspond to the four attributes of tuple is deleted by the DELETE statement of line (12). Xote that the WHERE 
MovieExec, as ~wl l  as the necessary SQLSTATE. Then, at  line (6), execCursor is clause refers to the cursor, so the current tuple of MovieExec, the one we just 
declared to range over the stored relation MovieExec itself. Note that, while Ire fetched, is deleted from MovieExec. If the net worth is at least $1000, then at  
could try to modify tuples through a cursor that ranged over some tenlporar!. line (14), the net worth in the same tuple is doubled, instead. 
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8.1.8 Protecting Against Concurrent Updates 
Suppose that as R-e examine the net worths of movie executives using the func- 
tion worthRanges of Fig. 8.4, some other process is modifying the underlying 
MovieExec relation. it7e shall have more to say about several processes accessing 
a single database simultaneously when we discuss transactions in Section 8.6. 
However, for the moment, let us simply accept the possibility that there are 
other processes that could modify a relation as we use it. 

What should we do about this possibility? Perhaps nothing. We might be 
happy with approximate statistics, and we don't care whether or not we count 
an executive who was in the process of being deleted, for example. Then, ne  
simply accept what tuples we get through the cursor. 

However, we may not wish to allow concurrent changes to affect the tuples 
we see through this cursor. Rather, we may insist on the statistics being taken 
oa the relation as it exists at  some point in time. We cannot control exactly 
which modifications to MovieExec occur before our gathering of statistics, but 
we can expect that all modification statements appear either to have occurred 
completely before or completely after the function worthRanges ran, regardless 
of how many executives were affected by one modification statement. To obtain 
this guarantee, we may declare the cursor ansensitive to concurrent changes. 

Example 8.6: We could modify lines (7) and (8) of Fig. 8.4 to be: 

7) EXEC SQL DECLARE execcursor INSENSITIVE CURSOR FOR 
8) SELECT networth FROM MovieExec; 

If execcursor is so declared, then the SQL system will guarantee that changes 
to relation MovieExec made between one opening and closing of execcursor 
will not affect the set of tuples fetched. 

An insensitive cursor could be expensive, in the sense that the SQL system 
might spend a lot of time managing data accesses to assure that the cursor 
is insensitive. Again, a discussion of managing concurrent operations on the 
database is deferred to Section 8.6. However, one simple way to support an 
insensitive cursor is for the SQL system to hold up any process that could 
access relations that our insensitive cursor's query uses. 

There are certain cursors ranging over a relation R about which we may say 
with certainty that they will not change R. Such a cursor can run simultane- 
ously with an insensitive cursor for R, without risk of changing the relation R 
that the insensitive cursor sces. If we declare a cursor FOR READ ONLY, then the 
database system can be sure that the underlying relation will not be modified 
because of access to the relation through this cursor. 

Example 8.7 : iVe could append after line (8) of Fig. 8.4 a line 

FOR READ ONLY; 

If SO, then any attempt to execute a modification through cursor execcursor 
~ 0 u l d  cause an error. 
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8.1.9 Scrolling Cursors 

Cursors give us a choice of how we move through the tuples of the relation. 
The default, and most common choice is to start at  the beginning and fetch the 
tuples in order, until the end. However, there are other orders in which tuples 
may be fetched, and tuples could be scanned several times before t,he cursor is 
closed. To take advantage of these options, we need to do two things. 

1. When declaring the cursor, put the keyword SCROLL before the keyword 
CURSOR. This change tells the SQL system that the cursor may be used 
in a manner other than moving forward in the order of tuples. 

2. In a FETCH statement, follow the keyword FETCH by one of several options 
that tell where to find the desired tuple. These options are: 

(a) NEXT or PRIOR to get the next or previous tuple in the order. Recall 
that these tuples are relative to the current position of the cursor. 
NEXT is the default if no option is specified, and is the usual choice. 

(b) FIRST or LAST to get the first or last tuple in the order. 

(c) RELATIVE followed by a positive or negative integer, which indicates 
how many tuples to move forward (if the integer is positive) or back- 
ward (if negative) in the order. For instance, RELATIVE 1 is a syn- 
onym for NEXT. and RELATIVE -1 is a synonym for PRIOR. 

(d) ABSOLUTE followed by a positive or negative integer, which indicates 
the position of the desired tuple counting from the front (if positive) 
or back (if negative). For instance, ABSOLUTE 1 is a synonym for 
FIRST and ABSOLUTE -1 is a synonym for LAST. 

Example 8.8 : Let us rewrite the function of Fig. 8.5 to begin at  the last tuple 
and move backward through the list of tuples. First, we need to declare cursor 
execcursor to be scrollable, which we do by adding the keyword SCROLL in 
line (6), as: 

6) EXEC SqL DECLARE execcursor SCROLL CURSOR FOR MovieExec; 

Also. we need to initialize the fetching of tuples with a FETCH LAST state- 
ment. and in the loop )ye use FETCH PRIOR. The loop that was lines ($) through 
(14) in Fig. 8.5 is rewritten in Fig. 8.6. The reader should not assume that there 
is any advantage to reading tuples in the reverse of the order in ivhich the-  are 
stored in MovieExec. O 

8.1.10 Dynamic SQL 

Our model of SQL embedded in a host language has been that of specific SQL 
queries and commands within a host-language program. An alternative style 
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EXEC SQL FETCH LAST FROM execcursor INTO :execName, 
:execAddr, :certNo, :worth; 

while(1) C 
/* same a s  l i n e s  (10) through (14) */ 
EXEC SQL FETCH PRIOR FROM execcursor INTO :execName, 

:execAddr, :certNo, :worth; 
1 

Figure 8.6: Reading MovieExec tuples backwards 

of embedded SQL has the statements themselves be computed by the host 
language. Such statements are not known at compile time, and thus cannot be 
handled by an SQL preprocessor or a host-language compiler. 

An example of such a situation is a program that prompts the uscr for 
an SQL query, reads the query, and then executes that query. The gcncric 
interface for ad-hoc SQL queries that me assumed in Chapter 6 is an esample 
of just such a program; every commercial SQL system provides this type of 
generic SQL interface. If queries are read and executed at  run-time, there is 
nothing that can be done at  compile-time. The query has to be parsed and a 
suitable way to execute the query found by the SQL system, immediately aftcr 
the query is read. 

The host-language program must instruct the SQL system to take the char- 
acter string just read, to turn it into an executable SQL statement, and finally to 
execute that statement. There are two dynamic SQL statements that perform 
thcsc two steps. 

1. EXEC SQL PREPARE, followed by an SQL variable V, the keyword FROM. 
and a host-language variable or expression of character-string type. This 
statement causes the string to be treated as an SQL statement. Presum- 
ably, the SQL statement is parsed and a good way to execute it is found 
t ~ y  the SQL system, but the statement is not executed. Rather, the plan 
for executing the SQL statement becomes the value of V. 

2. EXEC SQL EXECUTE followed by an SQL variable such as V in (1). This 
statement causes the SQL statement denoted by 17 to be esecuted. 

Both steps can be combined into one, with the statement: 
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Example 8.9: In Fig. 8.7 is a sketch of a C program that reads text from 
standard input into a variable query, prepares it, and executes it. The SQL 
variable SQLquery holds the prepared query. Since the query is only executed 
once, the line: 

EXEC SQL EXECUTE IMMEDIATE :query; 

could replace lines (6) and (7) of Fig. 8.7. 

1) void readquery0 

2) EXEC SQL BEGIN DECLARE SECTION; 
3) char *query; 
4) EXEC SQL END DECLARE SECTION; 

5 /* prompt user  f o r  a query, a l l o c a t e  space (e .g . ,  
use malloc) and make shared va r i ab l e  :query point  
t o  t h e  f i r s t  charac ter  of t h e  query */ 

6) EXEC SQL PREPARE SQLquery FROM :query; 
7) EXEC SQL EXECUTE SQLquery; 

J 

Figure 8.7: Preparing and executing a dynamic SQL query 

8.1.11 Exercises for Section 8.1 

Exercise 8.1.1: Write the following embedded SQL queries, based on the 
database schema 

Product (maker, model, type) 
PC(mode1, speed, ram, hd, r d ,  p r i ce )  
Laptop(mode1, speed, ram, hd, screen ,  p r i ce )  
Printer(mode1, co lor ,  type,  p r i ce )  . 

of Exercise 3.2.1. You may use any host language with which you are familiar, 
and details of host-language programming may be replaced by clear comments 
if you n-ish. 

EXEC SQL EXECUTE IMMEDIATE * a) Ask the user for a price and find the PC whose price is closest to the 
desired price. Print the maker, model number, and speed of the PC. 

follol~cd by a string-valued shared variable or a string-valued expression. The 
disadvantage of combining these two parts is seen if we prepare a st,atenient b) Ask the user for minimum values of the speed, R X ~ ~ I ,  hard-disk size, and 
once and then execute it many times. With EXECUTE IMMEDIATE the cost of screen size that they will accept. Find all the laptops that satisfy these 
preparing the statement is borne each time the statenlent is executed, rather requirements. Print their specifications (all attributes of laptop) and 
than borne only once, when we prepare it. their manufacturer. 
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! C) Ask the user for a manufacturer. Print the specifications of all products 
by that manufacturer. That is, print the model number, product-type. 
and all the attributes of whichever relation is appropriate for that type. 

!! d) Ask the user for a "budget" (total price of a PC and printer), and a 
minimum speed of the PC. Find the cheapest "system" (PC plus printer) 
that is within the budget and minimum speed, but make the printer a 
color printer if possible. Print the model numbers for the chosen system. 

e) Ask the user for a manufacturer, model number, speed, RAM, hard-disk 
size, speed and kind or the removable disk, and price of a new PC. Check 
that there is no PC with that model number. Print a warning if so, and 
otherwise insert the information into tables Product and PC. 

*! f )  Lower the price of all "old" PC's by $100. Make sure that any "new" PC 
inserted during the time that your program is running does not have its 
price lowered. 

Exercise 8.1.2: Write the follo~ving embedded SQL queries, based on thc 
database schema 

Classes(class,  type, country, numGuns, bore, displacement) 
Ships(name , c las s ,  launched) 
Bat t les  (name, date) 
Outcomes(ship, b a t t l e ,  r e su l t )  

of Exercise 5.2.4. 

a) The firepower of a ship is roughly proportional to the number of gun5 
times the cube of the bore of the guns. Find the class with the largest 
firepower. 

! b) Ask the user for the name of a battle. Find the countries of the ships 
involved in the battle. Print the country with the most ships sunk and 
the country with the most ships damaged. 

c) Ask the user for the name of a class and the other information r e q u i d  
for a tuple of table Classes. Then ask for a list of the names of the ships 
of that class and their dates launched. However, the user need not givc 
the first name, which will be the name of the class. Insert the information 
gathered into Classes and Ships. 

! d) Examine the Bat t les ,  Outcomes, and Ships relations for ships that 11-ere 
in battle before they were launched. Prompt the user when there is an 
error found, offering the option to change the date of launch or the date 
of the battle. ;\lake whichever change is requested. 

*! Exercise 8.1.3 : In this exercise, our goal is to find all PC's in the relation 
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PC(mode1, speed, ram, hd, r d ,  p r i ce )  

for which there are at  least two more expensive PC's of the same speed. While 
there are many ways we could approach the problem, you should use a scrolling 
cursor in this exercise. Read the tuples of PC ordered first by speed and then 
by price.  Hint: For each tuple read: skip ahead two tuples to see if the speed 
has not changed. 

8.2 Procedures Stored in the Schema 

In this section, we introduce you to a recent SQL standard called Persistent, 
Stored Modules (SQL/PSSf, or just PSRI, or PSM-96). Each commercial DBMS 
offers a way for the user to store with a database schema some functions or 
procedures that can be used in SQL queries or other SQL statements. These 
pieces of code are written in a simple, general-purpose language, and allow us 
to perform, ~ i t h i n  the database itself, computations that cannot be expressed 
in the SQL query language. In this book, x e  shall describe the SQL/PSA,l 
standard, which captures the major ideas of these facilities, and which should 
help you understand the language associated with any particular system. 

In PSM, you define modules, which are collections of function and procedure 
definitions, temporary relation declarations, and several other optional decla- 
rations. We discuss modules further in Section 8.3.7; here we shall discuss only 
the functions and procedules of PSlI. 

8.2.1 Creating PSM Functions and Procedures 

The major elements of a procedure declaration are 

CREATE PROCEDURE <name> (<parameters>) 
loca l  declara t ions  
procedure body; 

This form should be familiar from a number of programming languages; it con- 
sists of a procedure name, a parenthesized list of parameters, some optional 
local-variable declarations. and the executable body of code that defines the 
procedure. -1 function is defined in almost the same way, except that the key- 
word FUNCTION is used and there is a return-value type that must be specified. 
That is, the elements of a function definition are: 

CREATE FUNCTION <name> (<parameters>) RETURNS <type> 
loca l  declarations 
function body; 

The parameters of a procedure are triples of mode-name-type, much like 
the parameters of ODL methods. which we discussed in Section 1.2.7. That 
is, the parameter name is not only followed by its declared type, as usual in 
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programming languages, but it is preceded by a "mode," which is either 18, 
OUT, or INOUT. These three keywords indicate that the parameter is input-only, 
output-only, or both input and output, respectively. IN is the default, and can 
be omitted. 

Function parameters, on the other hand, may only be of mode IN. That is, 
PSM forbids side-effects in functions, so the only way t o  obtain information 
from a function is through its return-value. We shall not specify the I N  mode 
for function parameters, although we do so in procedure definitions. 

Example 8.10 : While we have not yet learned the variety of statements that 
can appear in procedure and function bodies, one kind should not surprise 
us: an SQL statement. The limitation on these statements is the same as 
for embedded SQL, as we introduced in Section 8.1.4: only single-row-select 
statements and cursor-based accesses are permitted as queries. In Fig. 8.8 is a 
PSM procedure that takes two addresses - an old address and a new address - 
and changes to  the new address the address attribute of every star who lived 
at  the old address. 

1) CREATE PROCEDURE Move( 
2) IN oldAddr VARCHAR(255), 
3) IN newAddr VARCHAR(255) 

) 
4) UPDATE MovieStar 
5) SET address = newAddr 
6) WHERE address = oldAddr; 

Figure 8.8: A procedure t o  change addresses 

Line (1) introduces the procedure and its name, Move. Lines (2) and (3) 
contain the two parameters, both of which are input parameters whose type 
is variable-length character strings of length 255. Note that this type is con- 
sistent with the type we declared for the attribute address of MovieStar in 
Fig. 6.16. Lines (4) through (6) are a conventional UPDATE statement. However. 
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~ h a t ' i s ,  the keyword CALL is followed by the name of the procedure and 
a parenthesized list of arguments, as in most any language. This call can, 
however, be made from a variety of places: 

i.  From a host-language program, in which it might appear as 

EXEC SQL CALL FOO( : X, 3) ; 

for instance. 

ii. As a statement of another PSM function or procedure. 

iii. As an SQL command issued to the generic SQL interface. For ex- 
ample, we can issue a statement such as 

CALL Foo(1, 3) ; 

t o  such an interface, and have stored procedure Foo executed with 
its two parameters set equal to  1 and 3, respectively. 

Note that, i t  is not permitted to call a function. You invoke functions in 
PSXI as you do in C: use the function name and suitable arguments a5 
part of an expression. 

2. The return-statement: Its form is 

RETURN <expression>; 

This statement can only appear in a function. It evaluates the espression 
and sets the return-value of the function equal to  that  result. Hotvever, 
a t  variance with common programming languages. the return-statement 
of PSAI does not terminate the function. Rather, control continues with 
the following statement, and it is possible that the return-value will be 
changed before the function completes. 

3. Declarations of local variables: The statement form 
notice that the parameter names can be used as if they were constants. Unlike 
host-language variables. xhich require a colon prefix when used in SQL (see DECLARE <name> <type>; 
Section 8.1 2), parameters and other local variables of PSI1 procedures and 
functions require no colon. declares a variable xi th  the given name to hale  the type. This 

\rariable is local, and its value 1s not preserved bg the DBlIS after a 
8.2.2 Some Simple Statement Forms in PSM ning of the function or procedure. Declarations must precede executable 

statements in the function or procedure body. Let us begin with a potpourri of statement forms that are easy to  master. 

1. The call-statement: The form of a procedure call is: 1. Assignment Statements: The form of a n  assignment is: 

CALL <procedure name> (<argument list>); SET <variable> = <expression>; 
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Except for the introductory keyword SET, assignment in PSM is quite 
like assignment in other languages. The expression on the right of the 
equal-sign is evaluated, and its value becomes the value of the variable on 
the left. NULL is a permissible expression. The expression may even be a 
query, as long as it returns a single value. 

5 .  Statement groups: We can form a list of statements ended by semicolons 
and surrounded by keywords BEGIN and END. This construct is treated 
as a single statement and can appear anywhere a single statement can. 
In particular, since a procedure or function body is expected to be a 
single statement, we can put any sequence of statements in the body by 
surrounding them by BEGIN. . .END. 

6. Statement labels: We shall see in Section 8.2.5 one reason why certain 
statements need a label. We label a statement by prefixing it with a 
name (the label) and a colon. 

8.2.3 Branching Statements 

For our first complex PSM statement type, let us consider the if-statement. 
The form is only a little strange; it differs from C or similar languages in that: 

1. The statement ends with keywords END IF. 

2. If-statements nested within the else-clause are introduced with the single 
word ELSEIF. 

Thus, the general form of an if-statement is as suggested by Fig. 8.9. Thc 
condition is any boolean-valued expression, as can appear in the WHERE clause 
of SQL statements. Each statement list consists of statements ended by semi- 
colons, but does not need a surrounding BEGIN. . .END. The final ELSE and its 
statement(s) are optional; i.e., IF. . .THEN. . .END IF alone or with ELSEIF's is 
acceptable. 

IF <condition> THEN 
<statement list> 

ELSEIF <condition> THEN 
<statement l is t> 

ELSEIF 

ELSE <statemenz l i s t >  
END IF; 

Figure 8.9: The form of an if-statement 
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Example 8.11 : Let us write a function to take a year y and a studio s ,  and 
return a boolean that is TRUE if and only if studio s produced a t  least one 
black-and-white movie in year y or did not produce any movies a t  all in that 
year. The code appears in Fig. 8.10. 

1) CREATE FUNCTION BandW(y INT, s CHAR(15)) RETURNS BOOLEAN 

IF NOT EXISTS( 
SELECT * FROM Movie WHERE year = y AND 

studioName = s) 
THEN RETURN TRUE; 
ELSEIF 1 <= 

(SELECT COUNT(*) FROM Movie WHERE year = y AND 
studioName = s AND NOT incolor)  

THEN RETURN TRUE; 
ELSE RETURN FALSE; 
END IF; 

Figure 8.10: If there are any movies at all, then at  least one has t.o be in 
black-and-white 

Line (1) introduces the function and includes its arguments. We do not need 
to specify a mode for the arguments, since that can only be IN for a function. 
Lines (2) and (3) test for the case where there are no movies at all by studio 
s in year y, in which case we set the return-value to TRUE at  line (4). Note 
that line (4) does not cause the function to return. Technically, it is the flow of 
control dictated by the if-statements that causes control to jump from line (4) 
to line (9), where the function completes and returns. 

If studio s made movies in year y, then lines (5) and (6) test if at least one 
of them aas not in color. If so, the return-value is again set to true, this time 
at line (7). In the remaining case, studio s made movies but only in color, so 
we set the return-value to FALSE at line (8). 

8.2.4 Queries in PSM 

There are several ways that select-from-where queries are used in PSlI. 

1. Subqueries can be used in conditions. or in general, any place a subquery 
is legal in SQL. We saw two examples of subqueries in lines (3) and (6) 
of Fig. 8.10, for instance. 

2. Queries that return a single value can be used as the right sides of assign- 
ment statements. 



370 CHAPTER 8. SYSTEM ASPECTS OF SQL 8.2. PROCEDURES STORED IN THE SCIIEIbfA 371 

3. A single-row select statement is a legal statement in PSM. Recall this One often labels the LOOP statement, so it is possible to break out of the loop, 
statement has an INTO clause that specifies variables int,o which the corn- using a statement: 
ponents of the single returned tuple are placed. These variables could be 
local variables or parameters of a PSh,I procedure. The general form was LEAVE <loop l abe l> ;  
discussed in the context of embedded SQL in Section 8.1.5. 

In the common case that the loop involves the fetching of tuples via a cursor, 
4. We can declare and-use a cursor, essentially as it was described in Set- we often wish to lea\-e the loop when there are no more tuples. I t  is useful to 

tion 8.1.6 for embedded SQL. The declaration of the cursor, OPEN, FETCH, declare a condition name for the SQLSTATE value that indicates no tuple found 
and CLOSE statements are all as described there, with the exceptions that: ( 02000 ' , recall); we do so with: 

(a) No EXEC SQL appears in the statements, and DECLARE Not-Found CONDITION FOR SQLSTATE '02000'; 
(b) The variables, being local, do not use a colon prefix. 

More generally, we can declare a condition with any desired name corresponding 
to any SQLSTATE value by 

CREATE PROCEDURE SomeProc(1N studioName CHAR(15)) DECLARE <name> CONDITION FOR SQLSTATE <value>; 

DECLARE presNetWorth INTEGER; We are now ready to take up an example that ties together cursor operations 
and loops in PSII. 

SELECT networth 
INTO presNetWorth Example 8.13 : Figure 8.12 shows a PSN procedure that takes a studio name 

FROM Studio, MovieExec s as an input argument. and produces in output arguments mean and variance 
the mean and variance of the lengths of all the movies owned by studio s. Lines WHERE presC# = cer t#  AND Studio.name = studioName; 

... (1) through (4) declare the procedure and its parameters. 
Lines (5) through (8) are local declarations. ?Ire define Not-Found to be the 

name of the condition that means a FETCH failed to return a tuple at line (5). 
Figure 8.11: A single-row select in PSM Then, at  line (G), the cursor Moviecursor is defined to return the set of the 

lengths of the movies by studio s. Lines (7) and (8) declare two local vari- 
ables that we'll need. Integer newLength holds the result of a FETCH, while 

Example 8.12: In Fig. 8.11 is the single-row select of Fig. 8.3, redone for moviecount counts the number of movies by studio s. We need moviecount 
PSU and placed in the context of a hypothetical procedure definition. Sote so that, at the end, we can convert a sum of lengths into an axrerage (mean) of 
that, because the single-row select returns a one-component tuple, we could lengths and a sum of squares of the lengths into a variance. 
also get the same effect from an assignment statement, as: The rest of the lines are the body of the procedure. We shall use mean 

and variance as temporary variables, as well as for "returning" the results at SET presNetWorth = (SELECT networth 
the end. In the major loop, mean actually holds the sum of the lengths, and FROM Studio, MovieExec 
variance actually holds the sum of the squares of the lengths. Thus, lines WHERE presC# = cer t#  AND Studio.name = studioName); 
(9) through (11) initialize these variables and the count of the movies to 0. 

we shall defer examples of cursor use until we learn the PSkf loop statement. Line (12) opens the cursor: and lines (13) through (19) form the loop labeled 
in the next section. 

Line (14) performs a fetch. and at  line (15) we check that another tuple was 

8.2.5 Loops in PSM found. If not. lye leave the loop. Lines (16) through (18) accumulate values; we 
add 1 to moviecount, add the length to mean ( ~ h i c h ,  recall, is really computing 

The basic loop construct in PSII is: the sum of lengths), and 1%-e add the square of the length to variance. 
When all movies by studio s have been seen, we leave the loop, and control 

LOOP passes to line (20). At that line, we turn mean into its correct value by dividing 
<statement list> the sum of lengths by the count of movies. At line (21), we make variance 

END LOOP; truly hold the variance by dividing the sum of squares of the lengths by the 



Other Loop Constructs 

PSRl also allows while- and repeat-loops, which have the expected mean- 
ing, as in C. That is, we can create a loop of the form 

WHILE <condi t ion> DO 
<statement  l i s t >  

END WHILE; 

or a loop of the form 

REPEAT 
<statement  l i s t>  

UNTIL <condi t ion> 
END REPEAT; 

Incidentally, if we label these loops, or the loop formed by a loop-statement 
or for-statement, then we can place the label as well after the END LOOP 
or other ender. The advantage of doing so is that it makes clearer where 
each loop ends, and it  allows the P S l I  interpreter to  catch some syntactic 
errors involving the omission of an END. 
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1) CREATE PROCEDURE MeanVar( 
2) I N  s CHAR(151, 
3) OUT mean REAL, 
4) OUT var iance  REAL 

) 
5) DECLARE Not-Found CONDITION FOR SQLSTATE '02000'; 
6) DECLARE MovieCursor CURSOR FOR 

SELECT l e n g t h  FROM Movie WHERE studioName = s ;  
7) DECLARE newLength INTEGER; 
8) DECLARE moviecount INTEGER; 

BEGIN 
9) SET mean = 0.0;  

10) SET var iance  = 0.0;  
11) SET moviecount = 0 ;  
12) OPEN HovieCursor; 
13) movieLoop: LOOP 
14) FETCH Moviecursor INTO newlength; 
15) IF Not-Found THEN LEAVE movieLoop END IF;  
16) SET moviecount = moviecount + 1; 
17) SET mean = mean + newlength; 
18) SET var iance  = var iance  + newLength * newlength; 
19) END LOOP; 
20) SET mean = mean/movieCount; <statement  l ist> 
21) SET var iance  = variance/movieCount - mean * mean; END FOR; 

22) CLOSE Moviecursor; 
END ; This statement not only declares a cursor, but it handles for us a number of 

"grubby details": the opening and closing of the cursor, the fetching, and the 
checking whether there are no more tuples to  be fetched. H o ~ ~ ~ e v e r ;  since we are 

Figure 8.12: Computing the mean and variance of lengths of movies by one not fetching tuples for ourselves: we can not specify the \*ariable(s) into which 
studio component(s) of a tuple are placed. Thus, the names used for the attributes in 

the result of the query are also treated by PSXl as local variables of the same 

number of movies and subtracting the square of the mean. See Exercise 8.2.4 
for a discussion of why this calculation is correct. Line (22) closes the cursor. 
and we are done. Example 8.14 : Let us redo the procedure of Fig. 8.12 using a for-loop. The 

code is sholvn in Fig. 8-13. Many things have not changed. The declaration 
of the procedure in lines (1) through (4) of Fig. 8.13 are the same, as is the 

8.2.6 For-Loops declaration of local variable moviecount a t  line (5). 
Howel-er, we no longer need to declare a cursor in the declaration portion of 

There is also in PSM a for-loop construct, but it is used for only one, important the procedure, and we do not need to define the condition NotJound. Lines (6)  
Purpose: to  iterate over a cursor. The form of the statement is: through (8) initialize the ~ariables ,  as  before. Then, in line (9) we see the for- 

loop, which also defines the cursor MovieCursor. Lines (11) through (13) are 
FOR <loop name> AS <cursor  name> CURSOR FOR the body of the loop. Notice t,hat in lines (12) and (13), me refer to the length 

<query> retrieved via the cursor by the at,tribute name length,  rather than by the local 
DO ~ a r i a b l e  name newlength, which does not exist in this version of the procedure. 



3 74 CHAPTER 8. SYSTEM ASPECTS OF SQL 8.2. PROCEDURES STORED IN THE SCHEMA 375 

1) CREATE PROCEDURE MeanVar( 
2 )  

Why Do We Need Names in For-Loops? 
I N  s CHAR(15), 

3) OUT mean REAL, Notice that  movieLoop and Moviecursor, although declared a t  line (9) 
4) OUT var iance  REAL of Fig. 8.13, are never used in that procedure. Nonetheless, we have t o  

1 invent names, both for the for-loop itself and for the cursor over which it  
5) DECLARE moviecount INTEGER; iterates. The reason is that  the PSM interpreter will translate the for-loop 

into a conventional loop, much like the code of Fig. 8.12, and in this code, 
BEGIN there is a need for both names. 

6) SET mean = 0 . 0 ;  
7) SET var iance  = 0 . 0 ;  
8) SET moviecount = 0 ;  
9) FOR movieLoop AS Moviecursor CURSOR FOR 3. An indication of where t o  go after the handler has finished its work. 

SELECT l e n g t h  FROM Movie WHERE studioNme = s ;  
10) DO The form of a handler declaration is: 

11) SET moviecount = moviecount + 1; DECLARE <where t o  go> HANDLER FOR <condi t ion  l ist> 
12) SET mean = mean + l eng th ;  
13) 

<statement> 
SET var iance  = var iance  + l e n g t h  * l eng th ;  

14) END FOR; The choices for "where t o  go" are: 
15) SET mean = mean/movieCount; 
16) SET var iance  = variance/rnovieCount - mean * mean; a) CONTINUE, which means that after executing the statement in the han- 

END ; dler declaration, we execute the statement after the one that raised the 

Figure 8.13: Computing the mean and variance of le~lgths using a for-lool, b) EXIT, which means that after executing the handler's statement, control 
leaves the BEGIN. . .END block in which the handler is declared. The state- 
ment after this block is executed next. 

Lines (15) and (16) compute the correct values for the output variables, exactly 
as in the earlier version of this procedure. c) UNDO, which is the same as  EXIT, except that  any changes to  the database 

or local variables that  were made by the statements of the block executed 
so far are "undone." That is, their effects are canceled, and it is as if 

8.2.7 Exceptions in PSM those statements had not executed. 

-An SQL system indicates error conditions by setting a nonzero sequence of The "condition list" is a comma-separated list of conditions, which are either 
digits in the five-character string SqLSTATE. We have seen one example of these declared conditions, like NotIound in line (5) of Fig. 8.12, or expressions of the 
codes: '02000' for "no tuple found." For another example, '21000' indicates form SQLSTATE and a fil-e-character string. 
that a single-row select has returned more than one row. 

PSlf allolvs us to declare a piece of code, called an exception h,n~rller. that is E x a m p l e  8.15: Let us write a PSJI function that  takes a movie title as ar- 
invoked whenever one of a list of these error codes appears in SQLSTATE during gument and returns the year of the movie. If there is no movie of that title or 

the execution of a statement or list of statements. Each esceptio~l handler more than one movie of that title, then NULL must be returned. The code is 

is associated with a block of code, delineated by BEGIN.. .END. The handler shoxvn in Fig. 8.14. 
appears within this block, and it applies only to statements ~vithin the block. Lines (2) and (3) declare symbolic conditions; ~x-e do not have to make these 

The components of the handler are: definitions, and could as well have used the SQL states for which they stand in 
line (1). Lines (4), (5), and (6) are a block, in which we first declare a handler 

1. -4 list of exception condit,ions that inyoke the handler ~l-hen raised. for the two conditions in which either zero tuples are returned, or more than 
one tuple is returned. The action of the handler, on line (j), is simply to set 

2. Code to be executed when one of the associated exceptions is raised. the return-value to  NULL. 
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1) CREATE FUNCTION GetYear (t VARCHAR(255) ) RETURNS INTEGER 

2) DECLARE Not-Found CONDITION FOR SQLSTATE '02000'; 
3) DECLARE Too-Many CONDITION FOR SQLSTATE '21000'; 

BEGIN 
4) DECLARE EXIT HANDLER FOR Not-Found, Too-Many 
5) RETURN NULL ; 
6) RETURN (SELECT year FROM Movie WHERE title = t); 

END ; 

Figure 8.14: Handling exceptions in which a single-row select returns other than 
one tuple 

Line (6) is the statement that does the work of the function GetYear. It  is 
a SELECT statement that  is expected t o  return exactly one integer, since that is 
what the function GetYear returns. If there is exactly one movie with title t (the 
input parameter of the function), then this value will be returned. However. if 
a n  exception is raised at line (6), either because there is no movie with title t 
or several movies with that  title, then the handler is invoked, and NULL instead 
becomes the return-value. Also, since the handler is an EXIT handler, control 
next passes to the point after the END. Since that point is the end of the funrtion. 
GetYear returns a t  that time, with the return-value NULL. 0 

8.2.8 Using PSM Functions and Procedures 

As we mentioned in Section 8.2.2, we can call a PSM function or procedtire 
from a program with embedded SQL, from PSLI code itself, or from ordinary 
SQL commands issued to the generic interface. The use of these procedures 
and functions is the same as in most programming languages, with procedures 
invoked by CALL, and functions appearing as  past of an expression. K e  shall 
give one example of how a function can be called from the generic interface. 

Example 8.16 : Suppose that our schema includes a module with the functio!i 
Getyear of Fig. 8.14. Imagine that we are sitting a t  the generic interface. and 
we want to  enter the fact that Denzel Washington was a star of Remember the 
Titans. However. we forget the year in which that movie was made. AS long 
as  there was only one movie of that name. and it is in the Movie relation. 15-e 
don't have to look it up in a preliminary query. Rather, we can issue to the 
generic SQL interface the following insertion: 
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Since GetYear returns NULL if there is not a unique movie by the name of 
Remember the Titans, i t  is possible that  this insertion will have NULL in the 
middle component. 0 

8.2.9 Exercises for Section 8.2 

Exercise 8.2.1 : Using our running movie database: 

Movie(title, year, length, incolor, studiolame, producerC#) 
StarsIn(movieTitle, movieyear, starName) 
MovieStar(name, address, gender, birthdate) 
MovieExec(name, address, cert#, networth) 
Studio(name, address, presC#) 

write PSM procedures or functions t o  perform the following tasks: 

* a) Given the name of a movie studio, produce the net worth of its president. 

* b) Given a name and address, return 1 if the person is a movie star but not 
an executive, 2 if the person is a n  executive but not a star, 3 if both, and 
4 if neither. 

*! c) Given a studio name. assign t o  output parameters the titles of the two 
longest movies by that studio. Assign NULL to  one or both parameters if 
there is no such movie (e.g., if there is only one m o ~ i e  by a studio, there 
is no 'Lsecond-longest'i ) . 

! d) Given a star name, find the earliest (lowest year) movie of more than 120 
minutes length in u-hich they appeared. If there is no such movie, return 
the year 0. 

e) Given an address. find the name of the unique star with that address if 
there is exactly one, and return NULL if there is none or more than one. 

f) Given the name of a star, delete them from Moviestar and delete all their 
movies from StarsIn and Movie. 

Exercise 8.2.2: Write the following PSlI functions or procedures, based on . 
the database schema 

Product (maker, model, type) 
PC(mode1, speed, ram, hd, rd, price) 
Laptop(mode1, speed, ram, hd, screen, price) 
Printer(mode1, color, type, price) 

of Exercise 5.2.1. INSERT INTO StarsIn(movieTitle, movieyear, starName) 

VALUES( 'Remember the Titans', Getyear( 'Remember the Titans ' 1, * a)  Take a price as argument and return the model number of the P C  whose 
'Denzel Washington'); price is closest. 
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b) Take a maker and model as arguments, and return the price of whatever 
type of product that model is. 

! c) Take model, speed, ram, hard-disk, removable-disk, and price information 
as arguments, and insert this information into the relation PC. Ifowever, 
if there is already a PC with that model number (tell by assuming that 
violation of a key constraint on insertion will raise an exception with 
SQLSTATE equal to '23000'), then keep adding 1 to the model number 
until you find a model number that is not already a PC model number. 

! d) Given a price, produce the number of PC's, the number of laptops, and 
the number of printers selling for more than that price. 

Exercise 8.2.3 : Write the following PSM functions or procedures, based on 
the database schema 

Classes(class,  type,  country, numGuns, bore, displacement) 
Ships(name, c l a s s ,  launched) 
Battles(name, date)  
Outcomes(ship, b a t t l e ,  r e s u l t )  

of Exercise 5.2.4. 

a) The firepower of a ship is roughly proportional to the number of guns 
times the cube of the bore. Given a class, find its firepower. 

! b) Given the name of a battle, produce the two countries whose ships viere 
involved in the battle. If there are more or fewer than two countrie. 
involved, produce NULL for both countries. 

c) Take as arguments a new class name, type, country, number of guns, bore. 
and displacement. Add this information to Classes and also add the ship 
with the class name to Ships. 

8.3. THE SQL ENVIRONAIEiYT 

8.3 The SQL Environment 

In this section we shall take the broadest possible view of a DBMS and the 
databases and programs it supports. We shall see how databases are defined and 
organized into clusters, catalogs, and schemas. \Ye shall also see how programs 
are linked with the data they need to manipulate. Many of the details depend 
on the particular implementation, so we shall concentrate on the general ideas 
that are contained in the SQL standard. Sections 8.4 and 8.5 illustrate how 
these high-level concepts appear in a "call-level interface,' which requires the 
programmer to make explicit connections to databases. 

8.3.1 Environments 

An SQL environment is the framework under which data may exist and SQL 
operations on data may be executed. In practice, we should think of an SQL 
environment as a DBMS running at  some installation. For example, ABC 
company buys a license for the Megatron 2002 DBMS to run on a collection of 
XBC's machines. The system running on these machines constitutes an SQL 
environment. 

All the database elements we have discussed - tables, views, triggers, stored 
procedures, and so on - are defined within an SQL environment. These ele- 
ments are organized into a hierarchy of structures, each of which plays a distinct 
role in the organization. The structures defined by the SQL standard are incli- 
cated in Fig. 8.15. 

Briefly, the organization consists of the following structures: 

1.  schema^.^ These are collections of tables, views. assertions, triggers. PSlI 
modules, and some other types of information that \ye do not discuss in 
this book (but see the box on "More Schema Elements" in Section 8.3.2). 
Schemas are the basic units of organization, close to what we might think 
of as a "database." but in fact somewhat less than a database as we shall 
see in point (3) below. 

! d) Given a ship name, determine if the ship was in a battle with a date before 
the ship was launched. If so, set the date of the battle and the date the 2. Cataloos. These are collections of schemas. They are the basic unit for 
ship was launched to 0. supporting unique, accessible terminolog?l. Each catalog has one or more 

schemas; the names of schemas within a catalog must be unique. and 
! Exercise 8.2.4: In Fig. 8.12, we used a tricky formula for computillg the each catalog contains a special schema called INFORMATIONSCHEMA that 

variance of a sequence of numbers XI, x2, . . . , xn. Recall that the variance is contains information about all the schemas in the catalog. 
the average square of the deviation of these numbers from their mean. That is. 

the variance is    xi - 2)') In, where the mean I is (Cr=, x i ) / * .  Prow 3. Clu.sters. These are collections of catalogs. Each user has an associated 
that the formula for the variance used in Fig. 8.12, which is cluster: the set of all catalogs accessible to the user (see Section 8.7 for an 

explanation of how access to catalogs and other elements is controlled). 

( k ( x i ) 2 ) / n  - ( ( e x i , / n ) 2  
SQL is not very precise about what a cluster is. e.g., whether clusters 

i= 1 
for various users can overlap without being identical. .& cluster is the 

i=l 

yields the same value. 3 ~ o t e  that the term "schema" in this context refers to a database schema, not a relation 
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n 
Environment = 

Cluster = 

of a DB operation 

Figure 8.15: Organization of database elements within the environment 

maximum scope over which a query can be issued, so in a sense, a cluster 
is "the database" as seen by a particular user. 

8.3. T H E  SQL ENVIROhiSIENT 

CREATE SCHEMA MovieSchema 
CREATE TABLE Mov ie s t a r  . . . as in Fig. 7.5 

Create-table statements for the four other tables 
CREATE VIEW Movieprod . . . as in Example 6.48 

Other view declarations 
CREATE ASSERTION R i c h P r e s  . . . as in Example 7.13 

Figure 8.16: Declaring a schema 

It is not necessary to declare the schema all at  once. One can modify or 
add to a schema using the appropriate CREATE, DROP, or ALTER statement, e.g., 
CREATE TABLE followed by the declaration of a new table for the schema. One 
problem is that the SQL system needs to know in which schema the new table 
belongs. If we alter or drop a table or other schema element, we may also need 
to disambiguate the name of the element, since two or more schemas may have 
distinct elements of the same name. 

We change the "current" schema with a SET SCHEMA statement. For exam- 
ple, 

SET SCHEMA MovieSchema; 

makes the schema described in Fig. 8.16 the current schema. Then, any decla- 
rations of schema elements are added to that schema, and any DROP or ALTER 
statements refer to elements already in that schema. 

8.3.2 Schemas 8.3.3 Catalogs 

The simplest form of schema declaration consists of: 

1. The keywords CREATE SCHEMA. 

2. The name of the schema. 

3. A list of declarations for schema elements such as base tables, views, and 
assert ions. 

That is, a schema may be declared by: 

CREATE SCHEMA <schema name> <element declarations> 

Just as schema elements like tables are created within a schema, schemas are 
created and modified within a catalog. In principle, we would expect the process 

4 of creating and populating catalogs to be analogous to the process of creating 
i and populating schemas. Unfortunately, SQL does not define a standard way 
:'. to do so. such as a statement 
4. pj CREATE CATALOG <catalog name> 

follolved by a list of schemas belonging to that catalog and the declarations of 
those schemas. 

Ho~vet-er. SQL does stipulate a statement 
The element declarations are of the forms discussed in various places, such as 
Sections 6.6. 6.7.1. 7.4.3, and 8.2.1. 

SET CATALOG <catalog name> 
Example 8.17: We could declare a schema that includes the fire relations 
about movies that we have been using in our running example, plus some of This statement alloms us to set the "current-' catalog, so new schemas will go 
the other elements we have introduced. such as views. Figure 8.16 sketches the into that catalog and schema modifications will refer to schemas in that catalog 
form of such a declaration. should there be a name ambiguity. 



More Schema Elements 

Some schema elements that we have not already mentioned, but that oc- 
casionally are useful are: 

Domains: These are sets of values or simple data types. They are 
little used today, because object-relational DBMS's provide more 
powerful type-creation mechanisms; see Section 9.4. 

Character sets: These are sets of symbols and methods for encoding 
them. ASCII is the best known character set, but an SQL imple- 
mentation may support many others, such as sets for various foreign 
languages. 

Collations: Recall from Section 6.1.3 that character strings are com- 
pared lexicographically, assuming that any two characters can be 
compared by a "less than" relation we denoted <. A collation spec- 
ifies which characters are "less than" which others. For example, 
we might use the ordering implied by the ASCII code, or we might 
treat lower-case and capital letters the same and not compare any- 
thing that isn't a letter. 

Grant statements: These concern who has access to schema elements. 
We shall discuss the granting of privileges in Section 8.7. 

- 

Complete Names for Schema Elements 

Formally, the name for a schema element such as a table is its catalog 
name, its schema name, and its own name, connected by dots in that 
order. Thus, the table Movie in the schema Movieschema in the catalog 
Moviecatalog can be referred to as 

MovieCatalog.MovieSchema.Movie 

If the catalog is the default or current catalog, then we can omit that 
component of the name. If the schemais also the default or current schema, 
then that part too can be omitted, and we are left with the element's own 
name, as is usual. However, we have the option to use the full name if we 
need to access something outside the current schema or catalog. 

I 
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CONNECT TO <server name> AS <connection name> 
AUTHORIZATION <name and password> 

The server name is something that depends on the inst,allation. The word 
DEFAULT can substitute for a name and will connect the user to whatever SQL 
server the installation treats as the "default server." We have shown an au- 
thorization clause followed by the user's name and password. The latter is the 
typical method by which a user would be identified to the server, although other 
strings following AUTHORIZATION might be used. 

The con~lection name can be used to refer to the connection later on. The 
reason we might have to refer to the connection is that SQL allows several 

8.3.4 Clients and Servers in the SQL Environment connections to be opened by the user, but only one can be active at any time. 
To slvitch among connections, we can make connl become the active connection 

An SQL environment is more than a collection of catalogs and schemas. It by the statement: 
contains elements whose purpose is to support operations on the database or 
databases represented by those catalogs and schema. Within an SQL enr7i- SET CONNECTION connl; 
ronment are two special kinds of processes: SQL clients and SQL servers. -4 
server supports operations on the database elements, and a client allows a user IIThatewr connection was currently active becomes dormant until it is reacti- 

to connect to a server and operate on the database. It is envisioned that the rated xith another SET CONNECTION statement that mentions it explicitly. 

server runs on a large host that stores the database and the client runs on an- We also use the name when rye drop the connection. \17e can drop connection 

other host, perhaps a personal workstation remote from the server. However. 
it is also possible that both client and server run on the same host. DISCONNECT connl; 

Soxv, connl is terminated; it is not dormant and cannot be reactivated. 
8.3.5 Connections Ho~vever, if we shall never need to refer to the connection being created, then 

AS and the connection name may be omitted from the CONNECT TO statement. 
Ewe wish to run some program involving SQL at a host where an SQL client ex- It is also permitted to skip the connection statements altogether. If we simply 
ists~ then we may open a connection between the client and server by executing execute SQL statements at  a host with an SQL client, then a default connection 
an SQL statement will be established on our behalf. 
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SQL-client SQL-sewer 
Session 

Figure 8.17: The SQL client-server interactions 

8.3.6 Sessions 

The SQL operations that are performed ~vliile a connection is active form a 
session. The session is coextensive with the connection that created it. For 
example, when a connection is made dormant, its session also becomes dormant. 
and reactivation of the connection by a SET CONNECTION statement also makes 
the session active. Thus, we have shown the session and connection as tn.0 
aspects of the link between client and server in Fig. 8.17. 

Each session has a current catalog and a current schema within that catalog. 
These may be set with statements SET SCHEMA and SET CATALOG, as discussed 
in Sections 8.3.2 and 8.3.3. There is also an authorized user for every session. 
as we shall discuss in Section 8.7. 

8.3.7 Modules 

-4 module is the SQL term for an application program. The SQL standard 
suggests that there are three kinds of modules, but insists only that an SQL 
implementation offer the user at  least one of these types. 

1. Generic SQL Interface. The user may type SQL statements that are 
executed by an SQL server. In this mode, each query or other statement 
is a module by itself. It is this mode that we imagined for most of our 
examples in this book, although in practice it is rarely used. 

2. Embedded SQL. This style was discussed in Section 8.1, where SQL state- 
ments appear within host-language programs and are introduced by EXEC 
SQL. Presumably, a preprocessor turns the embedded SQL statements into 
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suitable function or procedure calls to the SQL system. The compiled 
host-language program, including these function calls, is a module. 

3. True Ilfodules. The most general style of modules envisioned by SQL is 
one in which there are a collection of stored functions or procedures, some 
of which are host-language code and some of which are SQL statements. 
They communicate among themselves by passing parameters and perhaps 
via shared variables. PSlI modules (Section 8.2) are an example of this 
type of module. 

An execution of a module is called an SQL agent. In Fig. 8.17 we have 
shown both a module and an SQL agent, as one unit, calling upon an SQL client 
to establish a connection. However, we should remember that the distinction 
between a module and an SQL agent is analogous to the distinction between 
a program and a process; the first is code, the second is an execution of that 
code. 

1 

8.4 Using a Call-Level Interface 

In this section we return to the matter of coordinating SQL operations and 
host-language programs. We saw embedded SQL in Section 8.1 and we covered 
procedures stored in the schema (Section 8.2). In this section, we take up a 
third approach. M-hen using a call-level interface (CLI), we write ordinary host- 
language code. and we use a library of functions that allow us to connect to 
and access a database, passing SQL statements to that database. 

The differences between this approach and embedded SQL programming 
are, in one sense, cosmetic. If we observed what the preprocessor does with 
embedded SQL statements, we would find that they were replaced by calls to 
library functions much like the functions in the standard SQLICLI. However, 
11-hen SQL is passed by CLI functions directly to the database server, there is a 
certain level of system independence gained. That is, in principle, we could run 
the same host-language progranl at several sites that used different DBlIS's. 
-1s long as those DBlIS's accepted standard SQL (which unfortunately is not 
al~vays the case), then the same code could run at all these sites, without a 
specially designed preprocessor. 

\Ve shall give two esamples of call-level interfaces. In this section, we corer 
the standard SQLICLI. which is an adaptation of ODBC (Open Database Con- 
nectivit\-). In Section 8.5. we consider JDBC (Java Database Connectivity), a 
similar standard that links Java programs to databases in an object-oriented 
style. In neither case do we cover the standard exhausti\-el5 preferring to show 
the flavor only. 

8.4.1 Introduction to SQL/CLI 

-1 program ~vritten in C and using SQLICLI (hereafter, just CLI) will include 
the header file sqlcli. h, from which it gets a large number of functions, type 
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definitions, structures, and symbolic constants. The program is then able to that there is no relevant value here. If you want a connection handle, 
create and deal with four kinds of records (structs, in C): then hIn is the handle of the environment within which the connection 

will exist, and if you want a statement handle, then hIn is the handle of 
1. Environments. A record of this type is created by the application (client) the connection within which the statement will exist. 

program in preparation for one or more connections to the database server. 
3. hOut is the address of the handle that is created by SQLAllocH~dle .  

2. Connections. One of these records is created to connect the application 
program to the database. Each connection exists within some environ- SQLAllocHandle also returns a value of type SQLRETURN (an integer). This 
ment. value is 0 if no errors occurred, and there are certain nonzero values returned 

in the case of errors. 3. Statements. An application program can create one or more statement 
records. Each holds information about a single SQL statement, including Example 8.18 : Let us see how the function worthRanges of Fig. 8.4, which we 
an implied cursor if the statement is a query. At different times, the used as an example of embedded SQL, would begin in CLI. Recall this function 
same CLI statement can represent different SQL statements. Every CLI examines all the tuples of MovieExec and breaks their net worths into ranges. 
statement exists within some connection. 

The initial steps are shown in Fig. 8.18. 
4. Descriptions. These records hold information about either tuples or pa- 

rameters. The application program or the database server, as appropriate, 1) #include sqlc1i.h 
sets components of description records to indicate the names and types of 2) SQLHENV myEnv; 
attributes and/or their values. Each statement has several of these created 3) SQLHDBC mycon; 
implicitly, and the user can create more if needed. In our presentation of 4) SQLHSTMT execs ta t ;  
CLI, description records will generally be invisible. 5) SQLRETURN errorcodel, errorCode2, errorCode3; 

Each of these records is represented in the application program by a han- 
6) errorcodel = SQLA~~OCH~~~~~(SQL-HANDLE-ENV, 

dle, which is a pointer to the reco~-d.4 The header file s q l c l i  .h provides SQL-NULL-HANDLE, &myEnv) ; 
types for the handles of environments, connections, statements, and descrip 

7) i f  (! errorcodel)  tions: SQLHENV, SQLHDBC, SQLHSTMT, and SQLHDESC, respectively, although Ire 
errorcode2 = SQLAllocHadle(SQL-HANDLE-DBC, 

may think of them as pointers or integers. We shall use these types and also myEnv, &mycon) ; 
some other defined types with obvious interpretations, such as SQL-CHAR arlti 9) i f  ( ! errorCode2) SQL-INTEGER, that are provided in s q l c l i  . h. 

errorcode3 = SQLAllocH~dle(SQL-HANDLE-STMT, 
IfTe shall not go into detail about how descriptions are set and used. Holy- mycon, &execstat) ;  ever, (handles for) the other three types of records are created by the use of a 

function 

Figure 8.18: Declaring and creating an environment, a connection, and a st,ate- 
SQLAllocHandle (hnpe,  hIn, h0ut) 

Here, the three arguments are: Lines (2) through (4) declare handles for an envimment, connection, and 
statement, respectively; their names are myEnv, mycon, and execs ta t ,  respec- 

1. hType is the type of handle desired. Use SQLHANDLEXNV for a new en+ til-el~. \fTe plan that execstat  will represent the SQL statement 
ronment, SQLHANDLEDBC for a new connection, or SQLHANDLESTMT for 
a new statement. SELECT networth FROM MovieExec; 

2. hIn is the handle of the higher-level element in which the newly allocated 
nluch as did the cursor execcursor in Fig. 8.4, but as Yet there is no SQL 

element lives. This parameter is SQLaULLHANDLE if you want an envi- statement associated with execstat. Line ( 5 )  declares three variables into ronment; the latter name is a defined constant telling SQLAllocHandle 
which function calls can place their response and indicate an error. -4 value of 

90 not confuse this use of the term "handlen with the handlers for exceptions that were 0 indicates no error occurred in the call, and we are counting on that being the 
discussed in Section 8.2.7. 
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What is in Environments and Connections? 

We shall not examine the contents of the records that represent environ- 
ments and connections. However, there may be useful information con- 
tained in fields of these records. This information is generally not part 
of the standard, and may depend on the implementation. However, as 
an example, the environment record is required to indicate how character 
strings are represented, e.g., terminated by '\O' as in C ,  or fixed-length. 

Line (6) calls SQLAllocHandle, asking for an environment handle (the first 
argument), providing a null handle in the second argument (because none is 
needed when we are requesting an environment handle), and providing the 
address of myEnv as the third argument; the generated handle will be placed 
there. If line (6) is successful, lines (7) and (8) use the environment handle to 
get a connection handle in mycon. Assuming that call is also successful, lines 
(9) and (10) get a statement handle for execstat .  

8.4.2 Processing Statements 

At the end of Fig. 8.18, a statement record whose handle is execstat ,  has been 
created. However, there is as yet no SQL statement with ~ h i c h  that record 
is associated. The process of associating and executing SQL statements with 
statement handles is analogous to the dynamic SQL described in Section 8.1.10. 
There, we associated the text of an SQL statement with what we called an "SQL 
variable," using PREPARE, and then executed it using EXECUTE. 

The situation in CLI is quite analogous, if we think of the %QL variable" 
as a statement handle. There is a function 

SQLPrepare (sh, st, SO 

that takes: 

1. -1 statement handle sh, 

2. A pointer to an SQL statement st, and 

causes the statement to which handle sh refers to be executed. For many forms 
of SQL statement, such as insertions or deletions, the effect of executing this 
statement on the database is obvious. Less obvious is what happens when the 
SQL statement referred to by sh is a qnery. As we shall see in Section 8.4.3, 
there is an implicit cursor for this statement that is part of the statement record 
itself. The statement is in principle executed, so we can imagine that all the 
answer tuples are sitting somewhere, ready to be accessed. We can fetch tuples 
one a t  a time, using the implicit cursor, much as we did with real cursors in 
Sections 8.1 and 8.2. 

Example  8.19 : Let us continue with the function worthflanges that we began 
in Fig. 8.18. The following two function calls associate the query 

SELECT networth FROM MovieExec; 

with the statement referred to by handle execstat:  

11) SQLPrepare(execStat, "SELECT networth FROM MovieExec", 
SQL-NTS) ; 

12) SQLExecute(execStat) ; 

They could appear right after line (10) of Fig. 8.18. Remember that SQLNTS 
tells SQLPrepare to determine the length of the null-terminated string to which 
its second argument refers. 

.Is u-ith dynamic SQL, the prepare and execute steps can be combined into 
one if we use the function SQLExecDirect. -In example that combines lines 
(11) and (12) above is: 

SQLExecDirect(execStat, "SELECT networth FROM MovieExec", 
SqL-NTS) ; 

8.4.3 Fetching Data From a Query Result 

The function that corresponds to a FETCH command in embedded SQL or PSM 
is 

3. -1 length sl for the character string pointed to by st. If we don't know the f 
length, a defined constant SQLNTS tells SQLPrepare to figure it out from 
the string itself. Presumably, the string is a h'null-terminated string." and 

n-liere sh is a statement handle We presume the statement referred to by sh it is sufficient for SQLPrepare to scan it until encountering the endmarker 
'\O'. has been executed already, or the fetch \%-ill cause an error. SqLFetch, like all 

CLI functions, returns a value of type SQLRETURN that indicates either success 
The effect of this function is to arrange that the statement referred to by the or an error. We should be especially aware of the return value represented by 
handle sh now represents the particular SQL statement st. the symbolic constant S~LNIDATA, which indicates that no more tuples were 

Another function left in the query result. As in our previous examples of fetching, this value will 
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be used to get us out of a loop in which we repeatedly fetch new tuples from 1) #include sqlc1i .h  
the result. 2) void worthRanges0 

However, if we follow the SQLExecute of Example 8.19 by one or more 
SQLFetchcalls, where does t,he t,uple appear? The answer is that its components i n t  i ,  d i g i t s ,  counts[l51; 
go into one of the description records associated with the statement whose SQLHENV myEnv; 
handle appears in the SQLFetch call. We can extract the same component at SQLHDBC mycon; 
each fetch by binding the component to a host-language variable, before we SQLHSTMT execstat;  
begin fetching. The function that does this job is: SQLINTEGER worth, worthInfo; 

SQLBindCol(sh, colNo, colTgpe, pvar, varsize, varh fo )  
SQLAllocHandle(SQL-HANDLE-ENV, 

The meanings of these six arguments are: SQL-NULL-HANDLE, &rny~nv); 
SQLAllocHandle(SQL-HANDLE-DBC, myEnv. &mycon) ; 

1. sh is the handle of the statement involved. SQLAllocHandle(SQL-HANDLE-STMT , mycon, &execstat)  ; 
SQLPrepare(execStat, 

2. colNo is the number of the component (within the tuple) whose value we "SELECT networth FROM MovieExec", SQL-NTS); 
obtain. SQLExecute (execstat) ; 

3. colType is a code for the type of the variable into which the value of the SQLBindCol(execStat, 1, SQL-INTEGER, &worth, 

component is to be placed. Examples of codes provided by s q l c l i .  h arc sizeof (worth), &worthInf o) ; 

SQL-CHAR for character arrays and strings, and SQL-INTEGER for integers. while(~~~~etch(execStat) ! = SQL-NO-DATA) { 
d i g i t s  = 1; 

4. p Var is a pointer to the variable into which the value is to be placed. while((worth /= 10) > 0) digi ts++;  
i f  (d ig i t s  <= 14) counts [d ig i ts ]  ++; 

5. varSize is the length in bytes of the value of the variable pointed to by 
p Var. for(i=O; i<15; i++) 

6. varInfo is a pointer to an integer that can be used by SQLBindCol to p r in t f ( "d ig i t s  = Id :  number of execs = %d\nI1, 
provide additional information about the value produced. i, counts[il) ; 

Example 8.20: Let us redo the entire function worthRanges from Fig. 8.4. 
using CLI calls instead of embedded SQL. We begin as in Fig. 8.18, but for 
the sake of succinctness, we skip all error checking except for the test ~ h e t h e r  
SQLFetch indicates that no more tuples are present. The code is shown in Figure 8.19: Grouping executive net ~vorths: CLI version 
Fig. 8.19. 

Line (3) declares the same local variables that the embedded-SQL version 
worth. The fifth argument is the size of that variable, and the final argument of the function uses, and lines (4) through (7) declare additional local variables 
poillts to worthInfo, a place for SQLBindCol to put additional information 

, using the types provided in s q l c l i  . h; these are variables that involve SQL in 
some way. Lines (4) through (6) are as in Fig. 8.18. New are the declarations (n-hich 11-e do not use here). 

on line (7) of worth (which corresponds to the shared variable of that name in The balance of the function resembles closely lines (11) through (19) of 

Fig. 8.4) and worthInfo. rshich is required by SQLBindCol, but not used. Fig. 8.1. The ~s-hile-loop begins at line (14) of Fig. 8.19. Sotice that we fetch 

Lines (8) through (10) allocate the needed handles, as in Fig. 8.18: and a tuple and check that we are not out of tuples, all within the condition of the 

lines (11) and (12) prepare and execute the SQL stat.ement, as discussed in I\-hile-loop? on line (14). If there is a tuple, then in lines (13) through (17) we 

Example 8.19. In line (13): we see the binding of the first (and only) colunln of determine the number of digits the integer (which is bound to worth) has and 

the result of this query to the variable worth. The first argument is the handle increment the appropriate count. After the loop finishes, i.e., all tuples returned 

for the statement in\-olved; and the second argument is the column involved: by the statement execution of line (12) have been examined, the resulting counts 

1 in this case. The third argument is the type of the column, and the fourth are printed out at lines (18) and (19). 

argument is a pointer to the place where the value will be placed: the variable 
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Extracting Components with SQLGetData 

An alternative to  binding a program variable to  an output of a query's 
result relation is t o  fetch tuples without any binding and then trans- 
fer components t o  program variables as needed. The function t o  use is 
SQLGetData, and it  takes the same arguments as SQLBindCol. However, 
it only copies d a t a  once, and it must be used after each fetch in order to 
have the same effect as initially binding the column to a variable. 

8.4.4 Passing Parameters to Queries 

Embedded SQL gives us the ability t o  execute an SQL statement, part of which 
consists of values determined by the current contents of shared variables. There 
is a similar capability in CLI, but it  is rather more complicated. The steps 
needed are: 

1. Use SQLPrepare to prepare a statement in which some portions, called 
parameters, are replaced by a question-mark. The i th  question-mark rep- 
resents the i t h  parameter. 

2. Use function SqLBindParameter to bind values t o  the places where the 
question-marks are found. This function has ten arguments, of which we 
shall explain only the essentials. 

3. Execute the query with these bindings, by calling SQLExecute. Sote 
that if v.e change the values of one or more parameters, we need to cal! 
SQLExecute again. 

The following example will illustrate the process, as well as indicate the impor- 
tant arguments needed by SQLBindParameter. 

Example 8.21: Let us reconsider the embedded SQL code of Fig. 8.2, where 
we obtained values for two variables studioName and studioAddr and used 
them as the components of a tuple, which we inserted into Studio.  Figure 8.20 
sketches how this process would work in CLI. It assumes that we have a state- 
ment handle mystat t o  use for the insertion statement. 

The code begins with steps (not shown) to  give studioName and studioAddr 
values. Line (1) shows statenlent mystat being prepared to be an insertion 
statement with two parameters (the question-marks) in the VALUE clause. Then. 
lines (2) and (3) bind the first and second question-marks, t o  the current con- 
tents of studioNarne and studioAddr, respectively. Finally, line (4) executes 
the insertion. If the entire sequence of steps in Fig. 8.20, including the un- 
seen n-ork to  obtain new values for studioName and s tudiodddr,  are  placed 
in a loop, then each time around the loop, a new tuple, with a new name and 
address for a studio, is inserted into Studio. 

/*  g e t  v a l u e s  f o r  studioName and studioAddr */ 

1) SQ~Prepare  (mystat ,  
"INSERT INTO S t u d i o  (name, address)  VALUES(?, ?I", 
SQL-NTS) ; 

2) SQLBindParameter(myStat, 1,. . . , studioName, . . .) ; 
3) SQLBindParameter(myStat, 2,  ..., studioAddr, ... 1; 
4) SQLExecute (mystat) ; 

Figure 8.20: Inserting a new studio by binding parameters t o  values 

8.4.5 Exercises for Section 8.4 

Exercise 8.4.1 : Repeat the problems of Exercise 8.1.1, but write the code in 
C with CLI calls. 

Exercise 8.4.2 : Repeat the problems of Exercise 8.1.2, but write the code in 
C with CLI calls. 

8.5 Java Database Connectivity 

JDBC, which stands for "Java Database Connectivity," is a faci1it.y similar to 
CLI for allowing Java programs t o  access SQL databases. The concepts are 
quite similar to those of CLI, although Java's object-oriented flavor is evident 
in JDBC. 

8.5.1 Introduction to JDBC 

The first steps we must take to  use JDBC are: 

1. Load a "driver" for the database system we shall use. This step may be 
installation- and implementation-dependent. The effect, however, is that  
an object called DriverManager is created. This object is analogous in 
many lvays to  the environment whose handle we get as the first step in 
using CLI. 

2. Establish a connection t o  the  database. .\ variable of type Connection is 
created if n-e apply the method ge tconnec t ion  to DriverManager. 

The Java statement t o  establish a connection looks like: 

Connection mycon = ~river~anager.getConnection(<URL>, 
<name>, <password>) ; 
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That is, the method getconnection takes as arguments the URL for the d) executeupdate(), with no argument, is applied to a Preparedstatement. 
database to which you wish to connect, your user name, and your passn-ord. In that case, the SQL statement associated with the prepared statement 
It returns an object of type Connection, which we ha\re chosen to call mycon. is executed. This SQL statement must not be a query, of course. 
Note that in the Java style, mycon is given its type and value in one statement. 

This connection is quite analogous to a CLI connection, and it serves the Example 8.22 : Suppose we have a connection object mycon, and we wish to 
execute the query same purpose. BY applying the appropriate methods to a connection like mycon, 

we can create statement objects, place SQL st,atements "in" those objects, bind SELECT networth FROM MovieExec; values to SQL statement parameters, execute the SQL statements, and examine 
results a tuple at  a time. Since the differences between JDBC and CLI are often One way to do so is to create a statement object execstat ,  and then use it to 
more syntactic than semantic, we shall go only briefly through these steps. execute the query directly. The result set will be placed in an object Worths of 

type ResultSet; we'll see in Section 8.5.3 how to extract the net worths and 
8.5.2 Creating Statements in JDBC process them. The Java code to accomplish this task iJ! 

There are two methods we can apply to a connection in order to create state- Statement execstat  = myCon.createStatement0; 
ments. They differ in the number of their arguments: ResultSet Worths = exec~tat .executeQuery( 

"SELECT networth FROM MovieExec") ; 
1. createstatemento returns an object of type Statement. This object 

has no associated SQL statement yet, so method createstatement () An alternative is to prepare the query immediately and later execute it. 
may be thought of as analogous to the CLI call to SQLAllocHandle that This approach would be preferable, as in the analogous CLI situation, should 
takes a connection handle and returns a statement handle. lve want to execute the same query repeatedly. Then, it makes sense to prepare 

it once and execute it many times, rather than having the DBMS prepare the 
2. preparestatement (Q), where Q is an SQL query passed as a string argu- same query repeatedly. The JDBC steps needed to follow this approach are: 

ment, returns an object of type PreparedStatement. Thus, we may draw 

an analogy between executing preparestatement (Q) in JDBC with the Preparedstatement execstat = my~on.prepareStatement( 
two CLI steps in which we get a statement handle with SQLAllocHandle "SELECT networth FROM MovieExec") ; 
and then apply SQLPrepare to that handle and the query Q. ResultSet Worths = execstat. executequery 0 ; 

There are four different methods that execute SQL statements. Like the 
methods above, they differ in whether or not they take a statement as an 

Example 8.23 : ~f we want to execute a parameterless nonquery, we can per- argument. However, these methods also distinguish between SQL statements 
form analogous steps in both styles. There is no result set, however- For that are queries and other statements, which are collectively called "updates." 
instance, suppose n-e want to insert into StarsIn  the fact that Denzel b 'sh- Note that the SQL UPDATE statement is only one small example of what JDBC 
ington starred in Remember the Titans in the year 2000. We may create and 

terms an "update." The latter include all modification statements, such as use a statement s t a r s t a t  in either of the following lt-a~s: inserts, and all schema-related statements such as CREATE TABLE. The four 
"execute" methods are: Statement s t a r s t a t  = myCon.createStatement0; 

starStat.executeUpdate("INSERT INTO StarsIn  VALUES(" + a) executeQuery(Q) takes a statement Q, which must be a query, and is 
"'Remember the  Ti tansJ ,  2000, 'Denzel Washington')"); applied to a Statement object. This method returns an object of type 

Resultset, which is the set (bag, to be precise) of tuples produced by the 
query Q. We shall see how to access these tuples in Section 8.5.3. 

PreparedStatement s t a r s t a t  = my~on.prepareStatement( 
b, execu tequer~o  is applied to a Preparedstatement object. Since a p re  "INSERT INTO ~ t a r s ~ n  VALUES('Remember t h e  Ti tans ' , "  + 

pared statement already has an associated query, there is no argument. 1s2000, 'Denzel Washington' 1 "1 ; 
This method also returns an object of type Resultset. starStat.executeUpdate0; 

C) executeu~date(U) takes a nonquery statement U and, when applied to Sotice that each of these sequences of Java statements takes advantage of the 
a statement object, executes U. The effect is felt on the databaqe only: fact that + is a Java operator that concatenates strings. Thus, are able to 
no result set is returned. extend SQL statements over several lines of Jwa, as needed. 
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8.5.3 Cursor Operations in JDBC 

When we execute a query and obtain a result-set object, we may, in effect, run 
a cursor through the tuples of the result set. To do so, the Resultset class 
provides the following useful methods: 

1. next 0, when applied to a result-set object, causes an implicit cursor to 
move to the next tuple (to the first tuple the first time it is applied). This 
method returns FALSE if there is no next tuple. 

2. getString(i1, getInt(i1, getFloat (i), and analogous methods for the 
other types that SQL values can take, each return the ith component of 
the tuple currently indicated by the cursor. The method appropriate to 
the type of the ith component must be used. 

Example 8.24: Having obtained the result set Worths as in Example 8.22, 
we may access its tuples one a t  a time. Recall that these tuples have only one 
component, of type integer. The form of the loop is: 

while (Worths .next () ) { 
worth = Worths.getInt(1); 
/* process t h i s  net worth */ 

1 

8.5.4 Parameter Passing 

.is in CLI, we can use a question-mark in place of a portion of a query, then bind 
values to those parameters. To do so in JDBC, we need to create a prepared 
statement, and we need to apply to that statement object methods such as 
se tSt r ing( i ,  v )  or se t In t ( i ,  v) that bind the value v,  which must be of the 
appropriate type for the method, to the ith parameter in the query. 

Example 8.25: Let us mimic the CLI code in Example 8.21, where we pre- 
pared a statement to insert a new studio into relation Studio, with parameters 
for the value of the name and address of that studio. The Java code to prepare 
this statement, set its parameters, and execute it is shown in Fig. 8.21. We 
continue to assume that connection object mycon is available to us. 

In lines (1) and (2), we create and prepare the insertion statement. It has 
parameters for each of the values to be inserted. -4fter line (2), we could begin 
a loop in which we repeatedly ask the user for a studio name and address. 
and place these strings in the variables studioName and studiodddr. This 
assignment is not shown, but represented by a comment. Lines (3) and (4) set 
the first and second parameters to the strings that are the current values of 
StudioName and studioAddr, respectively. Finally, at  line (5), we execute the 
insertion statement with the current values of its parameters. After line (5), we 
could go around the loop again, beginning with the steps represented by the 
comment. 
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1) Preparedstatement s tud ios t a t  = myCon.prepareStatement( 
2) "INSERT INTO Studio(name, address) VALUES(?, ?)");  

/* get  values f o r  variables studioName and studioAddr 
from t h e  user */ 

3) s t u d i o s t a t .  setString(1,  studioName) ; 
4) s tud ios t a t .  setString(2,  studioAddr) ; 
5) s tud ios t a t .  executeupdate0 ; 

Figure 8.21: Setting and using parameters in JDBC 

8.5.5 Exercises for Section 8.5 

Exercise 8.5.1 : Repeat Exercise 8.1.1, but write the code in Javausing JDBC. 

Exercise 8.5.2 : Repeat Exercise 8.1.2, but write the code in Java using JDBC. 

8.6 Transactions in SQL 
To this point, our model of operations on the database has been that of one 
user querying or modifying the database. Thus, operations on the database are 
executed one at  a time, and the database state left by one operation is the state 
upon which the nest operation acts. \loreover, we imagine that operations are 
carried out in their entirety ("atomically"). That is, we assumed it is impossible 
for the hardware or software to fail in the middle of an operation, leaving the 
database in a state that cannot be esplained as the result of the operations 
performed on it. 

Real life is often considerably more complicated. \ire shall first consider what 
can happen to leave the database in a state that doesn't reflect the operations 
performed on it. and then we shall consider the tools SQL gives the user to 
assure that these probl~ms do not occur. 

8.6.1 Serializability 

In applications like banking or airline reservations; hundreds of operations per 
second may be performed on the database. The operations initiate at any of 
hundreds or thousands of sites. such as automatic teller machines or machines on 
the desks of travel agents. airline emplo>-ees, or airline custonlers themselves. It 
is entirely possible that 11-e could have t~vo operations affecting the same account 
or flight, and for those operations to overlap in time. If so, they might interact 
in strange ways. Here is an example of what could go wrong if the DBMS 
were completely unconstrained as to the order in which it operated upon the 
database. IT-e emphasize that database systems do not normally behave in this 
manner, and that one has to go out of one's way to make these sorts of errors 
occur when using a commercial DBMS. 
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EXEC SQL BEGIN DECLARE SECTION; 
i n t  f l i g h t ;  /* f l i g h t  number */ 
char dateC101; /* f l i g h t  date i n  SQL format */ 
char seatt31; /* two d i g i t s  and a l e t t e r  represents 

a sea t  */ 
i n t  occ; /* boolean t o  t e l l  i f  s ea t  is  occupied */ 

EXEC SqL END DECLARE SECTION; 

void chooseseat 0 I 
/* C code t o  prompt the  user t o  enter  a f l i g h t ,  

date,  and seat  and s to re  these i n  the  three  
variables with those names */ 

EXEC SQL SELECT occupied INTO :occ 
FROM Fl ights  
WHERE fltNum = : f l i g h t  AND f l tDate  = :date 

AND f l tSea t  = : sea t ;  
i f  (!occ) C 

EXEC SqL UPDATE Fl ights  
SET occupied = TRUE 
WHERE fltNum = : f l i g h t  

AND f l tDate  = :date 
AND f l t S e a t  = : s ea t ;  

/* C and SQL code t o  record the  sea t  assignment 
and inform the  user of the  assignment */ 

1 
e l se  /* C code t o  no t i fy  user of unavai labi l i ty  and 

ask f o r  another sea t  se lec t ion */ 
1 

Figure 8.22: Choosing a seat 

Example 8.26: Suppose that we write a function chooseseat(), in C with 
embedded SQL, to read a relation about flights and the seats available, find 
if a particular seat is available, and make it occupied if so. The relation upon 
~ h i c h  we operate will be called Flights, and it has attributes f ltNum, f ltDate. 
f ltSeat. and occupied with the obvious meanings. The seat-choosing program 
is sketched in Fig. 8.22. 

Lines (9) through (11) of Fig. 8.22 are a single-row select that sets shared 
variable occ to true or false (1 or 0) depending on whether the specified seat is 
or is not occupied. Line (12) tests whether that seat is occupied, and if not, the 
tuple for that seat is updated to make it occupied. The update is done by lines 
(13) through (Is), and at  line (16) the seat is assigned to the customer who 
requested it. In practice, we would probably store seat-assignment informati011 
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in another relation. Finally, at line (17), if the seat is occupied the customer is 
told that. 

Now, remember that the function chooseseat 0 may be executed simulta- 
neously by two or more custorners. Suppose by coincidence that two agents are 
trying to book the same seat for the same flight and date at approximately the 
same time, as suggested by Fig. 8.23. They both get to line (9) at the same 
time, and their copies of local variable occ both get value 0; that is, the seat is 
currently unassigned. At line (12), each execution of chooseseat 0 decides to 
update occupied to TRUE, that is, to make the seat occupied. These updates 
execute, perhaps one after the other, and each execution tells its customer at  
line (16) that the seat belongs to them. 

User 1 finds 
seat empty 

time 
t 

User 1 sets 
seat occupied 

User 2 finds 
seat empty 

User 2 sets 
seat occupied 

Figure 8.23: TWO customers trying to book the same seat simultaneously 

As we see from Example 8.26, it is conceivable that two operations could 
each be performed correctly, and yet the global result not be correct: both 
customers believe they have been granted the seat in question. The problem 
can be solved by several SQL mechanisms that serve to serialize the execution 
of the two function executions. We say an execution of functions operating on 
the same database is serial if one function executes completely before any other 
function begins. We say the execution is serializable if they behave as if they 
were run serially. even though their executions may overlap in time. 

Clearly, if the two invocations of chooseseat 0 are run serially (or serial- 
izably), then the error \ve saw cannot occur. One customer's invocation occurs 
first. This customer sees an empty seat and books it. The other customer's in- 
vocation then begins and sees that the seat is already occupied. It may matter 
to the customers who gets the seat, but to the database all that is important 
is that a seat is assigned only once. 

8.6.2 Atomicity 

In addition to nonserlalized behavior that can occur if two or more database op- 
erations are performed about the same time, it is possible for a single operation 
to put the database in an  unacceptable state if there is a hardware or software 
.'crash" while the operation is executing. Here is another example suggesting 
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Assuring Serializable Behavior 

In practice it is often impossible to require that operations run serially; 
there are just too many of them and some parallelism is required. Thus, 
DBMS's adopt a mechanism for assuring serializable behavior; even if 
the execution is not serial, the result looks to users as if operations were 
executed serially. 

One common approach is for the DBMS to lock elements of the 
database so that two functions cannot access them a t  the same time. We 
mentioned locking in Section 1.2.4, and the idea will be covered exten- 
sively, starting in Section 18.3. For example, if the function chooseseat () 
of Example 8.26 were written to lock other operations out of the Fl ights  
relation, then operations that did not access Fl ights  could run in par- 
allel with this invocation of chooseseat 0, but no other invocation of 
chooseseat () could run. 

what might occur. As in Example 8.26, we should remember that real database 
systems do not allow this sort of error to occur in properly designed application 
programs. 

Example 8.27: Let us picture another common sort of database: a bank's 
account records. We can represent the situation by a relation Accounts with 
attributes acctNo and balance. Pairs in this relation are an account number 
and the balance in that account. 

We wish to write a function t r a n s f e r  0 that reads two accounts and an 
amount of money, checks that the first account has at  least that much money. 
and if so moves the money from the first account to the second. Figure 8.24 is 
a sketch of the function t ransfer( ) .  

The working of Fig. 8.24 is straightforward. Lines (8) through (10) retrieve 
the balance of the first account. At line ( l l ) ,  it is determined whether this 
balance is sufficient to allow the desired amount to be subtracted from it. If so. 
then lines (12) through (14) add the amount to the second account, and lilies 
(15) through (17) subtract the amount from the first account. If the amount 
in the first account is insufficient, then no transfer is made, and a warning is 
printed at line (18). 

Sow, consider what happens if there is a failure after line (14); perhaps the 
computer fails or the network connecting the database to the processor that 
is actually performing the transfer fails. Then the database is left in a state 
 here money has been transferred into the second account, but the money has 
not been taken out of the first account. The bank has in effect given away the 
amount of money that was to be transferred. 

The ~roblem illustrated by Example 8.27 is that certain combinations of 
database operations, like the two updates of Fig. 8.24, need to be done atomi- 
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EXEC SQL BEGIN DECLARE SECTION; 
i n t  a c c t l ,  acct2; /* t he  two accounts */ 
i n t  balancel;  /* t he  amount of money i n  the  

f i r s t  account */ 
i n t  amount; /* t h e  amount of money t o  t r ans fe r  */ 

EXEC SqL END DECLARE SECTION; 

void t r ans fe r ( )  { 
/* C code t o  prompt t h e  user t o  en te r  accounts 

1 and 2 and an amount of money t o  t r ans fe r ,  
i n  var iables  a c c t l ,  acct2,  and amount */ 

EXEC SQL SELECT balance INTO :balance1 
FROM Accounts 
WHERE acctNo = : acc t l ;  

i f  (balance1 >= amount) 
EXEC SQL UPDATE Accounts 

SET balance = balance + :amount 
WHERE acctNo = :acct2; 

EXEC SQL UPDATE Accounts 
SET balance = balance - :amount 
WHERE acctNo = : a c c t l ;  

1 
e l s e  /* C code t o  p r in t  a message t h a t  the re  were 

insuff ic ient  funds t o  make t h e  t r ans fe r  */ 
> 

Figure 8.24: Transferring money from one account to another 

cally: that is, either they are both done or neither is done. For example, a simple 
solution is to have all changes to the database done in a local workspace: and 
only after all work is done do we commit the changes to the database, where- 
upon all changes become part of the database and visible to other operations. 

8.6.3 Transactions 

The solution to the problems of serialization and atomicity posed in Sections 
8.6.1 and 8.6.2 is to group database operations into transactions. -4 transaction 
is a collection of one or more operations on the database that must be executed 
atomically; that is, either all operations are performed or none are. In addition, 
SQL requires that, as a default, transactions are executed in a serializable 
manner. A DBMS may allow the user to specify a less stringent constraint on 
the interleaving of operations from two or more transactions. \Ye shall discuss 
these modifications to the serializability condition in later sections. 
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When using the generic SQL interface, each statement is normally a transac- 
tion by itself.= However, when writing code with embedded SQL or code that 
uses the SQLJCLI or JDBC, we usually want to control transactions explic- 
itly. Transactions begin automatically, when any SQL statement that queries 
or manipulates either the database or the schema begins. The SQL command 
START TRANSACTION may be used if we wish. 

In the generic interface, unless started with a START TRANSACTION com- 
mand, the transaction ends with the statement. In all other cases, there are 
two ways to end a transaction: 

1. The SQL statement COMMIT causes the transaction to end successfully. 
Whatever changes to the database were caused by the SQL statement or 
statements since the current transaction began are installed permanently 
in the database (i.e., they are committed). Before the COMMIT statement 
is executed, changes are tentative and may or may not be visible to other 
transactions. 

2. The SQL statement ROLLBACK causes the transaction to abort, or termi- 
nate unsuccessfully. Any changes made in response to the SQL statements 
of the transaction are undone (i.e., they are rolled back), so they no longer 
appear in the database. 

There is one exception to the above points. If we attempt to commit a trans- 
action, but there are deferred constraints (see Section 7.1.6) that need to be 
checked, and these constraints are now violated, then the transactiori is not 
committed, even if we tell it to with a COMMIT statement. Rather, the transac- 
tion is rolled back, and an indication in SQLSTATE tells the application that the 
transaction was aborted for this reason. 

Example 8.28 : Suppose we want an execution of function transfer0 of 
Fig. 8.24 to be a single transaction. The transaction begins at  line (8) when 
we read the balance of the first account. If the test of line (11) is true, and xe  
perform the transfer of funds, then we would like to commit the changes made. 
Thus, we put at the end of the if-block of lines (12) through (17) the additional 
SQL statement 

EXEC SQL COMMIT; 

If the test of line (11) is false - that is. there are insufficient funds to make 
the transfer - then we might prefer to abort the transaction. We can do so b. 
placing 

EXEC SQL ROLLBACK; 

'Ho\vever, an). triggers awakened by the statement are also part of this same transaction. 
Some systems even allo\v triggers to  awaken other triggers, and if so, all these actions form 
part of the transaction as well. 
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How the Database Changes During Transactions 

Different systems may do different things to implement transactions. It is 
possible that as a transaction executes, it makes changes to the database. 
If the transaction aborts, then (without precautions) it is possible that 
these changes were seen by some other transaction. The most common 
solution is for the database system to lock the changed items until COMMIT 
or ROLLBACK is chosen, thus preventing other transactions from seeing the 
tentative change. Locks or an equivalent would surely be used if the user 
wants the transactions to run in a serializable fashion. 

However, as we shall see starting in Section 8.6.4, SQL offers us sev- 
eral options regarding the treatment of tentative database changes. It 
is possible that the changed data is not locked and becomes visible even 
though a subsequent rollback makes the change disappear. It is up to the 
author of the transactions to decide whether visibility of tentative changes 
needs to be avoided. If so: all SQL implementations provide a method, 
such as locking, to keep changes invisible before commitment. 

at  the end of the else-block suggested by line (18). .Actually, since in this branch 
there were no database modification statements executed, it doesn't matter 
whether we commit or abort, since there are no changes to be committed. 

8.6.4 Read-Only Transactions 

Examples 8.26 and 8.27 each involved a transaction that read and then (pos- 
sibly) wrote some data into the database. This sort of transaction is prone to 
serialization problems. Thus we saw in Example 8.26 what could happen if t~i-o 
executions of the function tried to book the same seat at the same time. and 
we saw in Example 8.27 what could happen if tlicre was a crash in the middle 
of function execution. Ho~vever, when a transaction only reads data and does 
not write data, we have more freed0111 to let the transaction execute in parallel 
with other  transaction^.^ 

Example 8.29: Suppose we wrote a function that read data to determine 
whether a certain seat was alailable: this function ~vould behave like lines (1) 
through (11) of Fig. 8.22. 11e could execute many invocations of this function 
at  once. without risk of permanent harm to the database. The worst that could 
happen is that while xve xere reading the availability of a certain seat. that 

6There is a comparison to be made between transactions on one hand and the management 
of cursors on the other. For example, ive noted in Section 8.1.8 that more parallelism Isas 
possible with read-only cursors than with general cursors. Similarly, read-only transactions 
enable parallelism; read/\vrite transactions inhibit it. 



Application- Versus System-Generated Rollbacks 

In our discussion of transactions, me have presumed that the decision 
whether a transaction is committed or rolled back is made as part of the 
application issuing the transaction. That is, as in Examples 8.30 and 8.28, 
a transaction may perform a number of database operations, then decide 
whether to make any changes permanent by issuing COMMIT, or to return 
to the original state by issuing ROLLBACK. However, the system may also 
perform transaction rollbacks, to ensure that transactions are executed 
atomically and conform to their specified isolation level in the presence of 
other concurrent transactions or system crashes. Typically, if the system 
aborts a transaction then a special error code or exception is generated. 
If an application wishes to guarantee that its transactions are executed 
successfully, it must catch such conditions (e.g., through the SQLSTATE 
value) and reissue the transaction in question. 
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8.6.5 Dirty Reads 

Dirty data is a common term for data written by a transaction that has not yet 
A dirty read is a read of dirty data. The risk in reading dirty data 

is that the transaction that wrote it may eventually abort. If so, then the dirty 
data will be removed from the database, and the world is supposed to behave 
as if that data never existed. If some other transaction has read the dirty data, 
then that transaction might commit or take some other action that reflects its 
knowledge of the dirty data. 

Sometimes the dirty read matters, and sometimes it doesn't. Other times 
it matters little enough that it makes sense to risk an occasional dirty read and 

1. The time-consuming work by the DBMS that is needed to prevent dirty 

2. The loss of parallelism that results from waiting until there is no possibility 
of a dirty read. 

Here are some e s a n ~ ~ l e s  of what might happen when dirty reads are allolved. 
seat was being booked or was being released by the execution of some other 
function. Thus, we might get the answer "available" or "occupied," depending Example 8.30 : Let us reconsider the account transfer of Esample 8.27. HOW- 
on microscopic differences in the time at  which we executed the query, but the ever, suppose that transfers are implemented by a program P that executes the 
answer would make sense at some time. follon-ing sequence of steps: 

If we tell the SQL execution system that our current transaction is read- I. .kid n~oney to account 2. 
only, that is, it will never change the database, then it is quite possible that the 
SQL system will be able to take advantage of that knowledge. Generally it will 2. Test if account 1 has enough money. 

be possible for many read-only transactions accessing the same data to run 
parallel, while they would not be allowed to run in parallel with a transaction 

(a) ~f there is not enougll money, remove the money from account 2 and 

that wrote the same data. 
tell the SQL system that the next transaction is read-only by: (b) ~f there is enough money, subtract the money from account 1 and 

SET TRANSACTION READ ONLY; 
If program P is executed serializably, then it doesn't matter that we have put 

This statement must be executed before the transaction begins. For example: Inoney temporarily into account 2. S o  one will see that money, and it gets 
if had a function consisting of lines (1) through (11) of Fig. 8.22, we could removed if the transfer can't be made. 
declare it read-only by placing HoTvever, suppose dirty reads are possible. Imagine there are three accounts: 

EXEC SQL SET TRANSACTION READ ONLY; -41. -42. and .43. with $100. S2001 and $300. respectively. Suppose transaction 
TI executes progralll P to transfer 9150 from dl to -42. .it roughly the same 
ti111e. transaction T2 runs program P to transfer S2.50 from -42 to -43. Here is 
a possible sequence of cvcnts: 

1. Tz executes step 1 and adds $250 to -43: which now has $550. 

7yOu should be axrare that the program P is trying to perform functions that \\.auld more 
SET TRANSACTION READ WRITE; typically be done by the DBIIS. In particular. when P decides, as it has done at this step, 

that it must not complete the transaction, it \vould issue a rollback (abort) command to the 
this option is the default and thus is unnecessary. DBMS and have the DBMS reverse the effects of this execution of P .  
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2. Tl executes step 1 and adds $150 to .42, which now has $350. 

3. T. executes the test of step 2 and finds that A2 has enough funds ($350) 
to allow the transfer of $250 from A2 to A3. 

4. TI executes the test of step 2 and finds that A1 does not have enough 
funds ($100) to allow the transfer of $150 from A1 to A2. 

5. T' executes step 2b. It subtracts $250 from A2, which now has $100, and 
ends. 

6. Tl executes step 2a. It subtracts $150 from A2, which now has -$SO, and 
ends. 

The total amount of money has not changed; there is still $600 among the three 
accounts. But because Tz read dirty data at the third of the six steps above, lve 
have not protected against an account going negative, which supposedly was 
the purpose of testing the first account to see if it had adequate funds. 

Example 8.31 : Let us imagine a variation on the seat-choosing function of 
Example 8.26. In the new approach: 

1. We find an available seat and reserve it by setting occupied to TRUE for 
t,hat seat. If there is none, abort. 

2. \Ve ask the customer for approval of the seat. If so, we commit. If not. 
we release the seat by setting occupied to FALSE and repeat step 1 to get 
another seat. 

If two transactions are executing this algorithm at about the same time. olio 
might reserve a seat S, which later is rejected by the customer. If the second 
transaction executes step 1 at  a time when seat S is marked occupied. the 
customer for that transaction is not given the option to take seat S. 

As in Example 8.30, the problem is that a dirty read has occurred. Thc 
second transaction saw a tuple (with S marked occupied) that was written by 
the first transaction and later modified by the first transaction. 

How important is the fact that a read was dirty? In Example 8.30 it \\.as 
\-cry important: it caused an account to go negative despite apparent safeguards 
against that happening. In Example 8.31, tlie problem does not look too serious. 
Indeed. the second traveler might not get their favorite seat, or even be told 
that no scats csisted. Ho~vcver, in the latter case. running the transaction again 
will almost certainly reveal the availability of seat S. It might well make scllse 
to implement this seat-choosing function in a way that allowed dirty reads, in 
order to speed up the average processing time for booking requests. 

SQL allo\vs us to specify that dirty reads are acceptable for a given transac- 
tion. W e  use the SET TRANSACTIONstatement that we discussed in Section 8.6.4. 
The appropriate form for a transaction like that described in Example 8.31 is: 
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1) SET TRANSACTION READ WRITE 
2) ISOLATION LEVEL READ UNCOMMITTED; 

The statement above does two things: 

1. Line (1) declares that the transaction may write data. 

2. Line (2) declares that the transaction may run with the "isolation level" 
read-uncommitted. That is, the transaction is allowed to read dirty data. 
We shall discuss the four isolation levels in Section 8.6.6. So far, we have 
seen two of them: serializable and read-uncommitted. 

Note that if the transaction is not read-only (i.e., it may modify the data- 
base), and we specify isolation level READ UNCOMMITTED, then we must also 
specify READ WRITE. Recall from Section 8.6.4 that the default assumption is 
that transactions are read-write. However, SQL makes an exception for the 
case where dirty reads are allowed. Then, the default assumption is that the 
transaction is read-only, because read-write transactions with dirty reads entail 
significant risks, as we saw. If ~ r c  want a read-write transaction to run with 
read-uncommitted as the isolation level, then we need to specify READ WRITE 
explicitly. as above. 

8.6.6 Other Isolation Levels 

SQL provides a total of four isolation leuels. Two of them xve have already 
seen: serializable and read-uncommitted (dirty reads allowed). The other two 
are read-committed and repeatable-read. They can be specified for a given trans- 
action by 

SET TRANSACTION ISOLATION LEVEL READ COMMITTED; 

SET TRANSACTION ISOLATION LEVEL REPEATABLE READ; 

respectively. For each. the default is that transactions are read-write, so ~ve can 
add READ ONLY to either statement, if appropriate. Incidentally, u-e also have 
the option of specifying 

SET TRANSACTION ISOLATION LEVEL SERIALIZABLE; 

However. that is the SQL default and need not be stated esplicitly. 
The read-committed isolation level, as its name implies, forbids the reading 

of dirty (uncommitted) data. Hen-ever, it does allo~v one transaction to issue 
the same query several times and get different anslvers, as long as the answers 
reflect data that has been written by transactions that already committed. 
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Interactions Among Transactions Running at 
Different Isolation Levels 

A subtle point is that the isolation level of a transaction affects only what 
data that transaction may see; it does not affect what any other transaction 
sees. As a case in point, if a transaction T is running at  level serializable, 
then the execution of T must appear as if all other transactions run either 
entirely before or entirely after T. However, if some of those transactions 
are running at  another isolation level, then they may see the data rvritten 
by T as T writes it. They may even see dirty data from T if they are 
running a t  isolation level read-uncommitted, and T aborts. 

Example 8.32 : Let us reconsider the seat-choosing function of Example 8.31. 
but suppose we declare it to run with isolation level read-committed. The11 
when it searches for a seat at  step 1, it will not see seats as booked if somr 
other transaction is reserving them but not c~mmi t t ed .~  However, if the trav- 
eler rejects seats, and one execution of the function queries for available scats 
many times, it may see a different set of available seats each time it queries, as 
other transactions successfully book seats or cancel seats in parallel with our 
transaction. 

Sow, let us consider isolation level repeatable-read. The term is something 
of a misnomer, since the same query issued more than once is not quite guar- 
anteed to get the same answer. Under repeatable-read isolation, if a tuplr i. 
retrieved the first time, then we can be sure that the identical tuple will be rr- 
trieved again if the query is repeated. However, it is also possible that a second 
or subsequent execution of the same query will retrieve phantom tuples. The 
latter are tuples that are the result of insertions into the database while our 
transaction is executing. 

Example 8.33 : Let us continue with the seat-choosing problem of Examples 
8.31 and 8.32. If we execute this function under isolation level repeatable-read. 
then a seat that is available on the first query at step 1 mill remain available at 
subsequent queries. 

However, suppose some new tuples enter the relation Flights. For rsam- 
ple. the airline may have switched the flight to a larger plane, creating some 
netv ttuplrs that weren't there before. Then under repeatable-read isolation. a 
subsequent query for available seats may also retrieve the new seats. 0 

'what actually happens may seem mysterious, since we have not addressed the algorithms 
for enforcing the \arious isolation levels. Possibly, should t \ ~ o  transactions both see a seat as 
available and try to book it, one will be forced by the system to roll back in order to break the 
deadlock (see the box on 'Application- \hrsus System-Generated Rollbacks" in Section 5.6.3. 
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8.6.7 Exercises for Section 8.6 

Exercise 8.6.1 : This and the next exercises involve certain progranls that 
operate on the two relations 

Product (maker, model, type) 
PC(mode1, speed, ram, hd, rd, price) 

from our running PC exercise. Sketch the following programs, using embedded 
SQL and an appropriate host language. Do not forget to issue COMMIT and 
ROLLBACK statements at  the proper times and to tell the system your transac- 
tions are read-only if they are. 

a) Given a speed and amount of RAM (as arguments of the function), look 
up the PC's with that speed and RAM, printing the model number and 
price of each. 

* b) Given a model number, delete the tuple for that model from both PC and 
Product. 

c) Given a model number, decrease the price of that model PC by $100. 

d) Given a maker, model number, processor speed, RAN size, hard-disk size, 
removable-disk type, and price, check that there is no product with that 
model. If there is such a model, print an error message for the user. If no 
such model existed. enter the information about that model into the PC 
and Product tables. 

! Exercise 8.6.2 : For each of the programs of Exercise 8.6.1, discuss the atoin- 
icity problems, if any, that could occur should the system crash in the rniddle 
of an execution of the program. 

! Exercise 8.6.3: Suppose we execute as a transaction T one of the four pro- 
grams of Exercise 8.6.1, while other transactions that are executions of the same 
or a different one of the four programs may also be executing at  about the same 
time. What behaviors of transaction T may be observed if all the transactions 
run with isolation level READ UNCOMMITTED that would not be possible if they 
all ran with isolation level SERIALIZABLE? Consider separately the case that T 
is any of the programs (a) through (d) of Exercise 8.6.1. 

*!! Exercise 8.6.4 : Suppose lye have a transaction T that is a function 15-hich runs 
"forever," and at  each hour checks whether there is a PC that has a speed of 
1500 or more and sells for under $1000. If it finds one, it prints the infornlation 
and terminates. During this time, other transactions that are executions of 
one of the four programs described in Exercise 8.6.1 may run. For each of the 
four isolation levels - serializable, repeatable read, read committed, and read 
uncommitted - tell what the effect on T of running at this isolation level is. 
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8.7 Security and User Authorization in SQL 

SQL postulates the existence of authorization ID'S, which are essentially user 
names. SQL also has a special authorization ID, PUBLIC, which includes ally 
user. Authorization ID'S may be granted privileges, much as they would be in 
the file system environment maintained by an operating system. For example. 
a UNIX system generally controls three kinds of privileges: read, write, and 
execute. That list of privileges makes sense. because the protected objects of a 
UNIX system are files, and these three operations characterize well the things 
one typically does with files. Howel-er, databases are much more complex than 
file systems, and the kinds of privileges used in SQL are correspondingly more 
complex. 

In this section, we shall first learn what privileges SQL allows on database 
elements. MTe shall then see how privileges may be acquired by users (by au- 
thorization ID'S, that is). Finally, rve shall see how privileges may be taken 
away. 

8.7.1 Privileges 

SQL defines nine types of privileges: SELECT, INSERT, DELETE, UPDATE, REF- 
ERENCES, USAGE, TRIGGER: EXECUTE, and UNDER. The first four of these apply 
to a relation, which may be either a base table or a view. As their names 
imply, they give the holder of the privilege the right to query (select fro111) thc 
relation, insert into the relation, delete from the relation, and update tuples of 
the relation, respectively. 

d module containing an SQL statement cannot be executed without tlic 
privilege appropriate to that statement: e.g., a select-from-where statetnc~it 
requires the SELECT privilege on every table it accesses. We shall see 1101v the 
module can get those privileges shortly. SELECT, INSERT, and UPDATE may also 
have an associated list of attributes, for instance, SELECT(name, addr). If so. 
then it is only those attributes that may be seen in a selection, specified in an 
insertion, or changed in an update. Note that, when granted, privileges such 
as these will be associated with a particular relation, so it will be clear at that 
time to what relation attributes name and addr belong. 

The REFERENCES privilege on a relation is the right to refer to that relation in 
an integrity constraint. These constraints may take any of the forms mentio~ied 
in Chapter 7, such as assertions. attribute- or tuple-based cliecks, or referential 
integrity constraints. The REFERENCES privilege may also have an attachrd 
list of attributes. in xvhirh case orlly those attributes may be referenced in a 
constraint. A constraint cannot be checked unless the owner of the schema in 
R-hich the constraint appears has the REFERENCES privilege on all data involved 
in the constraint. 

USAGE is a privilege that applies to several kinds of schema elements other 
than relations and assertions (see Section 8.3.2); it is the right to use that 
element in one's own declarations. The TRIGGER privilege on a relation is the 
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Triggers and Privileges 

It is a bit subtle how privileges are handled for triggers. First, if you have 
the TRIGGER privilege for a relation, you can attempt to create any trigger 
you like on that relation. However, since the condition and action portions 
of the trigger are likely to query and/or modify portions of the database, 
the trigger creator must have the necessary privileges for those actions. 
When someone performs an activity that awakens the trigger, they do 
not need the privileges that the trigger condition and action require; the 
trigger is executed under the privileges of its creator. 

- 

right to define triggers on that relation. EXECUTE is the right to execute a piece 
of code, such as a PSM procedure or function. Finally, UNDER is the right to 
create subtypes of a given type. This matter has been deferred until Chapter 9. 
when we take up object-oriented features of SQL. 

Example 8.34: Let us consider what privileges are needed to execute the in- 
sertion statement of Fig. 6.15. which we reproduce here as Fig. 8.25. First. 
it is an insertion into the relation Studio, so we require an INSERT privilege 
on Studio. Ilowever, since the i~lsertion specifies only the component for at- 
tribute name, it is acceptable to have either the privilege INSERT or the privi- 
lege INSERT(name) on relation Studio. The latter privilege allows us to insert 
Studio tuples that specify only the name component and leave other compo- 
nents to take their default value or NULL. which is what Fig. 8.25 does. 

1) INSERT INTO Studio(name1 
2) SELECT DISTINCT studioName 
3) FROM Movie 
4) WHERE studioName NOT IN 
5) (SELECT name 
6) FROM Studio); 

Figure 8.25: Adding new studios 

Holyever. notice that the insertion statement of Fig. 8.25 involves two ~1::- 

queries. starting at lines (2) and ( 3 ) .  To carry out these selections ~ v e  requir 
the privileges needed for the subqueries. Thus, we need the SELECT privilqi 
on both relations involved in FROM clauses: Movie and Studio. Xote that jcs- 
because we have the INSERT privilege on Studio doesn't mean we have 15- 
SELECT privilege on Studio, or vice versa. Since it is only particular a t t r i b u r ~  
of Movie and Studio that get selected, it is sufficient to have the privileg 



412 CHAPTER 8. SI'STEAI -4SPECTS OF SQL 

~ ~ ~ ~ ~ ~ ( s t u d i o N a m e )  on Movie and the privilege SELECT(name1 on Studio, or 
privileges that included these attributes within a list of attributes. 

8.7.2 Creating Privileges 

We have seen what the SQL privileges are and observed that they are required 
to  perform SQL operations. Now we must learn how one obtains the privileges 
needed t o  perform an operation. There are two aspects to  the awarding of 
privileges: how they are created initially, and how they are passed from user to 
user. We shall discuss initialization here and the transmission of privileges in 
Section 8.7.4. 

First, SQL elements such as schemas or modules have an owner. The owner 
of something has all privileges associated with that thing. There are three 
points a t  which ownership is established in SQL. 

1. When a schema is created, it and all the tables and other schema elements 
in it are assumed owned by the user ~ v h o  created it. This user t~hus has 
all possible privileges on elements of the schema. 

2. When a session is initiated by a CONNECT statement, there is an oppor- 
tunity to indicate the user with an AUTHORIZATION clause. For instance: 
the connection statement 

CONNECT TO S t a r f l e e t - s q l - s e r v e r  AS connl 
AUTHORIZATION k i r k ;  

would create a connection called connl to an SQL server whose name i. 
S t a r f  l ee t - sq l - se rver ,  on behalf of a user k i rk .  Presumably, the SQL 
implementation would verify that  the user name is valid, for example by 
asking for a password. I t  is also possible to  include the pass~vord in the 
AUTHORIZATION clause, as  we discussed in Section 8.3.5. That approach 
is somewhat insecure, since passwords are then visible to someone louking 
over Kirk's shoulder. 

3. When a module is created, there is an option to give it an owner bj- using 
an AUTHORIZATION'C~~U~~. For instance. a clause 

AUTHORIZATION p i c a r d ;  

in a module-creation statement would make user p i c a r d  the olvncr of 
the module. It  is also acceptable t o  specify no owner for a module. in 
~ h i c h  case the module is publicly executable, but the privileges nccessar?- 
for executing any operations in the module rnust come from some other 
source, such as the user associated with the connection and session during 
which the module is executed. 
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8.7.3 The Privilege-Checking Process 

As we saw above, each module, schema, and session has a n  associated user; in 
SQL terms, there is an associated authorizat,ion ID for e x h .  Any SQL operation 
has two parties: 

1. The database elements upon which the operatior1 is performed and 

2. The agent that causes the operation. 

The privileges available to  the agent derive from a particular authorization ID 
called the current authorization ID. That ID is either 

a) The module authorization ID, if the module that  the agent is executing 
has a n  authorization ID, or 

b) The session authorization ID if not. 

We may execute the SQL operation only if the current authorization ID pos- 
sesses all the privileges needed to carry out the operation on the database 
elements involved. 

Example 8.35 : To see the mechanics of checking privileges, let us reconsider 
Example 8.34. We might suppose that the referenced tables - Movie and 
S tud io  - are part of a schema called MovieSchema that was created by, and 
owned by. user janeway. At this point, user janeway has all privileges on 
these tables and any other elements of the schema MovieSchema. She may 
choose to  grant some privileges to others by the mechanism t o  be described in 
Section 8.7.4, but let us assume none have been granted yet. There are several 
ways that the insertion of Example 8.34 can be executed. 

1. The insertion could be executed as part of a module created by user 
janeway and containing an AUTHORIZATION janeway clause. The module 
authorization ID, if there is one. all\-ays berornes the current authorization 
ID. Then, the module and its SQL insertion statement have exactly the 
same privileges user janeway has, which includes all privileges on the 
tables Movie and Studio. 

2. The insertion could be part of a module that has no owner. User janeway 
opens a connection with an AUTHORIZATION janeway clause in the CON- 
NECT statement. S o ~ v .  janeway is again the current authorization ID: so 
the insertion statement has all the privileges needed. 

3. User janeway grants all privileges on tables Movie and S tud io  to user 
s i s k o ,  or perhaps to  the special user PUBLIC, which stands for "all users." 
The insertion statement is in a module n-ith the clause 

AUTHORIZATION s i s k o  



414 CHAPTER 8. SYSTEM ASPECTS OF SQL 8.7. SECLrRITY AND USER dUTHORIZ.4TION IAi SQL 415 

Since the current authorization ID is now sisko, and this user has the to anyone else. If the third user later gets this same privilege with the grant 
needed privileges, the insertion is again permitted. option, then that user may grant the privilege to a fourth user, again with or 

without the grant option, and so on. 
4. As in (3), user janeway has given user sisko the needed privileges. The A grant statement consists of the following elements: 

insertion statement is in a module wit,hout an owner; it is executed in 
a session whose authorization ID was set by an AUTHORIZATION sisko 1. The keyword GRANT. 
clause. The current authorization ID is thus sisko, and that ID has the 
needed privileges. 2. X list of one or more ~rivileges, e.g., SELECT or  INSERT(^^^^). Optionally, 

the keywords ALL PRIVILEGES may appear here, as a shorthand for all 
the privileges that the grantor may legally grant on the database element 
in question (t,he element mentioned in item 4 below). There are several principles that are illustrated by Example 8.35. \\e shall 

summarize them below. 3. The keyword ON. 

The needed privileges are always available if the data is owned by the 4. A database element. This element is typically a relat,ion, either a base 
same user as the user whose ID is the current authorization ID. Scenarios table or a view. It may also be a donlain or other element we have not 
(1) and (2) above illustrate this point. discussed (see the box "More Schema Elements" in Section 8.3.2), but in 

these cases the element name must be preceded by the keyword DOMAIN 
The needed privileges are available if the user whose ID is the current or another appropriate keyword. authorization ID has been granted those privileges by the owner of tllc 
data, or if the privileges have been granted to user PUBLIC. Scenarios (3) 5. The keyword TO. 
and (4) illustrate this point. 

6. .-i list of one or more users (authorization ID'S). 
Executing a module owned by the owner of the data, or by solneonc 
who has been granted privileges on the data, makes t,he needed privileges 7. Optionally, the keyvords WITH GRANT OPTION 
available. Of course, one needs the EXECUTE privilege on the module itself. 
Scenarios (1) and (3) illustrate this point. That is, the form of a grant statement is: 

Executing a publicly available module during a session whose autl~o~iza- GRANT <privilege list> ON <database element> TO <user list> 
tion ID is that of a user with the needed privileges is another way to 
execute the operation legally. scenarios (2) and (4) illustrate t,his point. possibly followed by WITH GRANT OPTION. 

In order to execute this grant statement legally: the user executing it must 

8.7.4 Granting Privileges possess the privileges granted, and these privileges must be held with the grant 
option. Holvever, the grantor may hold a more general privilege (with the grant 

We saw in Example 8.35 the importance to a user (i.e., an authorization ID) option) than the privilege granted. For instance, the privilege  INSERT(^^^^) 
of having the needed privileges. But so far, the only way we have seen to have on table Studio might be granted, while the grantor holds the more general 
privileges on a database element is to be the creator and owner of t,llat element. privilege INSERT on Studio, with grant option. 
SQL provides a GRANT statement to allow one user to give a privilege to anothcr. 
The first user retains the privilege granted, as 11-ell: thus GRANT can be thought Example 8.36: user janeway. i\-ho is the on-ner of the Movieschema schema 
of as "copy a privilege." that contains tables 

There is one important difference between granting privileges and copying. 
Each privilege has an associated grant option. That is, one user may have a Movie(title, year, length, incolor, studioName,  producer^#) 
privilege like SELECT on table Movie "with grant option," while a second user Studio (name, address, presC#) 
may have the same privilege, but without the grant option. Then the first user 
ma?. grant the privilege SELECT on Movie to a third user, and moreover that grants the INSERT and SELECT privileges on table Studio and privilege SELECT 

. grant may be with or without the grant option. However, the second user. 1t-110 on Movie to users kirk and picard. lIoreo~.er: she iricludes the grant option 
does not have the grant option, may not grant the privilege SELECT on Movie with these privileges. The grant statements are: 
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GRANT SELECT, INSERT ON Studio TO kirk, picard 
WITH GRANT OPTION; 

GRANT SELECT ON Movie TO kirk, picard 
WITH GRANT OPTION; 

Now, picard grants t o  user sisko the same privileges, but without the 
grant option. The statements executed by picard are: 

GRANT SELECT, INSERT ON Studio TO sisko; 
GRANT SELECT ON Movie TO sisko; 

Also, kirk grants t o  sisko the minimal privileges needed for the insertion of 
Fig. 8.25, namely SELECT and INSERT(name) on Studio and SELECT on Movie. 
The statements are: 

GRANT SELECT, INSERT(name1 ON Studio TO sisko; 
GRANT SELECT ON Movie TO sisko; 

Note that sisko has received the SELECT privilege on Movie and Studio from 
two different users. He has also received the INSERT(name) privilege on Studio 
twice: directly from kirk and via the generalized privilege INSERT from picard. 

8.7.5 Grant Diagrams 

Because of the complex web of grants and overlapping privileges that may result 
from a sequence of grants, it is useful t o  represent grants by a graph called a 
grant diagram. An S Q L  system maintains a representation of this diagram to 
keep track of both privileges and their origins (in case a privilege is revoked: 
see Section 8.7.6). 

The nodes of a grant diagram correspond to a user and a privilege. Sote 
that a privilege with and without the grant option must be represented by two 
different nodes. If user U grants privilege P t o  user V, and this grant was based 
on the fact that U holds privilege Q (Q could be P with the grant option. or it 
could be some generalization of P, again with the grant option), then Ive draw 
an arc from the node for U/Q to the node for CP/P. 

Example 8.37: Figure 8.26 shows the grant diagram that results from the 
sequence of grant statements of Example 8.36. \Ye use the convention that a * 
after a user-privilege combination indicates that the privilege includes the grant 
option. Also, ** after a user-privilege combination indicates that the privilege 
derives from ownership of the database element in question and was not due to  
a grant of the privilege from elsewhere. This distinction will prove inlportant 
when n-e discuss revoking privileges in Section 8.7.6. A doubly starred privilege 
automaticallv includes the grant option. EI 
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INSERT (name) 

Figure 8.26: A grant diagram 

8.7.6 Revoking Privileges 

.I granted privilege can be revoked a t  any time. 111 fact, the revoking of privi- 
leges may be required t o  cascade, in the  sense that  revoking a privilege ~v i th  the 
grant option that has been passed on t o  other users may require those privileges 
to  be revoked too. The simple form of a revoke statement is: 

1. The key~vord REVOKE. 

2. .A list of one or more privileges. 

3. The key\\-ord ON. 

4. X database element. as  discussed in item (4) in the description of a g a n t  
statement. 

5 .  The keyxi-ord FROM. 

6 .  .I list of one or more users (authorization 1D.s). 
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That is, the following is the form of a revoke statement: 

REVOKE <privilege list> ON <database element> FROM <user list> 

However, one of the following items must also be included in the statement: 

1. The statement can end with the word CASCADE. If so, then when the 
specified privileges are revoked, we also revoke any privileges that were 
granted only because of the revoked privileges. More precisely, if user I- 
has revoked privilege P from user V, based on privilege Q belonging to 
U, then we delete the arc  in the grant diagram from U/Q to VIP. Son-. 
any node that is not accessible from some ownership node (doubly starred 
node) is also deleted. 

2. The statement can instead end with RESTRICT, which means that the 
revoke statement cannot be executed if the cascading rule described in 
the previous item would result in the revoking of any privileges due to  
the revoked privileges having been passed on to others. 

It  is permissible to  replace REVOKE by REVOKE GRANT OPTION FOR, in which 
case the core privileges themselves remain, but the option to grant then1 to 
others is removed. We may have t o  modify a node, redirect arcs, or create a 
new node t o  reflect the changes for the affected users. This form of REVOKE also 
must be made in combination with either CASCADE or RESTRICT. 

Example 8.38 : Continuing with Example 8.36. suppose that janeway revokes 
the privileges she granted to p i c a r d  with the statements: 

REVOKE SELECT, INSERT ON S tud io  FROM picard  CASCADE; 
REVOKE SELECT ON Movie FROM picard  CASCADE; 

We delete the arcs of Fig. 8.26 from these janeway privileges t o  the corre- 
sponding p icard  privileges. Since CASCADE was stipulated. rve also have to see 
if there are any privileges that  are not reachable in the graph from a doubly 
starred (ownership-based) privilege. Examining Fig. 8.26, we see that picard 's  
privileges are no longer reachable from a doubly starred node (they might have 
been, had there been another path to  a p icard  node). Also, s isko 's  privilege 
to  INSERT into S tud io  is no longer reachable. \Ye thus delete not only picard'z 
privileges from the grant diagram, but lve delete sisko's INSERT privilege. 

Sote that we do not delete s i s k o J s  SELECT privileges on Movie arid S tud io  
or his INSERT(name) privilege on Studio. because these are all reachable fro111 
Janeway's oivnership-based privileges via kirk 's  privileges. Thc resulting grant 
diagram is shown in Fig. 8.27. 

Example 8.39 : There are a few subtleties that we shall illustrate with abstract 
examples. First, when we rcvoke a general privilege p, we do not also revoke a 
privilege that is a special case of p. For instance. consider the following sequence 

r 
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Figure 8.27: Grant diagram after revocation of picard 's  privileges 

of steps, whereby user U ,  the o~vner of relation R: grants the INSERT privilege 
on relation R to user IT,  and also grants the INSERT(A) privilege on the same 
relation. 

Step By Action 
1 1; GRANT INSERT ON R TO kT 
2 c GRANT INSERT(A) ON R TO I' 
3 C' REVOKE INSERT ON R FROM 17 RESTRICT 

When C rexokes INSERT fro111 1'. the INSERT(A) prix-ilege remains. The 
grant tliagranls after steps (2) and (3) arc shown in Fig. 8.28. 

Sotice that after step (2) there are two separate nodes for the tn-o similar 
but distinct privileges that user V has. rllso observe that the RESTRICT option 
in step (3) does not prevent the revocation, because V had not granted the 
option t o  any other user. In fact, 1. could not have granted either privilege, 
because 11' obtained thein without grant option. 
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INSERT (A) 
' i !  

INSERT (A) 

(a) After step (2) (b) After step (3) 

Figure 8.28: Revoking a general privilege leaves a more specific privilege 

Example 8.40: Now, let us consider a similar example where U grants I/* a 
privilege p with the grant option and then revokes only the grant option. In 
this case, we must change V's node to reflect the loss of the grant option. and 
any grants of p made by V must be cancelled by eliminating arcs out of the 
V/p node. The sequence of steps is as follows: 

Step By Action 
1 U GRANT p TO V WITH GRANT OPTION 
2 V GRANT p TO Ii" 
3 U REVOKE GRANT OPTION FOR p FROM V CASCADE 

In step (I), C grants the privilege p to V with the grant option. In step (2) .  
1' uses the grant option to grant p to TV. The diagram is then as slio~vn in 
Fig. 8.29(a). 

(a) After step (2) (b) After step (3) 

Figure 8.29: Revoking a grant option leaves the underlying privilege 

Then in step (3). U revokes the grant option for privilege p from I- ,  but 
does not revoke the privilege itself. Thus. the star is removed fro111 the node 
for I; and p. However, a node without a * may not have an arc out, because 
such a node cannot be the source of the granting of a privilege. Thus, we must 
also remove the arc out of the node li/p that goes to the node for iV/p .  

Xow, the node W/p has no path to it from a ** node that represents the 
origin of privilege p. As a result, node TV/p is deleted from the diagram. HOW- 
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ever, node I,'/p remains; it is just modified by removing the * that represents 
the grant option. The resulting grant diagram is shown in Fig. 8.29(b). 

8.7.7 Exercises for Section 8.7 

Exercise 8.7.1 : Indicate what privileges are needed to execute the following 
queries. In each case, mention the most specific privileges as well as general 
privileges that are sufficient. 

a) The query of Fig. 6.5. 

b) The query of Fig. 6.7. 

* c) The insertion of Fig. 6.15. 

d) The deletion of Example 6.36. 

e) The update of Example 6.38. 

f )  The tuple-based check of Fig. 7.5. 

g) The assertion of Example 7.13. 

* Exercise 8.7.2: Show the grant diagrams after steps (4) through (6) of the 
sequence of actions listed in Fig. 8.30. Assume A is the owner of the relation 
to which privilege p refers. 

Step BF Action 
1 .4 GRANT p TO B WITH GRANT OPTION 
2 .4 GRANT p TO C 
3 B GRANT p TO D WITH GRANT OPTION 
4 D GRANT p TO B ,  C ,  E WITH GRANT OPTION 
5 B REVOKE p FROn D CASCADE 
6 -4 REVOKE p FROM C CASCADE 

Figure 8.30: Sequence of actions for Exercise 8.7.2 

Exercise 8.7.3: Sho~v the grant diagrams after steps (5) and (6) of the se- 
quence of actions listed in Fig. 8.31. Alssume .-I is the owner of the relation to 
~ h i c h  privil~ge p refers. 

! Exercise 8.7.4: Sho~v the final grant diagram after the follo~ving steps. as- 
suming -4 is the owner of the relation to which privilege p refers. 

Step By .lction 
1 -4 GRANT p TO B WITH GRANT OPTION 
2 B GRANT D TO B WITH GRANT OPTION 



8.8. SULI~AI-~RY OF CHAPTER 8 423 

Step By Action 
1 A GRANT p TO B, E WITH GRANT OPTION 
2 B GRANT p TO C WITH GRANT OPTION 
3 C GRANT p TO D WITH GRANT OPTION 
4 E GRANT p TO C 
5 E GRANT p TO D WITH GRANT OPTION 
6 A REVOKE GRANT OPTION FOR p FROM B CASCADE 

Figure 8.3L: Sequence of actions for Exercise 8.7.3 

8.8 Summary of Chapter 8 

+ Embedded SQL: Instead of using a generic query interface to express SQL 
queries and modifications, it is often more effective to write programs 
that embed SQL queries in a conventional host language. A preprocessor 
converts the embedded SQL statements into suitable function calls of the 
host language. 

+ Impedance Mismatch: The data model of SQL is quite different from the 
data models of conventional host languages. Thus, information passes 
between SQL and the host language through shared variables that can 
represent components of tuples in the SQL portion of the program. 

+ Cursors: A cursor is an SQL variable that indicates one of the tuples of 
a relation. Connection between the host language and SQL is facilitated 
by having the cursor range over each tuple of the relation, while the 
components of the current tuple are retrieved into shared variables and 
processed using the host language. 

+ Dynanlic SQL: Instead of embedding particular SQL statements in a host- 
language program, the host program may create character strings that are 
interpreted by the SQL system as SQL statements and executed. 

+ Persistent Stored Modules: We may create collections of procedures and 
functions as part of a database schema. These are written in a special 
language that has all the familiar control primitives, as well as SQL state- 
ments. They may be invoked from either embedded SQL or through a 
generic query interface. 

+ The Database Environment: .An installation using an SQL DBMS creates 
an SQL environment. Within the environment, database elements such 
as relations are grouped into (database) schemas, catalogs, and clusters. 
-4 catalog is a collection of schemas, and a cluster is the largest collection 
of elements that one user may see. 

+ Client-Server Systems: An SQL client connects to an SQL server, creating 
a connection (link between the two processes) and a session (sequence of 
operations). The code executed during the session comes from a module, 
and the execution of the module is called an SQL agent. 

The Call-Level Interface: There is a standard library of functions called 
SQL/CLI or ODBC, which can be linked into any C program. These 
allow capabilities similar to embedded SQL, but without the need for a 
preprocessor. 

+ JDBC: Java Database Connectivity is a system similar to CLI, but using 
the Java, object-oriented style. 

+ Concurrency Control: SQL provides two mechanisms to prevent concur- 
rent operations from interfering with one another: transactions and re- 
strictions on cursors. Restrictions on cursors include the ability to declare 
a cursor to be "insensitive," in which case no changes to its relation will 
be seen by the cursor. 

+ Transactions: SQL allows the programmer to group SQL statements into 
transactions, which may be committed or rolled back (aborted). Bans- 
actions may be rolled back by the application in order to undo changes, 
or by the system in order to guarantee atomicity and isolation. 

+ Isolation Levels: SQL allo~x-s transactions to run with four isolation levels 
called, from most stringent to least stringent: "serializable" (the trans- 
action must appear to run either completely before or completely after 
each other transaction), "repeatable-read" (every tuple read in response 
to a query will reappear if the query is repeated), "read-committed" (only 
tuples written by transactions that have already committed may be seen 
by this transaction), and "read-uncommitted" (no constraint on what the 
transaction may see). 

+ Read-Only C~~rsors and Il)-ansactions: Either a cursor or a transaction 
may be declared read-only. This declaration is a guarantee that the cur- 
sor or transaction will not change the database, thus informing the SQL 
system that it will not affect other transactions or cursors in mays that 
may violate insensitivity, serializability, or other requirements. 

+ Pricileges: For security purposes. SQL systems allow many different kinds 
of privileges to be obtained on database elements. These privileges include 
the right to select (read), insert: delete, or update relations, the right to 
reference relations (refer to them in a constraint), and the right to create 
triggers. 

+ Grant Diagrams: Privileges may be granted by owners to other users or 
to the general user PUBLIC. If granted with the grant option, then these 
privileges may be passed on to others. Privileges may also be revoked. 
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The grant diagram is a useful way to remember enough about the history 
of grants and revocations to keep track of who has what privilege and 
from whom they obtained those privileges. 

8.9 References for Chapter 8 

Again, the reader is referred to the bibliographic notes of Chapter G for infor- 
mation on obtaining the SQL standards. The PSkl standard is [4], and 151 is a 
comprehensive book on the subject. [6] is a popular reference on JDBC. 

There is a discussion of problems with this standard in the area of transac- 
tions and cursors in [I]. More about transactions and how they are implementcd 
can be found in the bibliographic notes to Chapter 18. 

The ideas behind the SQL authorization mechanism originated in [3] and 
PI. 

1. Berenson, H., P. A. Bernstein, J. N. Gray, J. Melton, E. O'Neil, and P. 
O'Neil, "A critique of ANSI SQL isolation levels," Proceedings of ACM 
SIGMOD IntE. Conf. on Management of Data, pp. 1-10, 1995. 

2. Fagin, R., "On an authorization mechanism," ACM Transactions on Dn- 
tabase Systems 3:3, pp. 310-319,1978. 

3. Griffiths, P. P. and B. W. Wade, ':.In authorization mechanism for a 
relational database system," ACM Tkansactions on Database Systems 1:3, 
pp. 242-235,1976. 

4. ISO/IEC Report 9075-4, 1996. 

5. llelton, J., Understanding SQL's Stored Procedures: A Complete Guide 
to SQL/PSM, Morgan-Kaufmann, San Francisco, 1998. 

6.  U-hite, S., &I. Fisher, R. Cattell, G. Hamilton, and hl. Hapner, JDBC 
API Tutorial and Reference, Addison-Wesley, Boston, 1999. 

Chapter 9 

Object-Orientation in 
Query Languages 

I11 this chapter, we shall discuss two ways in which object-oriented program- 
ming enters the world of query languages. OQL, or Object Query Language, is 
a standardized query language for object-oriented databases. It combines the 
high-level, declarative programming of SQL with the object-oriented program- 
ming paradigm. OQL is designed to operate on data described in ODL. the 
object-oriented data-description language that we introduced in Section 4.2. 

If OQL is an attempt to bring the best of SQL into the object-oriented world, 
then the relatively new, object-relational features of the SQL-99 standard can 
be characterized as bringing the bcst of object-orientation into the relational 
xvorld. In some senses, the two languages "meet in the middle." but there are 
differences in approach that make certain things easier in one language than 
the other. 

In essence, the two approaches to object-orientation differ in their answer 
to the question: "how important is the relation?" For the object-oriented 
community centered around ODL and OQL. the answer is "not very." Thus. in 
OQL we find objects of all types. some of which are sets or bags of structures 
(i.e., relations). For the SQL community, the answer is that relations are still 
the fundamental data-structuring concept. In the object-relational approach 
that we introduced in Section 4.5. the relational model i's extended by allowing 
more complex tjpes for the tuples of relations and for attributes. Thus. objects 
and classes are introduced into the relational model, but always in the contest 
of relations. 

9.1 Introduction to OQL 

OQL, the Object Query Language, gives us an SQL-like notation for espress- 
ing queries. It is intended that OQL will be used as an extension to some 
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object-oriented host language, such as C++, Smalltalk, or Java. Objects will 
be manipulated both by OQL queries and by the conventional statements of the 
host language. The ability to  mix host-language statements and OQL queries 
without explicitly transferring values between the two languages is a n  advance 
over the way SQL is embedded into a host language, as was discussed in Sec- 
tion 8.1. 

9.1.1 An Object-Oriented Movie Example 

In order t o  illustrate the dictions of OQL, we need a running example. It  
will involve the familiar classes Movie, S t a r ,  and Studio. We shall use the 
definitions of Movie, S t a r ,  and S tud io  from Fig. 4.3, augmenting them with 
key and extent declarations. Only Movie has methods, gathered from Fig. 4.4. 
The complete example schema is in Fig. 9.1. 

9.1.2 Path Expressions 

IVe access components of objects and structures using a dot notation that is 
similar t o  the dot used in C and also related to  the dot used in SQL. The 
general rule is as follows. If a denotes a n  object belonging to class C. and p 
is some property of the class - either a n  attribute, relationship, or method of 
the class - then a.p denotes the result of "applying" p to a. That  is: 

1. If p is an attribute, then a.p is the value of that attribute in object a. 

2. If p is a relationship, then a.p is the object or collection of objects related 
to  a by relationship p. 

3. If p is a method (perhaps with parameters), then a.p( . .) is the result of 
applying p t o  a. 

Example  9.1 : Let myMovie denote an object of type Movie. Then: 

The value of myMovie . l eng th  is the length of the movie, that is, the value 
of the l eng th  attribute for the Movie object denoted by myMovie. 

The value of myMovie. lengthInHours0 is a real number, the length of 
the movie in hours, computed by applying the method 1engthInHours to  

, object mynovie. 

The value of myMovie.stars is the set of S t a r  objects related to  the 
movie myMovie by the relationship stars. 

Expression myMovie . starNames(myStars) returns no value (LC., in C++ 
the type of this expression is void). As a side effect, however, i t  sets the 
value of the output variable mystars of the method starNames to be a 
set of strings; those strings are the names of the stars of the mol-ic. 

INTRODUCTION TO OQL 

c l a s s  Movie 
(ex ten t  Movies key ( t i t l e ,  year ) )  

C 
a t t r i b u t e  s t r i n g  t i t l e ;  
a t t r i b u t e  i n t e g e r  y e a r ;  
a t t r i b u t e  i n t e g e r  l e n g t h ;  
a t t r i b u t e  enum Film (color,blackAndWhite> filmType; 
r e l a t i o n s h i p  Se t<Star>  s t a r s  

i n v e r s e  S t a r : : s t a r r e d I n ;  
r e l a t i o n s h i p  S tud io  ownedBy 

i n v e r s e  Studio::owns; 
f l o a t  lengthInHours()  ra i ses (no~engthF0und) ;  
void starNames(out S e t < S t r i n g > ) ;  
void otherMovies( in S t a r ,  ou t  Set<Movie>) 

ra i ses (noSuchStar ) ;  
I ;  

c l a s s  S t a r  
(ex ten t  S t a r s  key name) 

< 
a t t r i b u t e  s t r i n g  name; 
a t t r i b u t e  S t r u c t  Addr 

{ s t r i n g  s t r e e t ,  s t r i n g  c i t y )  address ;  
r e l a t i o n s h i p  Set<Movie> s t a r r e d I n  

i n v e r s e  Movie : : s ta r s ;  
1; 

c l a s s  S tud io  
(ex ten t  S tud ios  key name) 

C 
a t t r i b u t e  s t r i n g  name; 
a t t r i b u t e  s t r i n g  a d d r e s s ;  
r e l a t i o n s h i p  Set<Movie> owns 

i n v e r s e  Movie::ownedBy; 
I ; 

Figure 9.1: Part  of a n  object-oriented inovie database 
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Arrows and Dots 

OQL allows the arrow -> as a synonym for the dot. This convention is 
partly in the spirit of C, where the dot and arrow both obtain compo- 
nents of a structure. However, in C, the arrow and dot operators have 
slightly different meanings; in OQL they are the same. 111 C, expression 
a.f expects a to be a structure, while p->f expects p to be a pointer to a 
structure. Both produce the value of the field f of that structure. 

If it makes sense, we can form expressions with several dots. For example, 
if myMovie denotes a movie object, then myMovie. ownedBy denotes the Studio 
object that owns the movie, and mynovie. ownedBy .name denotes the string 
that is the name of that studio. 

9.1.3 Select-From-Where Expressions in OQL 

OQL permits us to write expressions using a select-from-where syntas similar 
. to SQL's familiar query form. Here is an example asking for the year of the 

movie Gone IVzth the Wind. 

SELECT m. year 
FROM Movies m 
WHERE m.title = "Gone With the  Wind" 

Xotice that, escept for the double-quotes around the string constant, this query 
could be SQL rather than OQL. 

In general, the OQL select-from-where expression consists of: 

1. The keylvord SELECT follolved by a list of expressions. 

2. The keyrvord FROM followed by a list of one or more variable declarations. 
d variable is declared by giving 

(a) .An expression whose value has a collection type, e.g. a set or bag. 

(b) The optional keyn-ord AS, and 

(c) The name of the variable. 

Typically. the expression of (a) is the extent of some class, such as the 
extent Movies for class Movie in the example above. An extent is the 
analog of a relation in an SQL FROM clause. However, it is possible to 
use in a variable declaration any collection-producing expression, such as 
another select-from-where expression. 
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3. The keyword WHERE and a boolean-valued expression. This expression, like 
the expression following the SELECT, may only use as operands constants 
and those variables declared in the FROM clause. The comparison operators 
are like SQL's, except that ! =, rather than <>, is used for "not equal to." 
The logical operators are AND, OR, and NOT, like SQL's. 

The query produces a bag of objects. We compute this bag by considering 
all possible values of the variables in the FROM clause, in nested loops. If any 
combination of values for these variables satisfies the condition of the WHERE 
clause, then the object described by the SELECT clause is added to the bag that 
is the result of the select-from-where statement. 

Example 9.2 : Here is a more complex OQL query: 

SELECT s.name 
FROM Movies m, m.stars s 
WHERE m . t i t l e  = "Casablanca" 

This query asks for the names of the stars of Casablanca. Notice the sequence 
of terms in the FROM clause. First we define m to be an arbitrary object in the 
class Movie, by saying m is in the extent of that class, which is Movies. Then, 
for each value of m we let s be a S t a r  object in the set m.stars of stars of 
movie m. That is, n-e consider in two nested loops all pairs (m, s )  such that m is 
a movie and s a star of that movie. The evaluation can be sketched as: 

FOR each m i n  Movies DO 
FOR each s i n  m.stars DO 

IF m . t i t l e  = "Casablanca" THEN 
add s.name t o  t h e  output bag 

The WHERE clause restricts our consideration to those pairs that have m equal 
to the Movie object whose title is Casablanca. Then, the SELECT clause produces 
the bag ( ~ h i c h  should be a set in this case) of all the name attributes of star 
objects s in the (my s )  pairs that satisfy the WHERE clause. These names are 
the names of the stars in the set m,. s t a r s ,  where m, is the Casablanca movie 
object. 0 

9.1.4 Modifying the Type of the Result 

.A query like Example 9.2 produces a hag of strings as a result. That is, OQL 
follows the SQL default of not eliminating duplicates in its answer unless &- 
rected to do so. However, we can force the result to be a set or a list if we 
wish. 

To make the result a set, use the keyword DISTINCT after SELECT, as in 
SQL. 
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Alternative Form of FROM Lists 

In addition to the SQL-style elements of FROM clauses, where the collection 
is follo~ved by a name for a typical element, OQL allo~vs a completely 
equivalent, more logical, yet less SQL-is11 form. We can give the typical 
element name, then the keyword I N ,  and finally the name of the collection. 
For instance, 

FROM m I N  Movies, s I N  m.stars  

is an equivalent FROM clause for the query in Example 9.2. 

To make the result a list, add an ORDER BY clause at the end of the query, 
again as in SQL. 

The following examples will illustrate the correct syntax. 

Example 9.3: Let us ask for the names of the stars of Disney movies. The 
following query does the job, eliminating duplicate names in the situation where 
a star appeared in several Disney movies. 

SELECT DISTINCT s.name 
FROM Movies m ,  m.stars s 
WHERE m.  ownedBy. name = "Disney" 

The strategy of this query is similar to that of Example 9.2. We again 
consider all pairs of a movie and a star of that movie in two nested loops as in 
Example 9.2. But now; the condition on that pair (m, s) is that "Disney" is the 
name of the studio whose Studio  object is m. ownedBy. 

The ORDER BY clause in OQL is quite similar to the same clause in SQL. 
Keywords ORDER BY are followed by a list of expressions. The first of these 
expressions is evaluated for each object in the result of the query, and objects 
are ordered by this value. Ties, if any, are broken by the value of the second 
expression. then the third, and so on. By default, the order is ascending. but 
a choice of ascending or descending order can be indicated by the keyword ASC 
or DESC, respectively. following an attribute. as in SQL. 

Example 9.4 : Let us find the set of Disney movies, but let the result be a list 
of movies. ordered by length. If there are ties, let the movies of equal length be 
ordered alphabetically. The query is: 

SELECT m 
FROM Movies m 
WHERE m.ownedBy.name = "Disney" 
ORDER BY m.length, m . t i t l e  
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In the first three lines, we consider each Movie object m. If the name of the 
studio that oxns this movie is "Disney," then the complete object m becomes 
a member of the output bag. The fourth line specifies that the object,s m 
produced by the select-from-where query are to be ordered first by the value of 
m .  l eng th  (i.e., the length of the movie) and then, if there are ties, by the value 
of m. t i t l e  (i.e., the title of the movie). The value produced by this query is 
thus a list of Movie objects. 

9.1.5 Complex Output Types 

The elements in the SELECT clause need not be simple variables. They can 
be any expression, including expressions built using type constructors. For 
example, we can apply the S t ruc t  type constructor to several expressions and 
get a select-from-where query that produces a set or bag of structures. 

Example 9.5: Suppose we want the set of pairs of stars living at  the same 
address. \ire can get this set with the query: 

SELECT DISTINCT S t ruc t  ( s t a r l  : sl ,  s t a r 2 :  s2)  
FROM S t a r s  s l ,  S t a r s  s 2  
WHERE s l .address  = s2.address AND s1.name < s2.name 

That is, 1%-e consider all pairs of stars, s l  and s2. The WHERE clause checks 
that they have the same address. It also checks that the name of the first star 
p~ecedes the name of the second in alphabetic order, so ~3-e don't produce pairs 
consisting of the same star t~vice and we don't produce the same pair of stars 
in two different orders. 

For every pair that passes the t ~ o  tests, we produce a record structure. The 
type of this structure is a record with two fields, named s t a r l  and s t a r2 .  The 
type of each field is the class S tar .  since that is the type of the variables sl 
and s2  that provide values for the two fields. That is. formally, the type of the 
structure is 

S t ruc t (s ta r1 :  S t a r ,  s t a r 2 :  star) 

The type of the result of the query is a set of these structures, that is: 

Se t<St ruc t{s ta r l :  S t a r ,  s t a r 2 :  S tar )>  

9.1.6 Subqueries 

Ure can use a select-from-where expression anywhere a collection is appropriate. 
\Ye shall give one example: in the FROM clause. Sereral other examples of 
subquery use appear in Section 9.2. 
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SELECT Lists of Length One Are Special 

Notice that when a SELECT list has only a single expression, the type of 
the result is a collection of values of the type of that expression. However: 
if we have more than one expression in the SELECT list, there is an implicit 
stucture formed with components for each expression. Thus, even had we 
started the query of Example 9.5 with 

SELECT DISTINCT starl: sl, star2: s2 

the type of the result would be 

Set<Struct{starl: Star, star2: star)> 

Honrever, in Example 9.3, the type of the result is Set<String>, not 
Set<Struct{name: string)>. 

In the FROM clause, we may use a subquery to form a collection. We then 
allow a variable representing a typical element of that collection to range over 
each member of the collection. 

Example 9.6 : Let us redo the query of Example 9.3, which asked for the stars 
of the movies made by Disney. First, the set of Disney movies could be obtained 
by the query, as was used in Example 9.4. 

SELECT m 
FROM Movies m 
WHERE m.ownedBy.name = "Disney" 

We can now use this query as a subquery to define the set over which a variable 
d. representing the Disney movies; can range. 

SELECT DISTINCT s.name 
FROM (SELECT m 

FROM Movies m 
WHERE m.ownedBy.name = "Disney") d, 
d. stars s 

This expression of the query "Find the stars of Disney movies" is no Inore 
succinct than that of Example 9.3. and perhaps less so. However, it does 
illustrate a new form of building queries available in OQL. In the query above. 
the FROM clause has two nested loops. In the first, the variable d ranges over 
all Disney movies, the result of the subquery in the FROM clause. In the second 
loop, nested within the first, the variable s ranges over all stars of the Disney 

' lnovie d. Sotice that no WHERE clause is needed in the outer query. 
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9.1.7 Exercises for Section 9.1 

Exercise 9.1.1: In Fig. 9.2 is an ODL description of our running products 
exercise. \Ire have made each of the three types of products subclasses of the 
main Product class. The reader should observe that a type of a product can 
be obtained either from the attribute type or from the subclass to ~ h i c h  it 
belongs. This arrangement is not an excellent design, since it allows for the 
possibility that, say, a PC object will haye its type attribute equal to "laptop" 
or "printer". However, the arrangement gives you some interesting options 
regarding how one expresses queries. 

Because type is inherited by Printer from the superclass Product, we have 
had to rename the type attribute of Printer to be printerType. The latter 
attribute gives the process used by the printer (e.g., laser or inkjet), while type 
of Product will have values such as PC, laptop, or printer. 

Add to the ODL code of Fig. 9.2 method signatures (see Section 1.2.7) 
appropriate for functions that do the following: 

* a) Subtract x from the price of a product. Assume x is provided as an input 
parameter of the function. 

* b) Return the speed of a product if the product is a PC or laptop and raise 
the exception notcomputer if not. 

c) Set the screen size of a laptop to a specified input value x. 

! d) Given an input product p, determine whether the product q to which the 
method is applied has a higher speed and a lower price than p. Raise the 
exception badInput if p is not a product with a speed (i.e., neither a PC 
nor laptop) and the exception nospeed if q is not a product with a speed. 

Exercise 9.1.2 : Using the ODL schema of Exercise 9.1.1 and Fig. 9.2, write 
the follo~ving queries in OQL: 

" a) Find the model numbers of all products that are PC's with a price under 
$2000. 

b) Find the model numbers of all the PC's with at least 128 megabytes of 
R-411. 

*! c) Find the manufacturers that makk at least two different models of laser 
printer. 

d) Find tlle set of pairs (r. h )  such that some PC or laptop has r megabytes 
of RAM and h gigabytes of hard disk. 

e) Create a list of the PC's (objects, not model numbers) in ascending order 
of processor speed. 

! f) Create a list of the model numbers of tlle laptops n-ith a t  least 64 xnega- 
bytes of R.411: in descending order of screen size. 
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c l a s s  Product 
(extent Products 
key model) 

C 
a t t r i b u t e  integer model; 
a t t r i b u t e  s t r i n g  manufacturer ; 
a t t r i b u t e  s t r i n g  type; 
a t t r i b u t e  r e a l  pr ice ;  

I ;  

c l a s s  PC extends Product 
(extent  PCs) 

I 
a t t r i b u t e  integer speed; 
a t t r i b u t e  integer ram; 
a t t r i b u t e  integer hd; 
a t t r i b u t e  s t r i n g  r d ;  

1; 

c l a s s  Laptop extends Product 
(extent Laptops) 

E 
a t t r i b u t e  integer speed; 
a t t r i b u t e  integer ram; 
a t t r i b u t e  integer hd; 
a t t r i b u t e  r e a l  screen; 

I; 

c l a s s  Pr in ter  extends Product 
(extent Pr in ters )  

I 
a t t r i b u t e  boolean color;  
a t t r i b u t e  s t r i n g  printerType; 

I ;  

c l a s s  Class  
(extent  Classes  
key name) 

.E 
a t t r i b u t e  s t r i n g  name; 
a t t r i b u t e  s t r i n g  country; 
a t t r i b u t e  i n t ege r  numCuns; 
a t t r i b u t e  i n t ege r  bore; 
a t t r i b u t e  i n t ege r  displacement; 
r e l a t i o n s h i p  Set<Ship> sh ips  inverse Ship::classOf; 

3; 

c l a s s  Ship 
(extent  Ships 
key name) 

C 
a t t r i b u t e  s t r i n g  name; 
a t t r i b u t e  i n t ege r  launched; 
r e l a t i o n s h i p  Class  classof inverse C1ass::ships; 
r e l a t i o n s h i p  Set<Outcome> inBa t t l e s  

inverse  Outcome: : theship;  

I ;  

c l a s s  B a t t l e  
(ex tent  B a t t l e s  
key name) 

E 
a t t r i b u t e  s t r i n g  name; 
a t t r i b u t e  Date dateFought; 
r e l a t i o n s h i p  Set<Outcome> r e s u l t s  

inverse  0utcome::theBattle; 
1;  

c l a s s  Outcome 
(extent  Outcomes) 

C 
a t t r i b u t e  enum S t a t  Cok, sunk ,damaged) s t a t u s ;  
r e l a t i o n s h i p  Ship theship  inverse Ship : : inBat t les ;  
r e l a t i o n s h i p  B a t t l e  t heBa t t l e  inverse Ba t t1e : : r e su l t s ;  

1; 
Figure 9.2: Product schema in ODL 

Figure 9.3: Battleships database in ODL 
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Exercise 9.1.3 : In Fig. 9.3 is an ODL description of our running "battleships" 
database. Add the following method signatures: 

a) Compute the firepower of a ship, that is, the number of guns times the 
cube of the bore. 

b) Find the sister ships of a ship. Raise the exception nosis ters  if the ship 
is the only one of its class. 

c) Given a battle b as a parameter, and applying the method to a ship s, 
find the ships sunk in the battle b, provided s participated in that battle. 
Raise the exception didNotParticipate if ship s did not fight in battle 
b. 

d) Given a name and a year launched as parameters, add a ship of this name 
and year to the class to which the method is applied. 

! Exercise 9.1.4: Repeat each part of Exercise 9.1.2 using at  least one subquery 
in each of your queries. 

Exercise 9.1.5: Using the ODL schema of Exercise 9.1.3 and Fig. 9.3, xvritc 
. the follolving queries in OQL: 

a) Find the names of the classes of ships with at  least nine guns. 

b) Find the ships (objects, not ship names) with at least nine guns. 

c) Find the names of the ships with a displacement under 30,000 tons. Nake 
the result a list, ordered by earliest launch year first, and if there are ties. 
alphabetically by ship name. 

d) Find the pairs of objects that are sister ships (i.e., ships of the same class). 
3ote that the objects themselves are wanted, not the names of the ships. 

! e) Find the names of the battles in which ships of at  least two different 
countries were sunk. 

!! f )  Find the names of the batt~les in which no ship was listed as damaged. 

9.2 Additional Forms of QQL Expressions 

In this section we shall see some of the other operators, besides select-from- 
where, that OQL provides to help us build expressions. These operators in- 
clude logical quantifiers - for-all and there-exists - aggregation operators, 
'the goup-by operator, and set operators - union, intersection, and difference. 
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9.2.1 Quantifier Expressions 

l i e  can test whether all members of a collection satisfy some condition, and we 
can test whether a t  least one member of a collection satisfies a condition. To 
test whether all members x of a collection S satisfy condition C(x), we use the 
OQL expression: 

FOR ALL x IN S : C(x) 

The result of this expression is TRUE if every x in S satisfies C(x) and is FALSE 
otherwise. Similarly, the expression 

EXISTS x I N  S : C(x) 

has value TRUE if there is at  least one x in S such that C(X) is TRUE and it has 
value FALSE otherwise. 

Example 9.7 : Another way to express the query "find all the stars of Disney 
movies" is shown in Fig. 9.4. Here, we focus on a star s and ask if they are 
the star of some movie rn that is a Disney movie. Line (3) tells us to consider 
all movies m in the set of movies s. starredIn,  which is the set of movies in 
which star s appeared. Line (1) then asks whether movie m is a Disney movie. 
If we find even one such movie m,  the value of the EXISTS expression in lines 
(3) and (4) is TRUE; otherwise it is FALSE. 

1) SELECT s 
2) FROM Sta r s  s 
3) WHERE EXISTS m IN s . s t a r r ed In  : 
4) m. ownedBy .name = "Disney" 

Figure 9.4: Using an existential subquery 

Example 9.8 : Let us use the for-all operator to write a query asking for the 
stars that have appeared only in Disney movies. Technically, that set includes 
.'stars" who appear in no movies at all (as far as we can tell from our database). 
It is possible to add another condition to our query, requiring that the star 
appear in at least one rnovie. but TW lealr that improvement as ail exercise. 
Figure 9.5 shows the query. 

9.2.2 Aggregation Expressions 

OQL uses the same five aggregation operators that SQL does: AVG, COUNT. SUM. 
MIN. and MAX. However, while these operators in SQL may be thought of as 
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SELECT s 
FROM Sta r s  s 
WHERE FOR ALL m I N  s . s tar redIn  : 

m.  ownedBy . name = "Disney" 

Figure 9.5: Using a subquery with universal quantification 

applying to a designated column of a table, the same operators in OQL apply 
to all collections whose members are of a suitable type. That is, COUNT can 
apply to any collection; SUM and AVG can be applied to collections of arithmetic 
types such as integers, and MIN and MAX can be applied to collections of any 
type that can be compared, e.g., arithmetic values or strings. 

Example 9.9: To compute the average length of all movies, we need to create 
a bag of all movie lengths. Note that we don't want the set of movie lengths, 
because then two movies t,hat had the same length would count as one. The 
query is: 

AVG(SELECT m.length FROM Movies m) 

That is, we use a subquery to extract the length components from movies. Its 
result is the bag of lengths of movies, and we apply the AVG operator to this 
bag. giving the desired answer. 0 

9.2.3 Group-By Expressions 

The GROUP BY clause of SQL carries over to OQL, but with an interesting twist 
in perspective. The form of a GROUP BY clause in OQL is: 

1. The keywords GROUP BY. 

2. .I comma-separated list of one or more partition attributes. Each of these 
consists of 

(a) A field name, 

(b) A colon, and 

(c) An expression. 

That is. the form of a GROUP BY clalisc is: 

GROUP BY fl:el, f2:e2,. . . . f,:e,, 

Each GROUP BY clause follows a select-from-where query. The expressions 
el. e?. . . . ,en may refer to variables mentioned in the FROM clause. To facilitate 

' the explanation of how GROUP BY works, let us restrict ourselves to the common 
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case where there is only one variable x in the FROM clause. The value of x ranges 
over some collection, C. For each member of C, say i, that satisfies the condition 
of the WHERE clause, we evaluate all the expressions that follow the GROUP BY, 
to obtain values el (i), ea(i), . , . , en (i). This list of values is the group to which 
value i belongs. 

T h e  Intermediate Collection 

The actual value returned by the GROUP BY is a set of structures, which we shall 
call the intermediate collection. The members of the intermediate collection 
have the form 

The first n fields indicate the group. That is, (vl, vz, . . . , v,) must be the list 
of values (el(i), ez(i), . . . ,en(i)) for a t  least one value of i in the collection C 
that meets the condition of the WHERE clause. 

The last field has the special name pa r t i t i on .  Its value is, intuitively, 
the values i that belong in this group. ,\Iore precisely. P is a bag consisting of 
structures of the form S t ruc t  (x: i), m-here x is the variable of the FROM clause. 

T h e  Output  Collection 

The SELECT clause of a select-from- here expression that has a GROUP BY clause 
may refer only to the fields in the structures of the intermediate collection. 
namely fl .  f 2 .  . . . , f n  and pa r t i t i on .  Through pa r t i t i on ,  we may refer to the 
field x that is present in the structures that are members of the bag P that forms 
the value of par t i t ion .  Thus, we may refer to the variable x that appears in 
the FROM clause, but we may only do so within an aggregation operator that 
aggregates over all the menibers of a bag P. The result of the SELECT clause 
will be referred to as the output collection. 

Example 9.10: Let us build a table of the total length of movies for each 
studio and for each pear. In OQL. what we actually construct is a bag of 
structures. each xvith three componellts - a studio, a year: and the total length 
of movies for that studio and year. The query is shown in Fig. 9.6. 

SELECT s tdo,  y r ,  sumlength: SUM(SELECT p.m.length 
FROM p a r t i t i o n  p) 

FROM Movies m 
GROUP BY stdo: m.ownedBy.name, yr:  m.year 

Figure 9.6: Grouping movies by studio and year 

To understand this query, let us start at the FROM clause. There, we find 
that variable m ranges over all Movie objects. Thus. m here plays the role of x 
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in our general discussion. In the GROUP BY clause are two fields s t d o  and yr .  
corresponding to the expressions m. ownedBy . name and m .  year ,  respectively. 

For instance, Pretty Woman is a movie made by Disney in 1990. [Vhen nl 
is the object for this movie, the value of m .  ownedBy. name is "Disney" and the 
value of m. year is 1990. As a result, the intermediate collection has, as one 
member, the structure: 

S t r u c t  (s tdo:  "Disney", y r :  1990, p a r t i t i o n : P )  

Here, P is a set of structures. It  contains, for example, 

S t r u c t  (m: mpw) 

where mPW is the Movie object for Pretty Woman. Also in P are one-component 
structures with field name m for every other Disney movie of 1990. 

Now, let us examine the SELECT clause. For each structure in the intermedi- 
ate collection, we build one structure that  is in the output collection. The first 
component of each output structure is s tdo .  That  is, the field name is s t d o  
and its value is the value of the s t d o  field of the corresponding structure in the 
intermediate collection. Similarly, the second component of the result has ficltl 
name y r  and a value equal to  the y r  con~ponent of the intermediate collection. 

The third component of each structure in the output is 

SUM(SELECT p.m.length FROM p a r t i t i o n  p) 

To understand this select-from expression we first realize that variable p rangcs 
over the members of the p a r t i t i o n  field of the structure in the GROUP BY 
result. Each d u e  of p, recall, is a structure of the form S t r u c t  (m: o ) ,  t+-here o 
is a movie object. The expression p.m therefore refers to this object o. Thus. 
p.m. l e n g t h  refers to  the length component of this Movie object 

.is a result, the select-from query produces the bag of lengths of the movies 
in a particular group. For instance, if s t d o  has the value "Disney" and y r  has 
the value 1990, then the result of the select-from is the bag of the  lengths of the 
movies made by Disney in 1990. When we apply the SUM operator to  this bag 
we get the sum of the lengths of the movies in the group. Thus, one member 
of the output collection might be 

if 123-1 is the correct total length of all the Disney movies of 1990. 

Grouping W h e n  t h e  FROM Clause h a s  M u l t i p l e  Collect ions 

In the event that there is more than one variable in the FROM clause. a f e ~  
changes to  the interpretation of the query are necessary, but the principles 
remain the same as in the one-variable case above. Suppose that the variables 
appearing in the FROM clause are XI,  22, . . . : xk. Then: 
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1. All variables xl ,  xz,. . . , xk may be used in the expressions el ,  e2, . . . ,en 
of the GROUP BY clause. 

2. Structures in  the bag that  is the value of the p a r t i t i o n  field have fields 
named x l ,  22,. . . , xk. 

3. Suppose i l ,  iz,  . . . : ik are values for variables x i ,  x2,.  . . ,xk, respectively, 
that  niake the WHERE clause true. Then there is a structure in the inter- 
mediate collection of the form 

and in bag P is the structure: 

S t r u c t  (xl : i l  , x2 : iZ, . . . , xk : i k )  

9.2.4 HAVING Clauses 

A GROUP BY clause of OQL may be followed by a HAVING clause, with a meaning 
like that of SQL's HAVING clause. That is, a clause of the form 

HAVING <condition> 

serves to  eliminate some of the groups created by the GROUP BY. The condition 
applies t o  the value of the p a r t i t i o n  field of each structure in the intermedi- 
a te  collection. If true, then this structure is processed as in Section 9.2.3, t o  
form a structure of the output collection. If false, then this structure does not 
contribute t o  the output collection. 

E x a m p l e  9.11 : Let us repeat Example 9.10, but ask for the sum of the lengths 
of movies for only those studios and years such that the studio produced a t  lewt 
one movie of over 120 minutes. The query of Fig. 9.7 does the job. Notice that  
in the HAVING clause we used the same query as in the SELECT clause to obtain 
the bag of le~lgtlis of movies for a given studio and year. In the HAVING clause, 
tve take the maximum of those lengths and compare it to  120. 

SELECT s t d o ,  y r ,  sumlength: SUM(SELECT p.m.length 
FROM p a r t i t i o n  p) 

FROM Movies m 
GROUP BY s t d o :  m.ownedBy.name, y r :  m.year 
HAVING MAX(SELECT p.m.length FROM p a r t i t i o n  p) > 120 

Figure 9.7: Restricting the groups considered 
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9.2.5 Union, Intersection, and Difference 
\lj, may apply the union, intersection, and difference operators to two objects 
of set or bag type. These three operators are represented, as in SQL, by the 
keywords UNION, INTERSECT, and EXCEPT, respectively. 

1) (SELECT DISTINCT m 
2) FROM Movies m, m.stars s 
3) WHERE s.name = "Harrison Ford") 
4) EXCEPT 
5) (SELECT DISTINCT m 
6) FROM Movies m 
7) WHERE m.ownedBy.name = "Disney") 

Figure 9.8: Query using the difference of two sets 

Example 9.12: We can find the set of movies starring Harrison Ford that 
were not made by Disney with the difference of two select-from-where queries 
shown in Fig. 9.8. Lines (1) through (3) find the set of movies starring Ford. 
and lines (5) through (7) find the set of movies made by Disney. The EXCEPT 
at line (4) takes their difference. 

We should notice the DISTINCT keywords in lines (1) and (5) of Fig. 9.8. 
This keyword forces the results of the two queries to be of set type; without 
DISTINCT. the result would be of bag (multiset) type. In OQL, the operators 
UNION, INTERSECT, and EXCEPT operate on either sets or bags. When both 
arguments are sets, then the operators have their usual set meaning. 

However, when both arguments are of bag type, or one is a bag and one is a 
set. then the bag meaning of the operators is used. Recall Section 5.3.2, where 
the definitions of union, intersection, and difference for bags was explained. 

For the particular query of Fig. 9.8, the number of times a movie appears in 
the result of either subquery is zero or one, so the result is the same regardless of 
whether DISTINCT is used. However, the type of the result differs. If DISTINCT 
is used, then the type of the result is Set<Movie>, while if DISTINCT is omitted 
in one or both places, then the result is of type Bag<Movie>. 

9.2.6 Exercises for Section 9.2 

Exercise 9.2.1: Using the ODL schema of Exercise 9.1.1 and Fig. 9.2. wi te  
the follolving queries in OQL: 

* a) Find the manufacturers that make both PC's and printers. 

, * b) Find the manufacturers of PC's, all of whose PC's have at least 20 giga- 
bytes of hard disk. 
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c) Find the manufacturers that make PC's but not laptops. 

* d) Find the average speed of PC's. 

* e) For each CD or DVD speed: find the average amount of R.i\hI on a PC. 

! f) Find the manufacturers that make some product with at  least 64 mega- 
bytes of RAXI and also make a product costing under $1000. 

!! g) For each manufacturer that makes PC's with an average speed of a t  least 
1200, find the maximum amount of RAM that they offer on a PC. 

Exercise 9.2.2: Using the ODL schema of Exercise 9.1.3 and Fig. 9.3, write 
the following queries in OQL: 

a) Find those classes of ship all of whose ships were launched prior to 1919. 

b) Find the maximum displacement of any class. 

! c) For each gun bore, find the earliest year in which any ship with that bore 
was launched. 

*!! d) For each class of ships at  least one of which was launched prior to 1919, 
find the number of ships of that class sunk in battle. 

! e) Find the average number of ships in a class. 

! f) Find the average displacement of a ship. 

!! g) Find the battles (objects. not names) in which at least one ship from 
Great Britain took part and in which at  least two ships were sunk. 

! Exercise 9.2.3 : lye mentioned in Example 9.8 that the OQL query of Fig. 9.5 
\vould return stars li-110 starred in no mo~ies at all, and therefore, technically 
appeared .-onl: in Disney ~novi~s." Rewrite the query to return only those stars 
xho have appeared in at least one movie and all movies in which they appeared 
15-here Disney movies. 

! Exercise 9.2.4: Is it ever possible for FOR ALL x I N  S : C(z) to be true. 
nhile EXISTS s I N  S : C(x) is false? Explain your reasoning. 

9.3 Object Assignment and Creation in OQL 

In this section we shall consider how OQL connects to its host language, which 
a e  shall take to he C++ in examples, although another object-oriented, general- 
purpose progranlming language (e.g. Java) might be the host language in some 
systems. 



44.1 CHAPTER 9. OBJECT- 0RIENT;LTION I N  QUERY LANGUAGES 

9.3.1 Assigning Values to Host-Language Variables 
Unlike SQL, which needs to move data between components of tuples and host- 
language variables, OQL fits naturally into its host language. That is: the 
expressions of OQL that we have learned, such as select-from-where, produce 
objects as values. It is possible to assign to any host-language variable of the 
proper type a value that is the result of one of these OQL expressions. 

Example 9.13 : The OQL expression 

SELECT DISTINCT m 
FROM Movies m 
WHERE m.year < 1920 

produces the set of all those movies made before 1920. Its type is Set<Movie>. 
If oldMovies is a host-language variable of the same type, then we may write 
(in C++ extended with OQL): 

oldMovies = SELECT DISTINCT m 
FROM Movies m 
WHERE m.year < 1920; 

and the value of oldMovies will become the set of these Movie objects. 

9.3.2 Extracting Elements of Collections 

Since the select-from-where and group-by expressions each produce collections 
- either sets, bags, or lists - we must do something extra if we want a single 
element of that collection. This statement is true even if we have a collection 
that n-e are sure contains only one element. OQL provides the operator ELEMENT 
to turn a singleton collection into its lone member. This operator can be applied. 
for instance, to the result of a query that is known to return a singleton. 

Example 9.14 : Suppose we would like to assign to the variable gwtw. of type 
Movie (i.e., the Movie class is its type) the object representing the movie Gone 
l l l th the Wind. The result of the query 

SELECT m 
FROM Movies m 
WHERE m.title = "Gone With the Wind" 

is the bag containing just this one object. 11-e cannot assign this bag to variable 
gv tv  directly, because we n-ould get a type error. However. if x e  apply the 
ELEMENT operator first, 

gwtw = ELEMENT(SELECT m 
FROM Movies m 
WHERE m.title = "Gone With the Wind" 

1; 
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then the type of the variable and the expression match, and the assignment is 
legal. 

9.3.3 Obtaining Each Member of a Collection 

Obtaining each member of a set or bag is more complex, but still simpler than 
the cursor-based algorithms we needed in SQL. First, we need to turn our set 
or bag into a list. \Ye do so with a select-from-where expression that uses 
ORDER BY. Recall from Section 9.1.4 that the result of such an expression is a 
list of the selected objects or values. 

Example  9.15: Suppose we want a list of all the movie objects in the class 
Movie. We can use the title and (to break ties) the year of the movie, since 
(title, year) is a key for Movie. The statement 

movieList = SELECT m 
FROM Movies m 
ORDER BY m.title, m.year; 

assigns to host-language variable movieList a list of all the Movie objects, 
sorted by title and year. 

Once x-e haye a list, sorted or not. we can access each element by number; 
the ith element of the list L is obtained by L[i - 11. Note that lists and arrays 
are assunled numbered starting at 0, as in C or C++. 

Example  9.16 : Suppose we want to write a C++ function that prints the 
title. year, and length of each movie. -1 sketch of the function is shown in 
Fig. 9.9. 

1) movieList = SELECT m 
FROM Movies m 
ORDER BY m.title, m.year; 

2) number0fMovies = ~0UNT(Movies); 
3) for(i=O; i<numberOfMovies; i++) ( 
4) movie = movieList [i] ; 
5) cout << movie.title << " 'I << movie. year << I' " 
6 << movie. length << "\nl' ; 

1 

Figure 9.9: Exanlining and printing each movie 

Line (1) sorts the Movie class, placing the result into variable movielist, 
~vhose type is List<Movie>. Line (2) computes the number of movies. using 
the OQL operator COUNT. Lines (3) through ( 6 )  are a for-loop in which integer 
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variable i ranges over each position of the list. For convenience, the i th  element 
of the list is assigned to variable movie. Then, a t  lines (5) and (6) the relevant 
attributes of the movie are printed. 

9.3.4 Constants in OQL 

Constants in OQL (sometimes referred t o  as immutable objects) are constructed 
from a basis and recursive constructors, in a manner analogous to  the way ODL 
types are constructed. 

1. Basic values, which are either 

(a) Atomic values: integers, floats, characters, strings, and booleans. 
These are represented as in SQL, with the exception that double- 
quotes are used to surround strings. 

(b) Enumerations. The values in a n  enumeration are actually declared 
in ODL. Any one of these values may be used as a constant. 

2. Complex values built using the following type constructors: 

(a) Se t ( .  . .). 
(b) Bag(.. .).  

(c) L i s t ( .  . .). 
(d) Array(. . .). 
(e) S t ruc t ( .  . .). 

The first four of these are called collection types. The collection types and 
St ruc t  may be applied a t  mill t o  any values of the appropriate type(s), 
basic or complex. However, when applying the S t ruc t  operator, one 
needs to specify the field names and their corresponding values. Each 
field name is followed by a colon and the value, and field-value pairs are 
separated by commas. Note that the same type constructors are used in 
ODL, but here we use round, rather than triangular, brackets. 

Example 9.17: The expression Bag(2, I , 2 )  denotes the bag in which integer 
2 appears twice and integer 1 appears once. The expression 

S t ruc t  (foo: bag(2,1,2), bar:  "baz") 

denotes a structure with two fields. Field f oo, has the bag described above as 
its value, and bar, has the string "baz" for its value. 

9.3. OBJECT ASSIGNMEXT AND CREATIOX IN OQL 

9.3.5 Creating New Objects 

m e  have seen that OQL expressions such as select-from-where allow us t o  create 
new objects. It is also possible to create objects by assembling constaiits or 
other expressions into structures and collections explicitly. We saw a n  example 
of this convention in Example 9.5, where the line 

SELECT DISTINCT S t ruc t  ( s t a r l :  s l ,  s t a r 2 :  s2) 

was used to specify that  the result of the query is a set of objects whose type 
is S t r u c t ( s t a r 1 :  S t a r ,  s t a r 2 :  s t a r ) .  We gave the  field names starl and 
s t a r 2  t o  specify the structure, while the types of these fields could be deduced 
from the types of the variables s l  and s2. 

Example  9.18: The construction of constants that  we saw in Section 9.3.4 
can be used with assignments to variables, in a manner similar t o  that of other 
programming languages. For instance: consider the following sequence of as- 
signments: 

The first line gives variable x a value of type 

a structure with two integer-valued fields named a and b. We may represent 
values of this type as pairs, with just the integers as components and not the 
field names a and b. Thus, the value of x may be represented by (1,2). The 
second line defines y to  be a bag whose members are structures of the same 
type as x, above. The pair (1.2) appears twice in this bag, and (3,4) appears 
once. 0 

Classes or other defined types call have instances created by constructor 
fi~nctzons. Classes typically haw several different forms of constructor functions, 
depending on which properties are initialized explicitly and which are given 
some default value. For example, methods are not initialized, most attributes 
\\-ill get initial values. and relationships might be initialized t o  the empty set 
and augmented later. The name for each of these constructor functions is the 
name of the class. and they are distinguished by the field names mentioned in 
their arguments. The details of holv these constructor functions are defined 
depend on the host language. 

Example  9.19 : Let us consider a possible constructor function for Movie ob- 
jects. This function, we suppose, takes values for the attributes t i t l e .  year, 
length,  and ownedBy. producing a n  object that  has these values in the listed 
fields and an empty set of stars. Then, if mgm is a variable whose value is the 
N G l I  S tudio  object. we might create a Gone With the Wind object by: 
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gwtw = Movie(tit1e: "Gone With t h e  Wind", 
year:  1939, 
length:  239, 
ownedBy: mgm) ; 

This statenlent has two effects: 

1. It creates a new Movie object, which becomes part of the extent Movies. 

2. It makes this object the value of host-language variable gwtw. 

9.3.6 Exercises for Section 9.3 

Exercise 9.3.1 : Assign to a host-language variable x the following constants: 

* a) The set. {I, 2,3). 

b) The bag {1,2,3,1). 

c) The list (1,2,3,1). 

d) The structure whose first component, named a, is the set {1,2) and ~vhose 
second component, named b, is the bag { l , l ) .  

e) The bag of structures, each with two fields named a and b. The respective 
pairs of values for the three structures in the bag are (1,2), (2,l). and 
(1% 2). 

Exercise 9.3.2: Using the ODL schema of Exercise 9.1.1 and Fig. 9.2. mite 
statements of C++ (or an object-oriented host language of your choice) es- 
tended with OQL to do the following: 

* a) Assign to host-language variable x the object for the PC with model 
number 1000. 

b) Assign to host-language variable y the set of all laptop objects with at 
least 64 megabytes of RAN. 

c) Assign to host-language variable z the average speed of PC's selling foi 
less than $1500. 

! d) Find all the laser printers. print a list of their model numbers and prices. 
and follow it by a message indicating the model number with the IOTI-est 
price. 

!! e) Print a table giving, for each manufacturer of PC's, the minimum and 
maximum price. 
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Exercise 9.3.3 : In this exercise, we shall use the ODL schema of Exercise 9.1.3 
and Fig. 9.3. \Ire shall assume that for each of the four classes of that schema, 
there is a constructor function of the same name that takes values for each of the 
attributes and single-valued relationships, but not the ~nultivalued relationships, 
which are initialized to be empty. For the single-valued relationships to other 
classes, you may postulate a host-language variable whose current value is the 
related object. Create the following objects and assign the object to be the 
value of a host-language variable in each case. 

* a) The battleship Colorado of the Maryland class, launched in 1923. 

b) The battleship Graf Spee of the Liitzo~v class, launched in 1936. 

c) An outcome of the battle of Malaya was that the battleship Prince of 
\Vales was sunk. 

d) The battle of Malaya was fought Dec. 10, 1941. 

e) The Hood class of British battlecrujsers had eight 13-inch guns and a 
displacement of 41.000 tons. 

9.4 User-Defined Types in SQL 

We now turn to the n-ay SQL-99 incorporates many of the object-oriented fca- 
tures that \ve hare seen in ODL and OQL. Because of these recent estensioris 
to SQL. a DBMS that follorvs this standard is often referred to as "object- 
relational." n'e met many of the object-relational conce~~ts abstractly in Sec- 
tion 1.3. Son-, it is time for us to study the details of the standard. 

OQL has no specific notion of a relation: it is just a set (or bag) of structures. 
Hen-ever. the relation is so central to SQL that objects in SQL keep relations 
as the core concept. The classes of ODL are transmogrified into user-defined 
types. or UDT's. in SQL. \Ye find CDT's used in two distinct ways: 

1. A UDT can be the type of a table. 

2. A UDT can be the type of an attribute belonging to some table. 

9.4.1 Defining Types in SQL 

A user-defined type declaration in SQL can be thought of as roughly analogous 
to a class declaration in ODL. \vith some distinctions. First. key declarations 
for a relation rvith a user-defined type are part of the table definition. not the 
type definition: that is. many SQL relations can be declared to have the same 
(user-defined) type but different keys and other constraints. Second, in SQL n-e 
do not treat relationships as properties. -1 relationship must be represented by 
a separate relation. as was discussed in Section 1.4.3. X simple form of UDT 
definition is: 
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1. The keywords CREATE TYPE, 

2. A name for the type, 

3. The keyword AS, 

4. A parenthesized, comma-separated list of attributes and their types. 

5. A comma-separated list of methods, including their argument ty pe(s) , 
and return type. 

That is, the definition of a type T has the form 

CREATE TYPE T AS <attribute and method declarations> ; 

Example 9.20: ?Ve can create a type representing movie stars, analogous to 
the class Star found in the OQL example of Fig. 9.1. However, we cannot 
represent directly a set of movies as a field within Star tuples. Thus, we shall 
start with only the name and address components of Star tuples. 

To begin, note that the type of an address in Fig. 9.1 is itself a tuple, 
with components street and city. Thus, we need two type definitions, one 
for addresses and the other for stars. The necessary definitions are shown in 
Fig. 9.10. 

CREATE TYPE AddressType AS ( 
street CHAR(~O), 
city CHAR(20) 

) ;  

CREATE TYPE StarType AS ( 
name CHAR(30) , 
address AddressType 

) ;  

Figure 9.10: Two type definitions 

h tuple of type AddressType has two components, whose attributes are 
street and city. The types of these components are character strings of length 
50 and 20, respectively. A tuple of type StarType also has tn-o components. 
The first is attribute name, whose type is a 30-character string, and the second is 
address, whose type is itself a UDT AddressType. that is, a tuple with street 
and city components. C] 
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9.4.2 Methods in User-Defined Types 

The declaration of a method resembles the way a function in PSM is introdnced; 
see Section 8.2.1. There is no analog of PSI1 procedures as methods. That is, 
every method returns a value of some type. While function declarations and 
definitions in PShf are combined, a method needs both a declaration, within the 
definition of its type, and a separate definition, in a CREATE METHOD statement. 

X method declaration looks like a PSI1 function declaration, with the key- 
word METHOD replacing CREATE FUNCTION. However, SQL methods typically 
have no arguments; they are applied to rows, just as ODL methods are ap- 
plied to objects. In the definition of the method, SELF refers to this tuple, if 
necessary. 

Example 9.21: Let us extend the definition of the type AddressType of 
Fig. 9.10 with a method houseNumber that extracts from the street com- 
ponent the portion devoted to the house address. For instance, if the street 
component \-ere '123 Maple St. ', then houseNumber should return '123'. 
The revised type definition is thus: 

CREATE TYPE AddressType AS ( 
street CHAR(501, 
city CHAR(20) 
1 
METHOD houseNumber () RETURNS  CHAR(^^) ; 

We see the keyword METHOD, follon-ed by the name of the method and a parnithe- 
sized list of its arguments and their types. In this case, there are no arguments, 
but the parentheses are still needed. Had there bee11 arguments, they would 
have appeared, follo~ved by their types. such as (a INT, b  CHAR(^)). 0 

Separately, we need to define the metliod. -1 simple form of method defini- 
tion consists of: 

1. The keywords CREATE METHOD. 

2. The method name. arguments and their types, and the RETURNS clause, 
as in the declaration of the method. 

3. The keyword FOR and tlic name of the UDT in which the method is 
declarcd. 

4. The body of the method. \vhich is ~vrittcn in the same language as the 
bodies of PSJI functions. 

For instance, we could define the method houseNumber from Example 9.21 as: 

CREATE METHOD houseNmber RETURNS CHAR (10) 
FOR AddressType 
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BEGIN 
. . . 

END ; 

\Ve have omitted the body of the method because accomplishing the intended 
separation of the string s t r ing  as intended is nontrivial, even in PSM. 

9.4.3 Declaring Relations with a UDT 
Having declared a type, we may declare one or more relations whose tuples are 
of that type. The form of relation declarations is like that of Section 6.6.2, but 
we use 

in place of the list of attribute declarations in a normal SQL table declaration. 
Other elements of a table declaration, such as keys, foreign keys, and tuple- 
based constraints, may be added to the table declaration if desired, and apply 
only to this table, not to the UDT itself. 

Example 9.22 : We could declare MovieStar to be a relation whose tuples 
were of type StarType by 

CREATE TABLE MovieStar OF StarType; 

As a result, table MovieStar has two attributes, name and address. The first 
attribute, name, is an ordinary character string, but the second, address. has 
a type that is itself a UDT, namely the type AddressType. 

It is colrimon to have one relation for each type, and to think of that relation 
as the extent (in the sense of Section 1.3.4) of the class corresponding to that 
type. However, it is permissible to have many relations or none of a given type. 

9.4.4 References 

The effect of object identity in object-oriented languages is obtained in SQL 
through the notion of a reference. Tables whose type is a UDT may have 
a reference column that serves as its "identity." This column could be the 
primary key of the table, if there is one, or it could be a colurhn whose values 
are generated and maintained unique by the DBMS, for example. \Ve shall 
defer the matter of defining reference columns until we first see how reference 
types are used. 

To refer to the tuples of a table with a reference column, an attribute may 
have as its type a reference to another type. If T is a UDT, then REF(T) is the 
type of a reference to a tuple of type T. Further, the reference may be given 
a scope, which is the name of the relation whose tuples are referred to. Thus, 
an attribute -4 whose values are references to tuples in relation R, where R is 
a table whose type is the UDT T, would be declared by: 
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A REF(T) SCOPE R 

If no scope is specified, the reference can go to any relation of type T 

ExampIe 9.23 : Reference attributes are not sufficient to record in MovieStar 
the set of all movies they starred in, but they let us record the best movie for 
each star. Assume that we have declared a relation Movie, and that the type of 
this relation is the UDT MovieType; we shall define both MovieType and Movie 
later, in Fig. 9.11. The following is a new definition of StarType that includes 
a11 attribute bestMovie that is a reference to a movie. 

CREATE TYPE StarType AS ( 
name CHAR(30) , 
address AddressType, 
bestMovie REF(MovieType) SCOPE Movie 

> ; 
Sow, if relation MovieStar is defined to have the UDT above, then each star 
tuple will have a component that refers to a Movie tuple - the star's best 
movie. 

Ses t ,  n-e must arrange that a table such as Movie in Example 9.23 will have 
a reference column. Such a table is said to be referenceable. In a CREATE TABLE 
statement n-here the type of the table is a UDT (as in Section 9.4.3), we may 
append a clause of the form: 

REF IS tattribute name> <how generated, 

The attribute name is a name given to the column that will serve as an "object 
identifier" for tuples. The .-how generated" clause is typically either: 

1. SYSTEM GENERATED. meaning that the DBIIS is responsible for maintain- 
ing a unique value in this column of each tuple, or 

2. DERIVED. lneaning that the DBMS will use the primary key of the relation 
to produce unique values for this column. 

Example 9.24: Figure 9.11 sho~t-s how the UDT MovieType and relation 
Movie could be declared so that Movie is referenceable. The C'DT is declared 
in lines (1) through (4). Then the relation Movie is defined to have this type in 
lines ( 5 )  through (7). Sotice that n-e have declared t i t l e  and year, together, 
to be the key for relation Movie in line (7). 

\\e see in line (6)  that the name of the "identity" coluln~l for Movie is 
movieID. This attribute. which automatically becomes a fourth attribute of 
Movie. along xith t i t l e ,  year, and incolor; may be used in queries like any 
other attribute of Movie. 

Line (6) also says that the DBMS is responsible for generating the value of 
movieID each time a new tuple is inserted into Movie. Had we replaced "SYSTEM 
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1) CREATE TYPE MovieType AS ( 

2 t i t l e  CHAR(30) , 
year  INTEGER, 

3, 4) i n c o l o r  BOOLEAN 
1 ; 

5) CREATE TABLE Movie OF MovieType ( 

6) REF I S  movieID SYSTEM GENERATED, 
7) PRIMARY KEY ( t i t l e ,  year )  

1; 

Figure 9.11: Creating a referenceable table 

GENERATED" by "DERIVED," then new tuples would get their value of movieID 
by some calculation, performed by the system, on the values of the primary-key 
attributes t i t l e  and year  from the same tuple. 

Example 9.25 : Now, let us see how to represent the many-many relationship 
between movies and stars using references. Previously, we represented this 
relationship by a relation like S t a r s I n  that contains tuples with the keys of 
Movie and MovieStar. As an alternative, we may define S t a r s I n  to have 
references to tuples from these-two relations. 

First, we need to redefine MovieStar so it is a referenceable table, thusly: 

CREATE TABLE MovieStar OF StarType ( 
REF IS  s t a r I D  SYSTEM GENERATED 

1; 

Then, we may declare the relation S t a r s I n  to have two attributes, ~vhich 
are references, one to a movie tuple and one to a star tuple. Here is a direct 
definition of this relation: 

CREATE TABLE S t a r s I n  ( 
s t a r  REF(StarType1 SCOPE MovieStar, 
movie REF(MovieType1 SCOPE Movie 

1; 

Optionally, we could have defined a UDT as above, and then declared S t a r s I n  
to be a table of that type. 

9.4.5 Exercises for Section 9.4 

Exercise 9.4.1 : Write type declarations for the following types: 

a) NameType, with components for first, middle, and last names and a title. 
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* b) PersonType, with a name of the person and references to the persons that 
are their mother and father. You must use the type from part (a) in your 
declaration. 

c) MarriageType, with the date of the marriage and references to the hus- 
band and wife. 

Exercise 9.4.2: Redesign our running products database schema of Exer- 
cise 5.2.1 to use type declarations and reference attributes where appropriate. 
In particular, in the relations PC: Laptop, and P r i n t e r  make the model at- 
tribute be a reference to the Product tuple for that model. 

! Exercise 9.4.3: In Exercise 9.4.2 we suggested that model numbers in the 
tables PC, Laptop, and P r i n t e r  could be references to tuples of the Product 
table. Is it also possible to make the model attribute in Product a reference to 
the tuple in the relation for that type of product? Why or why not? 

* Exercise 9.4.4: Redesign our running battleships database schema of Exer- 
cise 5.2.4 to use type declarations and reference attributes where appropriate. 
The schema from Exercise 9.1.3 should suggest where reference attributes are 
useful. Look for many-one relationships and try to represent them using an 
attribute with a reference type. 

9.5 Operations on Object-Relational Data 

-111 appropriate SQL operations from previous chapters apply to tables that are 
declared with a UDT or that have attributes whose type is a CDT. There are 
also some entirely new operations we can use, such as reference-follo~ving. How- 
ever, some familiar operations. especially those that access or modify columns 
\\-hose type is a UDT, involve new syntax. 

9.5.1 Following References 

Suppose x is a value of type REF(T). Then x refers to some tuple t of type T. 
We can obtain tuple t itself, or components of t: by two means: 

1. Operator -> has essentially the same meaning as this operator does in C. 
That is, if x is a reference to a tuple t. and a is an attribute of t, then 
x->a is the value of the attribute n in tuple t. 

2. The DEREF operator applies to a reference and produces the tuple refer- 
enced. 

Example 9.26: Let us use the relation S t a r s I n  from Example 9.25 to find 
the movies in which JIel Gibson starred. Recall that the schema is 

S t a r s I n ( s t a r ,  movie) 
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where star and movie are references to tuples of MovieStar and Movie, re- 
spectively. A possible query is: 

1) SELECT DEREF (movie) 
2) FROM StarsIn  
3) WHERE star->name = 'Me1 Gibson'; 

In line (3), the expression star->name produces the value of the name com- 
ponent of the MovieStar tuple referred to by the s t a r  component of any given 
StarsIn tuple. Thus, the WHERE clause identifies those StarsIn  tuples whose 
star component are references to the Mel-Gibson MovieStar tuple. Line (1) 
then produces the movie tuple referred to by the movie component of those 
tuples. All three attributes - t i t l e ,  year, and incolor - will appear in the 
printed result. 

Note that we could have replaced line (1) by: 

1) SELECT movie 

Holyever, had n-e done so, we would have gotten a list of system-generated 
gibberish that serves as the internal unique identifiers for those tuples. We 
would not see the information in the referenced tuples. 0 

9.5.2 Accessing Attributes of Tuples with a UDT 

When wve define a relation to have a UDT, the tuples must be thought of as single 
objects, rather than lists with components corresponding to the attributes of 
the UDT. .4s a case in point, consider the relation Movie declared in Fig. 9.11. 
This relation has UDT MovieType, which has three attributes: t i t l e ,  year. 
and incolor. However, a tuple t in Movie has only one component, not th~ee.  
That component is the object itself. 

If R-e "drill down" into the object, we can extract the values of the three 
attributes in the type MovieType, as well as use any methods defined for that 
type. However, wve have to access these attributes properly, since they are not 
attributes of the tuple itself. Rather, every CDT has an iniplicitly defined 
observer method for each attribute of that UDT. The name of the observer 
method for an attribute x is x(). We apply this method as we would any other 
method for this UDT; we attach it with a dot to an expression that evaluates 
to an object of this type. Thus, if t is a variable whose value is of type T. and 
x is an attribute of T, then t .x()  is the value of x in the tuple (objrct) denoted 
by t 

Example 9.27: Let us find, from the relation Movie of Fig. 9.11 the pa r ( s )  
of movies with title King Kong. Here is one nay to do so: 

SELECT m. year 
FROM Movie m 
WHERE m. t i t l e ( )  = 'King Kong'; 
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Even though the tuple variable m would appear not to be needed here, 
we need a variable whose value is an object of type MovieType - the UDT 
for relation Movie. The condition of the WHERE clause compares the constant 
'King Kong' to the value of m. t i t l e  0. The latter is the observer method for 
attribute t i t l e  of type MovieType. Similarly, the value in the SELECT clause 
is expressed m. year():  this expression applies the observer method for year to 
the object m. U 

9.5.3 Generator and Mutator Functions 

In order to create data that conforms to a UDT, or to change components 
of objects with a UDT, we can use two kinds of methods that are created 
automatically, along with the observer methods, whenever a UDT is defined. 
These are: 

1. A generator method. This method has the name of the type and no 
argument. It also has the unusual property that it may be invoked wirhout 
being applied to any object. That is, if T is a UDT, then T ( )  returns an 
object of type T, with no values in its various components. 

2. fifutator methods. For each attribute x of UDT T, there is a lniltator 
method x(v).  \$?hen applied to an object of type T, it changes the x 
attribute of that object to have value v. Notice that the mutator and 
observer method for an attribute each have the name of the attribute, 
but differ in that the mutator has an argument. 

Example 9.28: We shall write a PSI1 procedure that takes as arguments a 
street, a city, and a name, and inserts into the relation MovieStar (of type 
StarType according to Example 9.22) an object constructed from these values, 
using calls to the proper generator and mutator functions. Recall from Esam- 
ple 9.20 that objects of StarType have a name component that is a character 
string, but an address component that is itself an object of type AddressType. 
The procedure I n s e r t s t a r  is shown in Fig. 9.12. 

Lines (2) through (4) introduce the argunients s, c, and n, which will provide 
values for a street, city, and star name, respectively. Lines ( 5 )  and (6) declare 
two local variables. Each is of one of the UDT's involved in the type for objects 
that exist in the relation MovieStar. At lines (7) and (8) lve create empty 
objects of each of these tn-o types. 

Lines (9) and (10) put real values in the object neuAddr; these values are 
taken from the procedure arguments that provide a street and a city. Line (11) 
similarly installs the argument n as the value of the name component in the 
object newstar. Then line (12) takes the entire newAddr object and ~nakes it 
the value of the address component in newstar. Finally, line (13) inserts the 
constructed object into relation MovieStar. Notice that, as always. a relation 
that has a UDT as its type has but a single component, even if that component 
has several attributes. such as name and address in this example. 
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1) CREATE PROCEDURE Inse r t s t a r (  
I N  s CHAR(5O), 

2, 3) I N  c CHAR(10). 
4) I N  n CHAR(30) 

1 
5) DECLARE newAddr AddressType; 
6) DECLARE newstar StarType; 

BEGIN 
7) SET newAddr = AddressTypeO; 
8) SET newstar = StarTypeO ; 
9 )  newAddr.street(s); 

10) newAddr. c i t y  (c) ; 
11) newstar .name(n) ; 
12) newstar. address(newAddr1; 
13) INSERT INTO Moviestar VALUES(newStar); 

END ; 

Figure 9.12: Creating and storing a StarType object 

To insert a star into MovieStar, we can call procedure Inse r t s t a r .  

CALL InsertStar( '345 Spruce S t . ' ,  'Glendale', 'Gwyneth Paltrow'); 

is an example. 

It is much simpler to insert objects into a relation with a UDT if your 
DBMS provides, or if you create, a generator function that takes values for 
the attributes of the C'DT and returns a suitable object. For example, if we 
have functions AddressType(s , c) and StarType(n, a) that return objects of 
the indicated types, then we can make the insertion at  the end of Example 9.28 
with an INSERT statement of a familiar form: 

INSERT INTO MovleStar VALUES ( 
StarType('Gwyneth Paltrow', 

AddressType('345 Spruce S t . ' ,  'Glendale '))) ;  

9.5.4 Ordering Relationships on UDT's 
Objects that are of some LDT are inherently abstract, in the sense that there 
is no way to compare two objects of the same UDT, either to test whether they 
are "equal' or whether one is less than another. Even two objects that have all 
components identical will not be considered equal unless we tell the system to 
regard them as equal. Similarly, there is no obvious way to sort the tuples of 
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a relation that has a UDT unless we define a function that tells which of two 
objects of that UDT precedes the other. 

Yet there are many SQL operations that require either an equality test or 
both an equality and a "less than" test. For instance, we cannot eliminate 
duplicates if we can't tell whether two tuples are equal. We cannot group by an 
attribute whose type is a UDT unless there is an equality test for that UDT. 
We cannot use an ORDER BY clause or a comparison like < in a WHERE clause 
unless we can compare any two elements. 

To specify an ordering or comparison, SQL allows us to issue a CREATE 
ORDERING statement for any UDT. There are a number of forms this statement 
may take, and we shall only consider the two simplest options: 

1. The statement 

CREATE ORDERING FOR T EQUALS ONLY BY STATE; 

says that two members of UDT T are considered equal if all of their 
corresponding components are equal. There is no < defined on objects of 
UDT T. 

2. The following statement 

CREATE ORDERING FOR T 
ORDERING FULL BY RELATIVE WITH F ;  

says that any of the six comparisons (<, <=, >, >=, =, and <>) may be 
performed on objects of UDT T. To tell how objects xl  and 2 2  compare, 
we apply the function F to these objects. This function must be writ- 
ten so that F(x1,z2) < 0 whenever we want to conclude that xl < x2; 
F(xl ,x2)  = 0 means that x1 = x2, and F(x1,x2) > 0 means that. x1 > 2 2 .  

If lve replace "ORDERING FULL" with "EQUALS ONLY," then F(x1,22) = 0 
indicates that x1 = x2, rvhile any other value of F(x1, xz) means that 
XI # 12. Comparison by < is impossible in this case. 

Example 9.29: Let us consider a possible ordering on the UDT StarType 
from Example 9.20. If we want only an equality on objects of this UDT, we 
could declare: 

CREATE ORDERING FOR StarType EQUALS ONLY BY STATE; 

That state~nent says that t ~ - o  objects of StarType are equal if and only if their 
names are the same as character strings, and their addresses are the same as 
objects of UDT AddressType. 

The problem is that, unless we define an ordering for AddressType, an 
object of that type is not even equal to itself. Thus, we also need to create 
at least an equality test for AddressType. simple way to do So is to declare 
that two AddressType objects are equal if and only if their streets and cities 
are each the same. 11-e could do so by: 
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CREATE ORDERING FOR AddressType EQUALS ONLY BY STATE; 

Alternatively, we could define a conlplete ordering of AddressType objects. 
One reasonable ordering is to order addresses first by cities, alphabetically, and 
among addresses in the same city, by street address, alphabetically. To do so, I{-e 
have to define a function, say AddrLEG, that takes two AddressType arguments 
and returns a negative, zero, or positive value to indicate that the first is less 
than, equal to, or greater than the second. We declare: 

CREATE ORDERING FOR AddressType 
ORDER FULL BY RELATIVE WITH AddrLEG; 

The function AddrLEG is shown in Fig. 9.13. Notice that if we reach line (7),  
it must be that the two city components are the same, so we compare the 
street components. Likewise, if we reach line (9), the only remaining possi- 
bility is that the cities are the same and the first street precedes the second 
alphabetically. 13 

1) CREATE FUNCTION AddrLEG ( 
2) x1 AddressType, 
3) x2 AddressType 
4) ) RETURNS INTEGER 

5) IF xl.city() < x2.cityO THEN RETURN(-1) 
6) ELSEIF xl.city() > x2.cityO THEN RETURN(1) 
7) ELSEIF xl. street () < x2. street () THEN RETURN(-1) 
8) ELSEIF xl.street() = x2.streetO THEN RETURN(0) 
9) ELSE RETURN(1) 

END IF; 

Figure 9.13: A comparison function for address objects 

9.5.5 Exercises for Section 9.5 

Exercise 9.5.1: Using the StarsIn relation of Example 9.25, and the Movie 
and Moviestar relations accessihle through StarsIn, write the following quer- 
ies: 

* a) Find the names of the stars of Ishtar. 

*! b) Find the titles and years of all movies in which at  least one star lives in 
lialibu. 

c) Find all the movies (objects of type MovieType) that starred Melanie 
Griffith. 
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! d) Find the movies (title and year) with a t  least five stars. 

Exercise 9.5.2: Using your schema from Exercise 9.4.2, write the following 
queries. Don't forget to use references whenever appropriate. 

a) Find the manufacturers of PC's with a hard disk larger than 60 gigabytes. 

b) Find the manufacturers of laser printers. 

! c) Produce a table giving for each model of laptop, the model of the lap- 
top having the highest processor speed of any laptop made by the same 
manufacturer. 

Exercise 9.5.3: Using your schema from Exercise 9.4.4, write the following 
queries. Don't forget to use references whenever appropriate and avoid joins 
(i.e., subqueries or more than one tuple variable in the FROM clause). 

* a) Find the ships with a displacement of more than 35,000 tons. 

b) Find the battles in which at  least one ship was sunk. 

! c) Find the classes that had ships launched after 1930. 

!! d) Find the battles in n-hich at least one US ship was damaged. 

Exercise 9.5.4 : Assuming the function AddrLEG of Fig. 9.13 is available, write 
a suitable function to compare objects of type StarType, and declare your 
function to be the basis of the ordering of StarType objects. 

*! Exercise 9.5.5 : Write a procedure to take a star name as argument and delete 
from StarsIn and MovieStar all tuples involving that star. 

9.6 Summary of Chapter 9 

+ Select-From- Where Statements in OQL: OQL offers a select-from-where 
expression that resembles SQL's. In the FROM clause, we can declare 
variables that range over any collection, including both extents of classes 
(analogous to relations) and collections that are the values of attributes 
in objects. 

+ Common OQL Operators: OQL offers for-all, there-exists, IN: union, in- 
tersection, difference, and aggregation operators that are similar in spirit 
to SQL's. Ho~ever, aggregation is al~vays over a collection, not a colunln 
of a relation. 

+ OQL Group-By: OQL also offers a GROUP BY clause in select-from-where 
statements that is similar to SQL's. Howeyer, in OQL, the collection of 
objects in each group is explicitly accessible through a field name called 
partition. 
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+ Extracting Elements &om OQL Collections: We can obtain the lone mem- 
ber of a collection that is a singleton by applying the ELEMENT operator. 
The elements of a collection with more than one member can be accessed 
by first turning the collection into a list, using an ORDER BY clause in a 
select-from-where statement, and then using a loop in the surrounding 
host-language program to visit each element of the list in turn. 

+ User-Defined Types i n  SQL: Object-relational capabilities of SQL are cen- 
tered around the UDT, or user-defined type. These types may be declared 
by listing their attributes and other information, as in table declarations. 
In addition, methods may be declared for UDT's. 

+ Relations With a UDT as Type: Instead of declaring the attributes of a 
relation, we may declare that relation to have a UDT. If we do so, then 
its tuples have one component, and this component is an object of the 
UDT. 

+ Reference Types: A type of an attribute can be a reference to a UDT. 
Such attributes essentially are pointers to objects of that UDT. 

+ Object Identity for UDT's: When we create a relation whose type is a 
UDT, we declare an attribute to serve as the "object-ID" of each tuple. 
This component is a reference to the tuple itself. Unlike in object-oriented 
systems, this "OID" column may be accessed by the user, although it is 
rarely meaningful. 

+ Accessing components of a UDT: SQL provides observer and mutator 
functions for each attribute of a UDT. These functions, respectively, re- 
turn and change the value of that attribute when applied to any object 
of that UDT. 

9.7 References for Chapter 9 

The reference for OQL is the same as for ODL: [I]. Material on object-relational 
features of SQL can be obtained as described in the bibliographic notes to 
Chapter 6. 

1. Cattell, R. G. G. (ed.), The Object ~at'abase Standard: ODMG-99, Nor- 
gan-Kaufmann, San Francisco, 1999. 

Chapter 10 

Logical Query Languages 

Some query languages for the relational model resemble a logic more than they 
do the algebra that nre introduced in Section 5.2. However, logic-based lan- 
guages appear to be difficult for many programmers to grasp. Thus, ~ v e  have 
delayed our coverage of logic until the end of our study of query languages. 

\Ye shall introduce Datalog, which is the simplest form of logic devised for 
the relational model. In its nonrecursive form, Datalog has the same power as 
the classical relational algebra. However, by allowing recursion, we can express 
queries in Datalog that cannot be expressed in SQL2 (except by adding proce- 
dural programming such as PSLI). We discuss the complexities that come up 
n-hen we allow recursive negation, and finally, we see how the solution provided 
by Datalog has been used to provide a way to allow meaningful recursion in the 
most recent SQL-99 standard. 

10.1 A Logic for Relations 

-1s an alternative to abstract query languages based on algebra, one can use a 
form of logic to express queries. The logical query language Datalog ("database 
logic") consists of if-then rules. Each of these rules expresses the idea that from 
certain combinations of tuples in certain relations we may infer that some other 
tuple is in some other relation, or in the answer to a query. 

10.1.1 Predicates and Atoms 

Relations are represented in Datalog by predicates. Each predicate t a b s  a fixed 
number of arguments. and a predicate follorsed by its arguments is called an 
atom. The syntax of atoms is just like that of function calls in conl-entional 
programming languages; for example P(xl, 22,. . . , x,) is an atom consisting of 
the predicate P with arguments XI, x t ,  . . . , x,. 

In essence, a predicate is the name of a function that returns a boolean 
value. If R is a relation with n attributes in some fixed order, then n-e shall 
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also use R as the name of a predicate corresponding to this relation. The atom 
R(al,an,. . . ,a,) has value TRUE if (a l ,  a?, . . . >a,) is a tuple of R; the atom has 
value FALSE otherwise. 

Example 10.1 : Let R be the relation 

Then R(1,2) is true and so is R(3,4). However, for any other values x and y, 
R(x, y) is false. 

A predicate can take variables as well as constants as arguments. If an 
atom has variables for one or more of its arguments, then it is a boolean-valued 
function that takes values for these variables and returns TRUE or FALSE. 

Example 10.2: If R is the predicate from Example 10.1, then R(x, y) is the 
function that tells, for any x and y, whether the tuple (x, y) is in relation R. 
For the particular instance of R mentioned in Example 10.1, R(x, y) returns 

. TRUE when either 

1. t = 1 and y = 2 , o r  

2. x = 3  and y = 4  

and FALSE otherwise. As another example, the atom R(1, z) returns TRUE if 
z = 2 and returns FALSE ot,herwise. 

10.1.2 Arithmetic Atoms 

There is another kind of atom that is important in Datalog: an arithmetic 
atom. This kind of atom is a cornparison between two arithmetic expressions. 
for example x < y or x'+ 1 2 y + 4 x 2. For contrast. we shall call the atonls 
introduced in Section 10.1.1 relational atoms: both are "atoms.~' 

Sote that arithmetic and relational atoms each take as ai-gunlents the values 
of any variables that appear in the atom. and they return a boolean value. 111 
effect. arithnietic comparisons like < or 2 are like the names of relations that 
contain all the true pairs. Thus, can visualize the relation "<" as containing 
all the tuples, such as (1,2) or (-1.5.63.4), that have a first component less 
than their second component. Remember, however, that database relations are 
allva!.s finite, and usually change from time to time. In contrast, arithmetic- 
comparison relations such as < are both infinite and unchanging. 
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10.1.3 Datalog Rules and Queries 

Operations similar to those of the classical relational algebra of Section 5.2 are 
described in Datalog by rules, which consist of 

1. A relational atom called the head, followed by 

2. The symbol t: which we often read "if," followed by 

3. -1 body consistil~g of one or more atoms, called subgoals, which may be 
either relational or arithmetic. Subgoals are connected by AND, and any 
subgoal may optionally be preceded by the logical operator NOT. 

Example 10.3: The Datalog rule 

defines the set of .'long" movies, those at  least 100 minutes long. It refers to 
our standard relation Movie ~vith schema 

Movie(title, year, length, incolor, studiohlame, producerC#) 

The head of the rule is the atom LongMovie(t, y). The body of the rule consists 
of two subgoals: 

1. The first subgoal has predicate Movee and sis arguments, corresponding 
to the sis attributes of the Movie relation. Each of these arguments has a 
different variable: t for the title component, y for the year component, 
1 for the length component, and so on. lye can see this subgoal as saying: 
..Let (t .  y. 1 .  c. s . p )  be a tuple in the current instance of relation Movie." 
More precisely. Jfouie(t. y. 1, c. s , p )  is true whenever the six variables have 
values that are the six components of some one Movie tuple. 

2. The second subgoal. 1 > 100, is true n-henerer the length component of a 
Movie tuple is at least 100. 

The rule as a xhole can be thought of as saying: LongMovie(t. y) is true 
whenever lye can find a tuple in Movie with: 

a) t and y as the first two conlponents (for title and year), 

b) -4 third component 1 (for length) that is at least 100. and 

c) .4n\- values in components 4 through 6. 

Sotice that this rule is thus equivalent to the "assignment statement" in rela- 
tional algebra: 
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Anonymous Variables 

Frequently, Datalog rules have some variables that appear only once. The 
names used for these variables are irrelevant. Only when a variable appears 
more than once do we care about its name, so we can see it is the same 
variable in its second and subsequent appearances. Thus, we shall allow 
the common convention that an underscore, -, as an argument of an atom. 
stands for a variable that appears only there. Multiple occurrences of - 
stand for different variables, never the same variable. For instance, the 
rule of Example 10.3 could be written 

LongMovie(t,y) t Movie(t,y,l,-,-,-) AND 1 2 100 

The three variables c, s, and p that appear only once have each been 
replaced by underscores. \Ire cannot replace any of the other variables, 
since each appears twice in the rule. 

whose right side is a relational-algebra expression. 

.I query in Datalog is a collection of one or more rules. If there is only 
one relation that appears in the rule heads, then the value of this relation is 
taken to be the answer to the query. Thus, in Example 10.3, LongMovie is the 
answer to the query. If there is more than one relation among the rule heads. 
then one of these relations is the answer to the query, while the others assist in 
the definition of the answer. We must designate ~vhich relation is the intended 
ansn-er to the query, perhaps by giving it a name such as Answer. 

10.1.4 Meaning of Datalog Rules 

Esample 10.3 gave us a hint of the meaning of a Datdog rule. Afore precisely. 
imagine the variables of the rule ranging over all possible values. Whenever 
these variables all have values that make all the subgoals true, then 7-e see 
what the value of the head is for those variables, and we add the resulting tuple 
to the relation whose predicate is in the head. 

For instance, we can imagine the six variables of Example 10.3 ranging over 
all possible values. The only conlbinations of values that can make all the 
subgoals true are ~vhen the values of ( t :  y. I. c, s.p) in that order form a tuple of 
Movie. lloreover, since the 12 100 subgoal must also be true, this tuple must 
be one where I ,  the value of the length component, is at least 100. IVllcn n-e 
find such a combination of d u e s ,  we put the tuple (t, y) in tlie head's relation 
LongMovie. 

There are, however, restrictions that we must place on the way variables are 
used in rules, so that the result of a rule is a finite relation and so that rules 
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with arithmetic subgoals or with negated subgoals (those with NOT in front of 
them) make intuitive sense. This condition, which we call the safety condition, 
is: 

Every variable that appears anywhere in the rule must appear in some 
nonnegated, relational subgoal. 

In particular, any variable that appears in the head, in a negated relational sub- 
goal, or in any arithmetic subgoal, must also appear in a nonnegated, relational 
subgoal. 

Example 10.4 : Consider the rule 

from Example 10.3. The first subgoal is a nonnegated, relational subgoal, and 
it contains all the variables that appear anywhere in the rule. In particular, the 
two variables t and y that appear in the head also appear in the first subgoal 
of the body. Likewise, variable 1 appears in an arithmetic subgoal, but it also 
appears in the first subgoal. 

Example 10.5 : The following rule has three safety violations: 

p(x,y) +- Q(x,z) AND NOT R(w,x,z) AND x<Y 

1. The variable y appears in tlie head but not in any nonnegated. relational 
subgoal. Xotice the fact that y appears in the arithmetic subgoal x < y 
does not help to limit the possible values of y to a finite set. .Is soon as 
we find values a, b. and c for w, x. and z respectively that satisfy the first 
two subgoals, the infinite number of tuples (b.d) such that d > b wind up 
in the head's relation P. 

2. L-ariable w appears in a negated, relational subgoal but not in a non- 
negated. relational subgoal. 

3. Variable y appears in an arithmetic subgoal, but not in a nonnegated, 
relational subgoal. 

Thus, it is not a safe rule and cannot be used in Datalog. 

There is another xi-ay to define the meaning of rules. Instead of consider- 
ing all of the possible assignments of values to variables, n-e consider the sets 
of tuples in the relations corresponding to each of the nonnegated, relational 
subgoals. If some assignment of tuples for each nonnegated, relational subgoal 
is consistent. in the sense that it assigns the same i-alue to each occurrence of a 
variable. then consider the resulting assignment of values to all the variables of 
the rule. Sotice that because the rule is safe. every variable is assigned a value. 
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For each consistent assignment, we consider the negated, relational subgoals . 
and the arithmetic subgoals, to see if the assignment of values to variables makes 
them all true. Remember that a negated subgoal is true if its atom is false. If 
all the subgoals are true, then we see what tuple the head becomes under this 
assignment of values to variables. This tuple is added to the relation whose 
predicate is the head. 

Example 10.6 : Consider the Datalog rule 

~ ( x , y )  t Q(x,z) AND R(z,y) AND NOT Q(x,y) 

Let relation Q contain the two tuples (1,2) and (1,3). Let relation R contain 
tuples (2,3) and (3,l). There are two nonnegated, relational subgoals, Q(x, z) 
and R(z, y), so we must consider all combinations of assignments of tuples 
from relations Q and R, respectively, to these subgoals. The table of Fig. 10.1 
considers all four combinations. 

I Tuple for 1 Tuple for 1 Consistent I NOT q(x,y) I Resulting 
I Q ( X ,  z )  I R(z, y) ] Assignment? 1 True? I Head 

1) 1 (1,2) I (2,3) I Yes NO - 

(192) (3, l)  No; z = 2,3  Irrelevant 

3; 1 1 ,  1 3 1 No; z = 3 2 1 Irrelevant 1 - 4) (L3) (3, 1) Yes Yes P(1 , l )  

Figure 10.1: All possible assignments of tuples to Q(x, z) and R(z, y) 

The second and third options in Fig. 10.1 are not consistent. Each assigns 
two different values to the variable z.  Thus, we do not consider these tuple- 
assignments further. 

The first option, whcre subgoal Q(x, z) is assigned the tuple (1,2) and sub- 
goal R(z, y) is assigned tuple (2,3), yields a consistent assignment, with z. y. 
and z given the values 1, 3, and 2, respectively. We thus proceed to the test of 
the other subgoals, those that are not nonnegated, relational subgoals. There 
is only one: NOT Q (x , y) . For this assignment of values to the variables. this 
subgoal becomes NOT Q(1,3). Since (1,3) is a tuple of Q, this subgoal is false. 
and no head tuple is produced for the tuple-assignment (1). 

The final option is (4). Here, the assignment is consistent; x, y. and 2 are 
assigned the values 1, 1, and 3, respectively. The subgoal NOT Q(x,y)  takes 
on the value NOT Q ( 1 , l ) .  Since (1.1) is not a tuple of Q, this subgoal is true. 
We thus evaluate the head P ( x ,  y) for this assignment of values to variables 
and find it is P ( l ,  1). Thus the tuple (1, l)  is in the relation P. Since we have 
exhausted all tuple-assignments, this is the only tuple in P. 

10.1.5 Extensional and Intensional Predicates 

It is useful to make the distinction between 

Extensional predicates, which are predicates whose relat.ions are stored in 
a database, and 

Intensional predicates, whose relations are computed by applying one or 
more Datalog rules. 

The difference is the same as that between the operands of a relational-algebra 
expression, which are "extensional" (i.e., defined by their extension, which is 
another name for the "current instance of a relation") and the relations com- 
puted by a relational-algebra expression, either as the final result or as an 
intermediate result corresponding to some subexpression; these relations are 
"intensional" (i.e., defined by the programmer's "intent"). 

When talking of Datalog rules, we shall refer to the relation corresponding 
to a predicate as "intensional" or LLextensional," if the predicate is intensional 
or extensional, respectively. We shall also use the abbreviation IDB for "inten- 
sional database" to refer to  either an intensional predicate or its correspond- 
ing relation. Similarly, we use abbreviation EDB, standing for "extensional 
database," for extensional predicates or relations. 

Thus, in Example 10.3: Movie is an EDB relation, defined by its extension. 
The predicate Movie is likewise an EDB predicate. Relation and predicate 
LongMovie are both intensional. 

An EDB predicate can never appear in the head of a rule, although it can 
appear in the body of a rule. IDB predicates can appear in either tllc head 
or the body of rules, or both. It is also common to construct a single relation 
by using several rules with the same predicate in the head. We shall see an 
illustration of this idea in Example 10.10, regarding the union of two relations. 

By using a series of intensional predicates, we can build progressively more 
complicated functions of the EDB relations. The process is similar to the build- 
ing of relational-algebra expressions using several operators. 

10.1.6 Datalog Rules Applied to Bags 

Datalog is inherently a logic of sets. However, as long as there are no negated, 
relational subgoals, the ideas for evaluating Datalog rules when relations are sets 
apply to bags as well. When relations are bags, it is conceptually simpler to use 
the second approach for evaluating Datalog rules that n-e gave in Section 10.1.1. 
Recall this technique invol~es looking at each of the nonnegated, relational 
subgoals and substituting for it all tuples of the relation for the predicate of 
that subgoal. If a selection of tuples for each subgoal gives a consistent value to 
each variable, and the arithmetic subgoals all become true,' then we see what 

'Xote that there must not be any negated relational subgoals in the rule. There is not 
a clearly defined meaning of arbitrary Datalog rules with negated. relational subgoals under 
the bag model. 
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the head becomes with this assignment of values to variables. The resulting 
tuple is put in the head relation. 

Since we are now dealing with bags, we do not eliminate duplicates from 
the head. Moreover, as we consider all combinations of tuples for the subgoals, 
a tuple appearing n times in the relation for a subgoal gets considered n times 
as the tuple for that subgoal, in conjunction with all combinations of tuples for 
the other subgoals. 

Example 10.7 : Consider the rule 

H(x,z) t R(x,y) AND S(y,z) 

where relation R(A, B) has the tuples: 

and S(B, C) has tuples: 

The only time we get a consistent assignment of tuples to the subgoals (i.e., an 
assignment where the value of y from each subgoal is the same) is when the first 
subgoal is assigned the tuple (1,2) from R and the second subgoal is assigned 
tuple (2.3) from S. Since (1,2) appears twice in R, and (2,3) appears once in 
S. there will be two assignments of tuples that give the variable assignments 
x = 1, y = 2, and z = 3. The tuple of the head, which is (2. z ) ,  is for each 
of these assignments (1,3). Tllus the tuple (1,3) appears twice in the head 
relation H, and no other tuple appears there. That is, the relation 

is the head relation defined by this rule. Alore grnerally. had tuple (1: 2) ap- 
peared n times in R and tuple (2.3) appeared m times in S ,  then t,uple (1,3) 
n-ould appear nm times in H. 

If a relation is defined by several rules, then the result is the bag-union of 
whatever tuples are produced by each rule. 

Example 10.8: Consider a relation H defined by the two rules 
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H(x,y) t S(x,y) AND x>l 
H(x,y) t S(x,y) AND y<5 

where relation S(B, C) is as in Example 10.7; that is, S = {(2,3), (4,5), (4,5)). 
The first rule puts each of the three tuples of S into H, since they each have a 
first component greater than 1. The second rule puts only the tuple (2,3) into 
H, since (4; 3) does not satisfy the condition y < 5. Thus. the resulting relation 
H has tn-o copies of the tuple (2,3) and two copies of the tuple (4,5). 

10.1.7 Exercises for Section 10.1 

Exercise 10.1.1 : Ifiite each of the queries of Exercise 5.2.1 in Datalog. You 
should use only safe rules, but you may wish to use several IDB predicates 
corresponding to subexpressions of complicated relational-algebra expressions. 

Exercise 10.1.2 : Il'rite each of the queries of Exercise 5.2.4 in Datalog. Again, 
use only safe rules, but you may use several IDB predicates if you like. 

!! Exercise 10.1.3 : The requirement we gave for safety of Datalog rules is suffi- 
cient to guarantee that the head predicate has a finite relation if the predicates 
of the relational subgoals have finite relations. Honever, this requirement is 
too strong. Give an example of a Datalog rule that violates the condition, yet 
whatever finite relations we assign to the relational predicates, the head relation 
will be finite. 

10.2 From Relational Algebra to Datalog 

Each of the relational-algebra operators of Section 3.2 can be mimicked by one 
or several Datalog rules. In this section we shall consider each operator in 
turn. We shall then consider how to combine Datalog rules to mimic complex 
algebraic expressions. 

10.2.1 Intersection 

The set intersection of t.so relations is expressed by a rule that has subgoals for 
both relations. with the same variables in corresponding arguments. 

Example 10.9: Let us use the relations R: 

name address gender birthdate 
Carrie Fisher 123 Maple St., Hollywood F 9/9/99 
Mark Hamill 456 Oak Rd., Brentwood M 8/8/88 

and S: 
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name address gender birthdate 
Carrie Fisher 123 Maple S t . ,  Hollywood F 9/9/99 
Harrison Ford 789 Palm D r . ,  Beverly H i l l s  M 7/7/77 

as an example. Their intersection is computed by the Datalog rule 

I(n,a,g,b) t R(n,a,g,b) AND S(n,a,g,b) 

Here, I is an IDB predicate, whose relation becomes R n S when we apply this 
rule. That is, in order for a tuple (n, a,g, b) to make both subgoals true, that 
tuple must be in both R and S. 

10.2.2 Union 

The union of two relations is constructed by two rules. Each has an atom 
corresponding to one of the relations as its sole subgoal, and the heads of both 
rules have the same IDB predicate in the head. The arguments in each head 
are exactly the same as in the subgoal of its rule. 

Example 10.10 : To take the union of the relations Rand S from Example 10.9 
we use two rules 

Rule (1) says that every tuple in R is a tuple in the IDB relation U .  Rule (2) 
similarly says that every tuple in S is in U .  Thus, the two rules together imply 
that every tuple in R U S is in U. If we write no more rules with U in the head. 
then there is no Kay any other tuples can get into the relation li, in which case 
we can conclude that U is exactly R U S.2 Kote that, unlike the construction 
for intersection, which works only for sets, this pair of rules takes either the set- 
or bag-union, depending on how we interpret the union of the results of the t ~ r o  
rules. We shall assume the "set" interpretation unless we say otherwise. 

10.2.3 Difference 

The set difference of relations R and S is computed by a single rule with a 
negated subgoal. That is, the nonnegated subgoal has prrdicate R and the 
negated subgoal has predicate S. These subgoals and the head all hare the 
same variables for corresponding arguments. 

Example 10.11 : If R and S are the relations from Example 10.9 then t,he rule 

D(n,a,g,b) t R(n,a,g,b) AND NOT S(n,a,g,b) 

defines D to be the relation R - S. - 
'In fact, we should assume in each of the examples of this section that there are no other 

rules for an IDB predicate besides those that we show explicitly. If there are other rules. then 
cannot rule out the existence of other tuples in the relation for that predicate. 
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- 

Variables Are Local to a Rule 

Notice that the names we choose for variables in a rule are arbitrary and 
have no connection to the variables used in any other rule. The reason 
there is no connection is that each rule is evaluated alone and contributes 
tuples to its head's relation independent of other rules. Thus, for instance, 
we could replace the second rule of Example 10.10 by 

U(w,x,y,z) t S(W,X,Y,Z) 

while leaving the first rule unchanged, and the two rules would still com- 
pute the union of R and S. Note, howeyer, that when substituting one 
variable a for another variable b within a rule, we must substitute a for 
all occurrences of b within the rule. Moreover, the substituting variable a 
that we choose must not be a variable that already appears in the rule. 

10.2.4 Projection 

To compute a projection of a relation R, we use one rule with a single subgoal 
with predicate R. The arguments of this subgoal are distinct variables, one 
for each attribute of the relation. The head has an atom with arguments that 
are the variables corresponding to the attributes in the projection list, in the 
desired order. 

Example 10.12 : Suppose we want to project the relation 

Movie(t i t le,  year, length ,  incolor,  studioName, producerC#) 

onto its first three attributes - t i t l e ,  year, and length. The rule 

serves, defining a relation called P to be the result of the projection. 

10.2.5 Selection 

Selections can be somewhat more difficult to express in Datalog. The sim- 
ple case is when the selection conditio~l is the AND of one or more arithmetic 
comparisons. In that case, we create a rule with 

1. One relational subgoal for the relation upon which we are performing the 
selection. This atom has distinct variables for each component, one for 
each attribute of the relation. 
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2. For each comparison in the selection condition, an arithmetic subgoal 
that is identical to this comparison. However, while in the selection con- 
dition an attribute name was used, in the arithmetic subgoal we use the 
corresponding variable, following the correspondence established by the 
relational subgoal. 

Example 10.13 : The selection 

ulength~lOO AND studioName='FoxJ (Movie) 

from Example 5.4 can be written as a Datalog rule 

S(t ,y , l , c , s , p )  t Movie(t,y,l,c,s,p) AND 1 2 100 AND s = 'Fox' 

The result is the relation S. Note that I and s are the variables corresponding 
to attributes length and studioName in the standard order we have used for 
the attributes of Movie. 

Xow, let us consider selections that involve the OR of conditions. We cannot 
necessarily replace such selections by single Datalog rules. However, selection 
for the OR of two conditions is equivalent to selecting for each condition sepa- 
rately and then taking the union of the results. Thus, the OR of n conditions 
can be expressed by n rules, each of which defines the same head predicate. 
The ith rule performs the selection for the ith of the n conditions. 

Example 10.14: Let us modify the selection of Example 10.13 by replacing 
the AND by an OR to get the selection: 

That is, find all those movies that are either long or by Fox. We can write two 
rules, one for each of the two conditions: 

1. S ( t ,y , l , c , s ,p )  t Movie(t,y,l,c,s,p) AND 1 2 100 
2. s ( t , y , l , c , s , p )  t Movie(t ,y, l ,c ,s ,p) AND s = 'Fox' 

Rule (1) produces movies at least 100 minutes long, and rule (2) produces 
movies by Fox. 

Even more complex selection conditions can be formed by several applica- 
tions. in any order, of the logical operators AND, OR, and NOT. However. there is 
a widely known technique, which we shall not present here, for rearranging any 
such logical expression into "disjunctive norma1 form," where the expression is 
the disjunction (OR) of "conjuncts." A conjunct, in turn: is the AND of "literals," 
and a literal is either a comparison or a negated ~ o n i ~ a r i s o n . ~  

3See, e.g., A. V. Aho and J .  D. Ullman, Foundations of Computer Science, Computer 
Science Press, Sew York, 1992. 
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We can represent any literal by a subgoal, perhaps with a NOT in front of it. 
If the subgoal is arithmetic, the NOT can be incorporated into the comparison 
operator. For example, NOT x 2 100 can be written as x < 100. Then, any 
conjunct can be represented by a single Datalog rule, with one subgoal for each 
comparison. Finally, every disjunctive-normal-form expression can be written 
by several Datalog rules, one rule for each conjunct. These rules take the union, 
or OR, of the results from each of the conjuncts. 

Example 10.15: We gave a simple instance of this algorithm in Example 
10.14. A more difficult example can be formed by negating the condition of 
that example. We then have the expression: 

"NOT (length>100 OR s t u d i o N a m e = ' F ~ x ' ) ( ~ ~ ~ ~ ~ )  

That is, find all those movies that are neither long nor by Fox. 
Here, a NOT is applied to an expression that is itself not a simple comparison. 

Thus, we must push the NOT down the expression, using one form of DeMorgan's 
law, which says that the negation of an OR is the AND of the negations. That is. 
the selection can be rewritten: 

O(NOT (Iength>100)) AND (NOT ( s t u d i o N a m e = ' F ~ x ' ) ) ( ~ ~ ~ ~ ~ )  

Now, we can take the NOT'S inside the comparisons to get the expression: 

~length<lOO AND studioNameflFOx' (Movie) 

This expression can be con~erted into the Datalog rule 

S ( t , y , l , c , s , p )  t Movie(t ,y, l ,c ,s ,p) AND 1 < 100 AND s # 'Fox' 

Example 10.16 : Let us consider a similar example where we have the negation 
of an AND in the selection. Now, we use the second form of Dellorgan's law, 
which says that the negation of an AND is the OR of the negations. We begin 
with the algebraic expression 

"NOT (Iength/100 AND s t u d i o , ~ a m e = ' ~ O X ' ) ( ~ ~ ~ ~ ~ )  

That is, find all those movies that are not both long and by Fox. 
We apply Dellorgan's law to push the NOT below the AND, to get: 

a ( N O T  (length>lOO)) OR (NOT ( s t u d i o N a m e = ' F ~ x ' ) ) ( ~ ~ ~ ~ ~ )  

Again R-e take the NOT'S inside the comparisons to get: 

"lrngth<lOO OR stud~o.Yame# 'FOX' (Movie) 

Finally. we rvrite txvo rules, one for each part of the OR. The resulting Datalog 
rules are: 

1. S ( t , y , l , c , s , p )  t M o v i e ( t , y . l , c , s , p )  AND 1 < 100 
2. S(t , ~ , l , c , s , p )  +- Movie(t ,y, l ,c ,s ,p) AND s # 'Fox' 
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10.2.6 Product 
The product of txo relations R x S can be expressed by a single Datalog rule. 
This rule has two subgoals, one for R and one for S. Each of these subgoals 
has distinct variables, one for each attribute of R or S. The IDB predicate in 
the head has as arguments all the variables that appear in either subgoal, with 
the variables appearing in the R-subgoal listed before t,hose of the S-subgoal. 

Example 10.17: Let us consider the two four-attribute relations R and S 
from Example 10.9. The rule 

defines P to be R x S. We have arbitrarily used variables at  the beginning of 
the alphabet for the arguments of R and variables at the end of the alphabet 
for S. These variables all appear in the rule head. 

10.2.7 Joins 

We can take the natural join of two relations by a Datalog rule that looks much 
like the rule for a product. The difference is that if we want R w S, then we 
must be careful to use the same variable for attributes of R and S that have the 
same name and to use different variables otherwise. For instance, we can use 
the attribute names themselves as the variables. The head is an IDB predicate 
that has each variable appearing once. 

Example 10.18 : Consider relations with schemas R(A, B) and S(B ,  C, D). 
Their natural join may be defined by the rule 

J(a,b,c,d) +- R(a,b) AND S(b,c,d) 

Xotice how the variables used in the subgoals correspond in an obvious ivay to 
the attributes of the relat.ions R and S.  

We also can convert theta-joins to Datalog. Recall from Section 5.2.10 how a 
theta-join can be expressed as a product followed by a selection. If the selection 
condition is a conjunct, that is, the AND of comparisons, then ive may simply 
start n-ith the Datalog rule for the product and add additional, arithmetic 
subgoals. one for each of the comparisons. 

Example 10.19 : Let us consider the relations C(.4, B, C) and V ( B ,  C. D )  
from Example 5.9, where Re applied the theta-join 

W 
A<, AND IJ.EI#\,~.B ' 

\Ye can construct the Datalog rule 

J(a,ub,uc,vb,vc,d) t U(a,ub,uc) AND V(vb,vc,d) AND 
a < d AND ub # vb 
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to perform the same operation. \Ve have used ub as the variable corresponding 
to attribute B of U .  and similarly used vb, uc, and vc, although any six distinct 
variables for the six attributes of the two relations would be fine. The first two 
subgoals introduce the two relations, and the second two subgoals enforce the 
two comparisons that appear in the condition of the theta-join. 

If the condition of the theta-join is not a conjunction, then we convert it to 
disjunctive normal form, as discussed in Section 10.2.5. We then create one rule 
for each conjunct. In this rule, we begin with the subgoals for the product and 
then add subgoals for each litera1 in the conjunct. The heads of all the rules are 
identical and have one argument for each attribute of the two relations being 
theta-joined. 

Example 10.20 : In this example, we shall make a simple modification to the 
algebraic expression of Example 10.19. The AND will be replaced by an OR. 
There are no negations in this expression, so it is already in disjunctive normal 
form. There are two conjuncts, each with a single literal. The expression is: 

Using the same variable-naming scheme as in Example 10.19, we obtain the 
two rules 

1. J(a,ub,uc,vb,vc,d) t U(a,ub,uc) AND V(vb,vc,d) AND a < d 
2. J(a,ub,uc,vb,vc,d) t U(a,ub,uc) AND V(vb,vc,d) AND ub # vb 

Each rule has subgoals for the tn-o relations involved plus a subgoal for one of 
the two conditions d < D or L1.B # V.B. 0 

10.2.8 Simulating Multiple Operations with Datalog 

Datalog rules are not only capable of mimicking a single operation of relational 
algebra. We can in fact mimic any algebraic expression. The trick is to look 
at  the expression tree for the relational-algebra expression and create one IDB 
predicate for each interior node of the tree. The rule or rules for each IDB 
predicate is whatever xve need to apply the operator at  the corresponding node of 
the tree. Those operands of the tree that are extensional (i.e., they are relations 
of the database) are represented by the corresponding predicate. Operands 
that are themsell-es interior nodes are represented by the corresponding IDB 
predicate. 

Example 10.21 : Consider the algebraic expression 
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tirle, year 

O length >= 100 * studioName = ' Fox1 

Movie Movie 

Figure 10.2: Expression tree 

1. W(t,y, l ,c ,s ,p) c Movie(t ,y, l ,c ,s ,p) AND 1 2  100 
2. x ( t , y , l , c , s , p )  t Movie(t ,y, l ,c ,s ,p) AND s = 'Fox' 
3. ~ ( t , y , l , c , s , p )  t W(t,y , l ,c , s ,p)  AND X(t ,y , l .c , s ,p)  
4. Z(t ,y) +- Y(t ,y , l ,c , s ,p)  

Figure 10.3: Datalog rules to perform several algebraic operations 

from Example 5.10, whose expression tree appeared in Fig. 5.8. We repeat 
this tree as Fig. 10.2. There are four interior nodes, so we need to create four 
IDB predicates. Each of these predicates has a single Datalog rule, and we 
summarize all the rules in Fig. 10.3. 

The lowest two interior nodes perform simple selections on the EDB rela- 
tion Movie, so we can create the IDB predicates W and X to represent these 
selections. Rules (1) and (2) of Fig. 10.3 describe these selections. For example, 
rule (1) defines W to be those tuples of Movie that have a length at  least 100. 

Then rule (3) defines predicate Y to be the intersection of tY and X, us- 
ing the form of rule we learned for an intersection in Section 10.2.1. Finally, 
rule (4) defines predicate Z to be the projection of Y onto the t i t l e  and 

. year attributes. UTe here use the technique for simulating a projection that we 
learned in Section 10.2.4. The predicate Z is the "answer" predicate; that is. 
regardless of the value of relation Movie, the relation defined by Z is the same 
as the result of the algebraic expression with which we began this example. 

Sote that, because Y is defined by a single rule, we can substitute for the 
I; subgoal in rule (4) of Fig. 10.3, replacing it with the body of rule (3). Then, 
we can substitute for the W and X subgoals, using the bodies of rules (1) and 
(2). Since the Movie subgoal appears in both of these bodies, we can eliminate 
one copy. As a result, Z can be defined by the single rule: 

Z(t,y) t Movie(t,y,l,c,s,p) AND 1 2 100 AND s = 'Fox1 
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Hon-ever, it is not common that a complex expression of relational algebra is 
equivalent to a single Datalog rule. 

10.2.9 Exercises for Section 10.2 

Exercise 10.2.1 : Let R(a, b, c), S(a, 6, c), and T(a, b, c) be three relations. 
Write one or more Datalog rules that define the result of each of the following 
expressions of relational algebra: 

a) R U S.  

b) R n S. 

C) R - S .  

* d) (R U S )  -T. 

! e) ( R -  S )  n ( R -  T). 

f )  Za.b(R). 

*! g) ~a ,b(R)  n ~"(n.6) (xb,e(S))- 

Exercise 10.2.2 : Let R(x, y, z) be a relation. Write one or more Datalog rules 
that define ac(R), where C stands for each of the following conditions: 

a) x = y .  

* b) x < y AND y < z. 

c) x < y O R y < z .  

d) NOT (x < y OR .L. > y). 

1 *! e) NOT ((x < y OR x > y) AND y < z) 

1 ! f) NOT ((x < y O R x <  z) AND y < z ) .  

Exercise 10.2.3 : Let R(a. b, c), S(b, c, d), and T(d ,  e) be three relations. Write 
single Datalog rules for each of the natural joins: 

a) R w S. 

b) S w T .  

c) (R w S) w T. (;Vote: since the natural join is associative and commuta- 
tive. the order of the join of these three relations is irrelevant.) 

Exercise 10.2.4 : Let R(x. y, z) and S(x, y, z )  be two relations. Write one or 
more Datalog rules to define each of the theta-joins R S, where C is one 
of the conditions of Exercise 10.2.2. For each of these conditions, interpret 
each arithmetic comparison as comparing an attribute of R on the left with an 
attribute of S on the right. For instance, x < y stands for R.x < S.Y. 
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! Exercise 10.2.5: It is also possible to convert Datalog rules into equivalent 
relational-algebra expressions. While we have not discussed the method of doing 
so in general, it is possible to work out many simple examples. For each of the 
Datalog rules below, write an expression of relational algebra that defines the 
same relation as the head of the rule. 

* a )  P(x,y) t Q(x,z) AND R(z,y) 

c) P(x,y) t Q(x,z) AND R(z,y) AND x < Y 

10.3 Recursive Programming in Datalog 

While relational algebra can express many useful operations on relations, there 
are some computations that cannot be written as an expression of relational al- 
gebra. A common kind of operation on data that we cannot express in relational 
algebra involves an infinite, recursively defined sequence of similar expressions. 

Example 10.22 : Often, a successful movie is followed by a sequel; if the se- 
quel does well, then the sequel has a sequel, and so on. Thus, a movie may 
be ancestral to a long sequence of other movies. Suppose we have a relation 
Sequelof (movie, sequel) containing pairs consisting of a movie and its iin- 
mediate sequel. Examples of tuples in this relation are: 

movie sequel 
Naked Gun Naked Gun 2112 
Naked Gun 2112 Naked Gun 33113 

We might also have a more general notion of a follow-on to a movie, which 
is a sequel, a sequel of a sequel, and so on. In the relation above, Naked Gun 
33113 is a follow-on to Naked Gun, but not a sequel in the strict sense we are 
using the term "sequel" here. It saves space if we store only the immediate 
sequels in the relation and construct the follow-ons if we need them. In the 
above example, we store only one fewer pair, but for the five Rocky mories we 
store six fewer pairs, and for the 18 Fkiday the 13th movies we store 136 fewer 
pairs. 

Howeyer, it is not immediately obvious how we construct the relation of 
follolv-ons from the relation SequelOf. We can construct the sequels of sequels 
by joining SequelOf with itself once. An example of such an expression in 
relational algebra, using renaming so that the join becomes a natural join, is: 

- In this expression, Sequelof is renamed twice, once so its attributes are called 
first and second, and again so its attributes are called second and th i rd .  
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Thus, the natural join asks for tuples ( m l ,  m2) and (ma, m4) in Sequelof such 
that mz = m3. \iTe then produce the pair ( m l ,  m4). Note that m4 is the sequel 
of the sequel of m l .  

Similarly, we could join three copies of Sequelof to get the sequels of sequels 
of sequels (e.g., Rocky and Rocky IIq. We could in fact produce the ith sequels 
for any fixed value of i by joining Sequelof with itself i - 1 times. We could 
then take the union of Sequelof and a finite sequence of these joins to get all 
the sequels up to some fixed limit. 

What we cannot do in relational algebra is ask for the "infinite union" of the 
infinite sequence of expressions that give the ith sequels for i = 1,2, .  . . . Note 
that relational algebra's union allows us only to take the union of two relations; 
not an infinite number. By applying the union operator any finite number of 
times in an algebraic expression, we can take the union of any finite number of 
relations. but we cannot take the union of an unlimited number of relations in 
an algebraic expression. 

10.3.1 Recursive Rules 

By using an IDB predicate both in the head and the body of rules, we can 
express an infinite union in Datalog. We shall first see some examples of how 
to express recursions in Datalog. In Section 10.3.2 we shall examine the least 
fixedpoint computation of the relations for the IDB predicates of these rules. A 
new approach to rule-evaluation is needed for recursive rules, since the straight- 
forward rule-evaluation approach of Section 10.1.4 assumes all the predicates 
in the body of rules have fixed relations. 

Example 10.23: We can define the IDB relation FollowOn by the following 
tn-o Datalog rules: 

1. FollowOn(x, y) t SequelOf (x,y) 
2. FollowOn(x, y) t- Sequelof (x,z)  AND FollowOn(z, y) 

The first rule is the basis: it tells us that every sequel is a follow-on. The second 
rule says that every follow-on of a sequel of movie x is also a follo~v-on of x. 
More precisely: if t is a sequel of x. and we have found that y is a follow-on of 
2. then y is a folloir-on of x. 

10.3.2 Evaluating Recursive Datalog Rules 

To evaluate the IDB predicates of recursive Datalog rules. we follo\r the principle 
that we never want to conclude that a tuple is in an IDB relation unless 11-e are 
forced to do so by applying the rules as in Section 10.1.4. Thus. n-e: 

1. Begin by assuming all IDB predicates have enipty relations. 

2. Perform a number of rounds: in \vliich progressively larger relations are 
constructed for the IDB predicates. In the bodies of the rules. use the 
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IDB relations constructed on the previous round. Apply the rules to get 
new estimates for all the IDB predicates. 

3. If the rules are safe, no IDB tuple can have a component value that does 
not also appear in some EDB relation. Thus, there are a finite number of 
possible tuples for all IDB relations, and eventually there will be a round 
on which no new tuples are added to any IDB relation. At this point, we 
can terminate our computation with the answer; no new IDB tuples mill 
ever be constructed. 

This set of IDB tuples is called the least fiedpoint of the rules. 

Example 10.24 : Let us show the computation of the least fixedpoint for 
relation FollowOn when the relation SequelOf consists of the following three 
tuples: 

movie I sequel 

At the first round of computation, FollowOn is assumed empty. Thus, rule (2) 
cannot yield any FollowOn tuples. However, rule (1) says that every SequelOf 
tuple is a FollowOn tuple. Thus, after the first round, the value of FollowOn is 
identical to the Sequelof relation above. The situation after round 1 is shown 
in Fig. 10.4(a). 

In the second round, we use the relation from Fig. 10.4(a) as FollowOn and 
apply the two rules to this relation and the given SequelOf relation. The first 
rule gives us the three tuples that we already have, and in fact it is easy to see 
that rule (1) will never yield any tuples for FollowOn other than these three. 
For rule (2), we look for a tuple from SequelOf whose second component equals 
the first component of a tuple from FollowOn. 

Thus, we can take the tuple (Rocky,Rocky 11) from Sequelof and pair 
it with the tuple (Rocky 11,Rocky 111) from FollowOn to get the new tuple 
(Rocky, Rocky 111) for FollouOn. Similarly, we can take the tuple 

(Rocky 11, Rocky 111) 

from SequelOf and tuple (~ocky II1,Rocky IV) from FollowOn to get new 
tuple (Rocky 11,Rocky IV) for FollowOn. However, no other pairs of tuples 
from SequelOf and FollowOnjoin. Thus, after the second round, FollowOn has 
the five tuples shown in Fig. 10.-l(b). Intuitively, just as Fig. 10.4(a) contained 
only those follow-on facts that are based on a single sequel, Fig. 10.4(b) contains 
those follow-on facts based on one or two sequels. 

In the third round, we use the relation from Fig. 10.4(b) for FollowOn and 
again evaluate the body of rule (2). \Ve get all the tuples we already had. 
of course, and one more tuple. When we join the tuple (Rocky,Rocky 11) 

10.3. RECURSIVE PROGRAIM~I~ING IN DilTALOG 

(a) After round 1 

Rocky Rocky I1 
Rocky I1 Rocky I11 
Rocky 111 Rocky I V  
Rocky Rocky I11 
Rocky I1 Rocky I V  i 

(b) After round 2 

Rocky Rocky I11 

Rocky Rocky I V  

(c) After round 3 and subsequently 

Figure 10.1: Recursive conlputation of relation FollowOn 

from SequelOf with the tuple (Rocky 11,Rocky IV) fro111 the current value of 
FollowOn, we get the new tuple (Rocky, Rocky IV). Thus, after round 3, the 
value of FollowOn is as shown in Fig. 10.1(c). 

When we proceed to round 4. we get no new tuples, so we stop. The true 
relation FollowOn is as shon-n in Fig. 10.4 (c). 

There is an important trick that sinlplifies all recursire Datalog evaluations, 
such as the one above: 

At any round, the only new tuples added to any IDB relation will come 
from applications of rules in which a t  least one IDB subgoal is matched 
to a tuple that was added to its relation a t  the previous round. 
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Other Forms of Recursion 

In Example 10.23 we used a right-recursive form for the recursion, 
where the use of the recursive relation FollowOn appears after the EDB re- 
lation SequelOf. We could dso write similar left-recursive rules by putting 
the recursive relation first. These rules are: 

1. FollowOn(x, y) t SequelOf (x, y) 
2. FollowOn(x, y) t FollowOn(x, z) AND SequelOf (z ,  y) 

Informally, y is a follow-on of x if it is either a sequel of x or a sequel of a 
follow-on of x. 

We could even use the recursive relation twice, as in the nonlinear 
recursion: 

1. FollowOn(x, y) t SequelOf (x,y) 
2. FollowOn(x, y) t FollowOn (x , z)  AND FollowOn (z , y) 

Informally, y is a follow-on of x if it is either a sequel of x or a follow-on of 
a follow-on of x. All three of thtse forms give the same value for relation 
FollowOn: the set of pairs (x, y) such that y is a sequel of a sequel of . . . 
(some number of times) of x. 

The justification for this rule is that should all subgoals be matched to "old" 
tuples, the tuple of the head would already have been added on the previous 
round. The next two examples illustrate this strategy and also show us more 
complex examples of recursion. 

Example 10.25: Many examples of the use of recursion can be found in a 
study of paths in a graph. Figure 10.5 shows a graph representing some flights of 
two hypothetical airlines - Untried Airlines (UA) ,  and Arcane Airlines (AA) - 
among the cities San Rancisco, Denver, Dallas, Chicago, and New York. 

We may imagine that the flights are represented by an EDB relation: 

F l igh t s (a i r l ine ,  from, t o ,  departs ,  a r r ives)  

The tuples in this relation for the data of Fig. 10.5 are shown in Fig. 10.6. 
The simplest recursive question we can ask is "For what pairs of cities (x, y) 

is it possible to get from city x to city y by taking one or more flights?" The 
following two rules describe a relation Reaches (x, y) that contains exactly these 
pairs of cities. 

1. ~eaches (x ,y )  t Flights(a,x,y,d,r)  
2. Reaches (x, y) t Reaches (x, z) AND Reaches (z , y) 
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AA 1900-2200 

Figure 10.5: A map of some airline flights 

airline 
U A 
A A 
U A 
U A 
A A 
A A 
A A 
U A 

from 
SF 
SF 
DEN 
DEN 
D AL 
D AL 
CHI 
CHI 

to - - 
DEN 
D AL 
CHI 
DAL 
CHI 
NY 
NY 
NY 

departs 
930 
900 
1500 
1400 
1530 
1500 
1900 
1830 

arrives 
1230 
1430 
1800 
1700 
1730 
1930 
2200 
2130 

Figure 10.6: Tuples in the relation Fl ights  

The first rule says that Reaches contains those pairs of cities for which there 
is a direct flight from the first to the second; the airline a, departure time d, 
and arrival time r are arbitrary in this rule. The second rule says that if you 
can reach from city x to city r and you can reach from z to y, then you can 
reach from x to y. Notice that we hare used the nonlinear form of recursion 
here. as ~ v a s  described in the box on .'Other Forms of Recursion." This form is 
slightly more convenient here, because another use of F l igh t s  in the recursive 
rule ~vould in\-olve three more variables for the unused components of Flights.  

To evaluate the relation Reaches, we follow the same iterative process intro- 
duced in Example 10.24. We begin by using Rule (1) to get the follo~ving pairs 
in Reaches: (SF, DEN). (SF. DAL). (DEN. CHI). (DEN. DAL). (DAL, CHI). (DAL, NY), 
and (CHI. NY). These are the seven pairs represented by arcs in Fig. 10.5. 

In the nest round. we apply thr recursive Rule (2) to put together pairs 
of arcs such that the head of one is the tail of the next. That gives us the 
additional pairs (SF: CHI), (DEN, NY). and (SF, NY). The third round combines 
all one- and two-arc pairs together to form paths of length up to four arcs. 
In this particular diagram, we get no new pairs. The relation Reaches thus 
consists of the ten pairs (x. y) such that y is reachable from x in the diagram 
of Fig. 10.3. Because of the way we drew the diagram, these pairs happen to 
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be exactly those ( x , ~ )  such that y is to the right of z in Fig 10.5. 

Example 10.26: A more complicated definition of when two flights can be 
combined into a longer sequence of flights is to require that the second leaves 
an airport at least an hour after the first arrives at that airport. Now, we use 
an IDB predicate, which we shall call Connects(x,y,d,r), that says we can 
take one or more flights, starting at city x at time d and arriving at  city y at 
time r.  If there are any connections, then there is at  least an hour to make the 
connection. 

The rules for Connects are:4 

1. Connects(x,y,d,r) t Flights(a,x,y,d,r) 
2. Connects(x,y,d,r) t Connects(x,z,d,tl) AND 

Connects(z,y,t2,r) AND 
tl <= t2 - 100 

In the first round, rule (1) gives us the eight Connects facts shown above the 
first line in Fig. 10.7 (the line is not part of the relation). Each corresponds 
to one of the flights indicated in the diagram of Fig. 10.5; note that one of the 
seven arcs of that figure represents two flights at different times. 

We now try to combine these tuples using Rule (2). For example, the second 
and fifth of these tuples combine to give the tuple (SF, CHI, 900,1730). However, 
the second and sixth tuples do not combine because the arrival time in Dallas 
is 1430, and the departure time from Dallas, 1500, is only half an hour later. 
The Connects relation after the second round consists of all those tuples above 
the first or second line in Fig. 10.7. Above the top line are the original tuples 
from round 1, and the six tuples added on round 2 are shown between the first 
and second lines. 

In the third round, we must in principle consider all pairs of tuples above 
one of the two lines in Fig. 10.7 as candidates for the two Connects tuples 
in the body of rule (2). However, if both tuples are above the first line, then 
they would have been considered during round 2 and therefore will not yield a 
Connects tuple we have not seen before. The only way to get a new tuple is if 
at least one of the two Connects tuple used in the body of rule (2) were added 
at the previous round; i.e., it is between the lines in Fig. 10.7. 

The third round only gives us three new tuples. These are shown at the 
bottom of Fig. 10.7. There are no new tuples in the fourth round, so our 
computation is complete. Thus, the entire relation Connects is Fig. 10.7. 

10.3.3 Negation in Recursive Rules 

Sometimes it is necessary to use negation in rules that also involve recursion. 
There is a safe way and an unsafe way to mix recursion and negation. Generally, 
it is considered appropriate to use negation only in situations where the negation 
does not appear inside the fixedpoint operation. To see the difference, we shall 

4 ~ h e s e  rules only work on the assumption that there are no connections spanning midnight. 
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x - - 
SF 
SF 
DEN 
DEN 
DAL 
D AL 
CHI 
CHI - 
SF 
SF 
SF 
DEN 
DAL 
DAL - 
SF 
SF 
SF 

Y - 
DEN 
DAL 
CHI 
D AL 
CHI 
NY 
NY 
NY - 
CHI 
CHI 
D AL 

Figure 10.7: Relation Connects after third round 

consider two examples of recursion and negation, one appropriate and the other 
paradoxical. We shall see that only -'stratified" negation is useful when there 
is recursion; the term .'stratified" xvill be defined precisely after the examples. 

Example 10.27 : Suppose ~ v e  want to find those pairs of cities (x, y) in the 
map of Fig. 10.5 such that U=l flies from x to y (perhaps through several other 
cities), but AA does not. 11-e can recursively define a predicate UAreaches as we 
defined Reaches in Example 10.25, but restricting ourselves only to UX flights, 
as follo~vs: 

1. UAreaches(x,y) t Flights(UA,x,y,d,r) 
2.   are aches (x, y) t   are aches (x, Z) AND UAreaches(z ,Y) 

Similarly, rve can rccursively define the predicate AAreaches to be those pairs 
of cities ( r ,  y) such that one can travel fron~ x to y using only .I;\ flights, by: 

1. AAreaches(x,y) +- ~lights(AA.x,~ *d*r) 
2. AAreaches (x ,  y) t  reaches (x,  2) AND Atireaches (z~Y) 

Son-, it is a simple matter to compute the UAonly predicate consisting of those 
pairs of cities (x, y) such that one can get from x to y on UX flights but not on 
-\.A flights, with the nonrecursive rule: 

UAonly (x, y) t U~reaches(x, y) AND NOT ~~reaches(x, y) 
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This rule computes the set difference of UAreaches and AAreaches. 
For the data of Fig. 10.5, UAreaches is seen to consist of the following pairs: 

(SF, DEN), (SF, DAL), (SF, CHI), (SF, NY), (DEN, DAL), (DEN, CHI), (DEN, NY), and 
(CHI, NY). This set is computed by the iterative fixedpoint process outlined 
in Section 10.3.2. Similarly, we can compute the value of AAreaches for this 
data; it is: (SF, DAL), (SF, CHI), (SF, NY), (DAL, CHI), (DAL, NY), and (CHI, NY). 
When we take the difference of these sets of pairs we get: (SF, DEN), (DEN, DAL), 
(DEN, CHI), and (DEN, NY). This set of four pairs is the relation UAonly. 

Example 10.28 : Now, let us consider an abstract example where things don't 
work as well. Suppose we have a single EDB predicate R. This predicate 
is unary (one-argument), and it has a single tuple, (0). There are two IDB 
predicates, P and Q, also unary. They are defined by the two rules 

1. P(x) t R(x) AND NOT Q(x) 
2. Q(x) t R(x) AND NOT P(x) 

Informally, the two rules tell us that an element x in R is either in P or in Q 
but not both. Sotice that P and Q are defined recursively in terms of each 
other. 

When we defined what recursive rules meant in Section 10.3.2. we said we 
want the least fixedpoint, that is, the smallest IDB relations that contain all 
tuples that the rules require us to allow. Rule (I), since it is the only rule for 
P ,  says that as relations, P = R- Q, and rule (2) likewise says that Q = R-P.  
Since R contains only the tuple (0), we know that only (0) can be in either P 
or Q. But where is (0)? It cannot be in neither, since then the equations are 
not satisfied; for instance P = R - Q would imply that 0 = ((0)) - 0, which is 
false. 

If we let P = ((0)) while Q = 0, then we do get a solution to both equations. 
P = R - Q becomes ((0)) = ((0)) - 0, which is true, and Q = R - P becomes 
0 = ((0)) - {(O)}, which is also true. 

Hen-ever, we can also let P = 0 and Q = ((0)). This choice too satisfies 
both rules. n'e thus have two solutions: 

Both are minimal. in the sense that if we throw any tuple out of any relation. 
the resulting relations no longer satisfy the rules. We cannot. therefore, decide 
bet~veen the two least fisedpoints (a) and (b). so we cannot answer a si~nple 
question such as -1s P(0) true?" 0 

In Example 10.28, we saw that our idea of defining the meaning of recur- 
sire rules by finding the least fixedpoint no longer works when recursio~i and 
negation are tangled up too intimately. There can be more than one least 
fixedpoint, and these fixedpoints can contradict each other. It would be good if 

- some other approach to defining the meaning of recursive negation would work 
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better, but unfortunately, there is no general agreement about what such rules 
should mean. 

Thus, it is conventional to restrict ourselves to recursions in which nega- 
tion is stratified. For instance, the SQL-99 standard for recursion discussed in 
Section 10.4 makes this restriction. As we shall see, when negation is stratified 
there is an algorithm to compute one particular least fixedpoint (perhaps out of 
many such fixedpoints) that matches our intuition about what the rules mean. 
We define the property of being stratified as follows. 

1. Draw a graph whose nodes correspond to the IDB predicates. 

2. Draw an arc from node '4 to node B if a rule with predicate A in the head 
has a negated subgoal with predicate B. Label this arc with a - sign to 
indicate it is a negative arc. 

3. Draw an arc from node A to node B if a rule with head predicate A 
has a non-negated subgoal with predicate B. This arc does not have a 
minus-sign as label. 

If this graph has a cycle containing one or more negative arcs, then the 
recursion is not stratified. Otherwise, the recursion is stratified. We can group 
the IDB predicates of a stratified graph into strata. The stratum of a predicate 
..I is the la~gest number of negative arcs on a path beginning from A. 

If the recursion is stratified. then we may evaluate the IDB predicates in 
the order of their strata, lolvest first. This strategy produces one of the least 
fixedpoints of the rules. 1Iore importantly, cornputi~lg the IDB predicates in 
the order implied by their strata appears always to make sense and give us the 
.'rights fixedpoint. I11 contrast, as we have seen in Example 10.28, unstratified 
recursions may leave us with no .'rightv fixedpoint at all, even if there are many 
to choose from. 

UAonly 

AAreaches UAreaches 

Figure 10.8: Graph constructed from a stratified recursion 

Example 10.29 : The graph for the predicates of Example 10.27 is shown in 
Fig. 10.8. AAreaches and UAreaches are in stratum 0: because none of the 
paths beginning at  their nodes involves a negative arc. UAonly has stratum 1, 
because there are paths with one negative arc leading from that node, but no 
paths with more than one negative arc. Thus, we must completely evaluate 
AAreaches and UAreaches before we start evaluating UAonly. 
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Compare the situation when we construct the graph for the IDB predicates 
of Example 10.28. This graph is shown in Fig. 10.9. Since rule (1) has head 
P with negated subgoal Q, there is a negative arc from P to Q. Since rule (2) 
has head Q with negated subgoal P, there is also a negative arc in the opposite 
direction. There is thus a negative cycle, and the rules are not stratified. 

Figure 10.9: Graph constructed from an unstratified recursion 

10.3.4 Exercises for Section 10.3 

Exercise 10.3.1 : If we add or delete arcs to the 'diagram of Fig. 10.5, we 
may change the value of the relation Reaches of Example 10.25, the relation 
Connects of Example 10.26, or the relations UAreaches and AAreaches of Ex- 
ample 10.27. Give the new values of these relations if we: 

* a) Add an arc from CHI to SF labeled AA, 1900-2100. 

b) 4dd an arc from NY to DEN labeled UA, 900-1100. 

c) .4dd both arcs from (a) and (b). 

d) Delete the arc from DEN to DAL. 

Exercise 10.3.2 : Write Datalog rules (using stratified negation, if negation 
is necessary) to describe the following modifications to the notion of "follolv- 
on" from Example 10.22. You may use EDB relation Sequelof and the IDB 
relation FollowOn defined in Example 10.23. 

* a) P(x, y) meaning t.hat movie y is a follow-on to movie x, but not a sequel 
of z (as defined by the EDB relation Sequelof). 

b) Q(x,  y) meaning that y is a follow-on of x, but neither a sequel nor a 
sequel of a sequel. 

! cj R(x) meaning that movie x has at least two follow-ons. Mote that both 
could be sequels, rather than one being a sequel and the other a sequel of 
a sequel. 

!! d) S (x, y 1, meaning that y is a follow-on of x but y has at most one follow-on. 
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Exercise 10.3.3: ODL classes and their relationships can be described by 
a relation Rel(class,  r c l a s s ,  mult). Here, mult gives the multiplicity of 
a relationship, either multi  for a multivalued relationship, or s ing le  for a 
single-valued relationship. The first two attributes are the related classes; the 
relationship goes from c l a s s  to r c l a s s  (related class). For example, the re- 
lation Re1 representing the three ODL classes of our running movie example 
from Fig. 4.3 is show11 in Fig. 10.10. 

class ( rclass 1 mult 
S t a r  1 Movie 1 multi 
Movie S t a r  1 mlt i  
Movie Studio s ingle  
Studio Movie multi 

Figure 10.10: Representing ODL relationships by relational data 

\Ye can also see this data as a graph, in which the nodes are classes and 
the arcs go from a class to a related class, with label mul t i  or s ingle ,  as 
appropriate. Figure 10.11 illustrates this graph for the data of Fig. 10.10. 

multi single 

7- 
Star Movie Studio 
-----/'----.-' 

multi rnulti 

Figure 10.11: Representing relationships by a graph 

For each of the following, write Datalog rules, using stratified negation if 
negation is necessary, to express the described predicate(s). You may use Re1 
as an EDB relation. Show the result of evaluating your rules: round-by-round, 
on the data from Fig. 10.10. 

a) Predicate P(c lass ,  ec lass)  , meaning that there is a path5 in the graph 
of classes that goes from c la s s  to eclass.  The latter class can be thought 
of as "embedded" in c lass ,  since it is in a sense part of a part of an - . . ob- 
ject of the first class. 

*! b) Predicates S(c lass ,  ec lass)  and M(class, ec lass) .  The first means 
that there is a .'single-valued embedding" of ec l a s s  in c lass .  that is, a 
path from c la s s  to ec lass  along 1%-liich every arc is labeled s ingle .  The 
second. Jf. lizeans that there is a .'multivalued embedding" of ec l a s s  in 
c lass .  i.e.. a path from c la s s  to ec lass  with at least one arc labeled 
multi. 

'We shall not consider empty paths to be "paths" in this exercise. 
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c) Predicate Q(class, eclass) that says there is a path from class to 
eclass but no single-valued path. You may use IDB predicates defined 
previously in this exercise. 

10.4 Recursion in SQL 
The SQL-99 standard includes provision for recursive rules, based on the recur- 
sive Datalog described in Section 10.3. Although this feature is not part of the 
"coren SQL-99 standard that every DBMS is expected to implement, at least 
one major system - IBM's DB2 - does implement the SQL-99 proposal. This 
proposal differs from our description in two ways: 

1. Only linear recursion, that is, rules with at most one recursive subgoal, is 
mandatory. In what follows, we shall ignore this restriction; you should 
remember that there could be an implementation of standard SQL that 
prohibits nonlinear recursion but allows linear recursion. 

2. The requirement of stratification, which we discussed for the negation 
operator in Section 10.3.3, applies also to other operators of SQL that 
can cause similar problems, such as aggregations. 

10.4.1 Defining IDB Relations in SQL 
The WITH statement allows us to define the SQL equivalent of IDB relations. 
These definitions can then be used within the WITH statement itself. X simple 
form of the WITH statement is: 

WITH R AS <definition of R> <query involving R> 

That is, one defines a temporary relation named R, and then uses R in some 
query. More generally, one can define several relations after the WITH, separating 
their definitions by commas. Any of these definitions may be recursive. Sev- 
eral defined relations may be mutually recursive; that is, each may be defined 
in terms of some of the other relations, optionally including itself. However, 
any relation that is involved in a recursion must be preceded by the keyword 
NZCURSIVE. Thus, a WITH statement has the form: 

1. The keyword WITH. 

2. One or more definitions. Definitions are separated by commas, and each 
definition consists of 

(a) An optional keyword RECURSIVE, which is required if the relation 
being defined is recursive. 

(b) The name of the relation being defined. 

(c) The keyword AS. 
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(d) The query that defines the relation. 

3. h query, which may refer to any of the prior definitions, and forms the 
result of the WITH statement. 

It is important to note that, unlike other definitions of relations, the def- 
initions inside a WITH statement are only available within that statement and 
cannot be used elsewhere. If one wants a persistent relation, one should define 
that relation in the database schema, outside any WITH statement. 

Example 10.30 : Let us reconsider the airline flights information that we used 
as an example in Section 10.3. The data about flights is in a relationB 

Flights (airline, f rm, to, departs arrives) 

The actual data for our example was given in Fig. 10.5. 
In Example 10.25, we computed the IDB relation Reaches to be the pairs of 

cities such that it is possible to fly from the first to the second using the flights 
represented by the EDB relation Flights. The two rules for Reaches are: 

1. Reaches(x,y) t ~lights(a,x,~,d,r) 
2. Reaches ( x ,  y) t ~eaches (X ,z) AND Reaches (2,~) 

From these rules, we can develop an SQL query that produces the relation 
Reaches. This SQL query places the rules for Reaches in a WITH statement, 
and follows it by a query. In Example 10.25, the desired result \\-as the entire 
Reaches relation. but we could also ask some query about Reaches. for instance 
the set of cities reachable from Denver. 

1) WITH RECURSIVE ~eaches (f rm, to) AS 
2) (SELECT frm, to FROM  lights) 
3) UNION 
4) (SELECT Rl.frm, R2.to 
5) FROM Reaches R1, Reaches R2 

6) WHERE Rl.to = R2.frm) 
7) SELECT * FROM Reaches; 

Figure 10.12: Recursive SQL query for pairs of reachable cities 

Figure 10.12 slio~\-s lion to compute Reaches as an SQL quer?. Line (1) 
introduces the definition of Reaches, while the actual definition of this relation 
is in lines (2) through (6). 

That definition is a union of two queries, corresponding to the two rules 
by which Reaches was defined in Example 10.25. Line (2) is the first term 

6\\'e changed the name of the second attribute to frm, since from in SQL is a ke~lvord. 
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Mutual Recursion 

There is a graph-theoretic way to check whether two relations or predi- 
cates are mutually recursive. Construct a dependency graph whose nodes 
correspond to the relations (or predicates if we are using Datalog rules). 
Draw an arc from relation A to relation B if the definition of B depends 
directly on the definition of A. That is, if Datalog is being used, then -4 
appears in the body of a rule with B at  the head. In SQL, A would appear 
somewhere in the definition of B, normally in a FROM clause, but possibly 
as a term in a union, intersection, or difference. 

If there is a cycle involving nodes R and S, then R and S are mutually 
recursive. The most common case will be a loop from R to R, indicating 
that R depends recursively upon itself. 

Note that the dependency graph is similar to the graph we introduced 

, in Section 10.3.3 to define stratified negation. However, there we had to 
1 distinguish between positive and negative dependence, while here we do 
/ not make that distinction. 

of the union and corresponds to the first, or basis rule. It says that for every 
tuple in the Flights relation, the second and third components (the frm and 
to components) are a tuple in Reaches. 

Lines (4) through (6)  correspond to the second, or inductive, rule in the 
definition of Reaches. The tm-o Reaches subgoals are represented in the FROM 
clause by two aliases R1 and R2 for Reaches. The first component of R1 cor- 
responds to .2: in Rule (2), and the second component of R2 corresponds to y. 
\-ariable z is represented by both the second component of R1 and the first 
component of R2; note that these components are equated in line (6) .  

Finally, line (7) describes the relation produced by the entire query. It is a 
copy of the Reaches relation. As an alternative, we could replace line (7) by a 
more complex query. For instance, 

7) SELECT to FROM Reaches WHERE frm = 'DEN'; 

~vould produce all those cities reachable from Denver. 

10.4.2 Stratified Negation 

The queries that can appear as the definition of a recursive relation are not 
arbitrary SQL queries. Rather, they must be restricted in certain ways: one of 
the most important requirements is that negation of niutually recursive relations 
be stratified, as discussed in Section 10.3.3. In Section 10.4.3, we shall see hoa 
the principle of stratification extends to other constructs that we find in SQL 
but not in Datalog, such as aggregation. 
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Example 10.31 : Let us re-examine Example 10.27, where we asked for those 
pairs of cities (x, y) such that it is possible to travel from x to y on the airline 
UA, but not on XA. 1% need recursion to express the idea of traveling on one 
airline through an indefinite sequence of hops. However, the negation aspect 
appears in a stratified way: after using recursion to compute the two relations 
UAreaches and AAreaches in Example 10.27, we took their difference. 

We could adopt the same strategy to write the query in SQL. However, 
to illustrate a different way of proceeding, we shall instead define recursively a 
single relation Reaches (airline, f nu, to), whose triples (a, f ,  t )  mean that one 
can fly from city f to city t, perhaps using several hops but using only flights of 
airline a. Ifre shall also use a nonrecursive relation Triples (airline, f rm, to) 
that is the projection of Flights onto the three relevant components. The 
query is shown in Fig. 10.13. 

The definition of relation Reaches in lines (3) through (9) is the union of 
two terms. The basis term is the relation Triples at line (4). The inductive 
term is the query of lines (6) through (9) that produces the join of Triples 
with Reaches itself. The effect of these two terms is to put into Reaches all 
tuples (a, f ,  t )  such that one can travel from city f to city t using one or more 
hops, but with all hops on airline a. 

The query itself appears in lines (10) through (12). Line (10) gives the city 
pairs reachable via U.4, and line (12) gives the city pairs reachable via A.4. The 
result of the query is the difference of these two relations. 

1) WITH 
2) Triples AS SELECT airline, frm, to FROM Flights, 

3) RECURSIVE Reaches(airline, frm, to) AS 

4) (SELECT * FROM ~riples) 
5) UNION 
6) (SELECT Triples.airline, Triples.frm, Reachhs.to 
7 FROM Triples, Reaches 
8 WHERE Triples.to = Reaches.frm AND 

9 > Triples.airline = Reaches.airline) 

10) (SELECT'frm, to FROM Reaches WHERE airline = 'UA') 
11) EXCEPT 
12) (SELECT frm, to FROM Reaches WHERE airline = 'AA'); 

Figure 10.13: Stratified query for cities reachable by one of tn-o airlines 

Example 10.32 : In Fig. 10.13, the negation represented by EXCEPT in line (11) 
is clearly stratified, since it applies only after the recursion of lines (3) through 
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(9) has been completed. On the other hand, the use of negation in Exam- 
ple 10.28, which we observed was unstratified, must be translated into a use of 
EXCEPT within the definition of mutually recursive relations. The straightfor- 
ward translation of that example into SQL is shown in Fig. 10.14. This query 
asks only for the value of P, although we could have asked for Q, or some 
function of P and Q. 

1) WITH 
2) RECURSIVE P(x) AS 
3) (SELECT * FROM R) 
4) EXCEPT 
5) (SELECT * FROM Q), 

6 )  RECURSIVE Q(x) AS 
7) (SELECT * FROM R) 
8 EXCEPT 
9 > (SELECT * FROM P) 

10) SELECT * FROM P; 

Figure 10.14: Unstratified query, illegal in SQL 

The two uses of EXCEPT, in lines (4) and (8) of Fig. 10.14 are illegal in SQL, 
since in each case the second argument is a relation that is mutually recursive 
with the relation being defined. Thus, these uses of negation are not stratified 
negation and therefore not permitted. In fact, there is no work-around for this 
problem in SQL, nor should there be, since the recursion of Fig. 10.14 does not 
define unique values for relations P and Q. 

10.4.3 Problematic Expressions in Recursive SQL 
\Ye have seen in Example 10.32 that the use of EXCEPT to help define a recursive 
relation can violate SQL's requirement that negation be stratified. Hon-ever, 
there are other unacceptable forms of query that do not use EXCEPT. For in- 
stance, negation of a relation can also be expressed by the use of NOT IN. Thus. 
lines (2) through (5) of Fig. 10.14 could also have been written 

RECURSIVE P(x) AS 
SELECT x FROM R WHERE x NOT IN Q 

This rewriting still leaves the recursion unstratified and therefore illegal. 
On the other hand, simply using NOT in a WHERE clause, such as NOT x=y 

(which could be written x o y  anyway) does not automatically violate the con- 
dition that negation be stratified. What then is the general rule about what 
sorts of SQL queries can be used to define recursive relations in SQL? 
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The principle is that to be a legal SQL recursion, the definition of a recursive 
relation R may only involve the use of a mutually recursive relation S (S can - - 
be R itself) if that use is monotone in S. d use of S is monotone if adding an 
arbitrary tuple to S might add one or more tuples to R, or it might leave R 
unchanged, but it can never cause any tuple to be deleted from R. 

This rule makes sense when one considers the least-fixedpoint computation 
outlined in Section 10.3.2. \Ire start with our recursively defined IDB relations 
empty, and we repeatedly add tuples to them in successive rounds. If adding 
a tuple in one round could cause us to have to delete a tuple at the next 
round, then there is the risk of oscillation, and the fixedpoint computation 
might never converge. In the following examples, we shall see some constructs 
that are nonmonotone and therefore are outlawed in SQL recursion. 

Example  10.33 : Figure 10.14 is an implementation of the Datalog rules for 
the unstratified negation of Example 10 28. There, the rules allo~ved two differ- 
ent minimal fixedpoints. As expected, the definitions of P and Q in Fig. 10.14 
are not monotone. Look at the definition of P in lines (2) through (5) for in- 
stance. P depends on Q. with which it is mutually recursive, but adding a tuple 
to Q can delete a tuple from P. To see why, suppose that R consists of the two 
tuples (a) and (b), and Q consists of the tuples (a) and ( c ) .  Then P = {(b)). 
Holvever, if lve add (b) to Q, then P becomes empty. Addition of a tuple to Q 
has caused the deletion of a tuple from P,  so we have a nonmonotone, illegal 
construct. 

This lack of monotonicity leads directly to an oscillating behavior when we 
try to evaluate the relations P and Q by computing a minimal f i ~ e d ~ o i n t . ~  For 
instance, suppose that R has the two tuples {(a), (b)). Initially. both P and Q 
are empty. Thus. in the first round. lines (3) through (5) of Fig. 10.14 compute 
P to have value {(a), (b)). Lines ( 7 )  through (9) compute Q to have the same 
value, since the old. empty value of P is used at line (9). 

Sow, both R, P,  and Q have the value {(a), (b)}. Thus, on the next tound, 
P and Q are each computed to be empty at  lines (3) through (5) and (7) 
through (9). respectively. On the third round, both would therefore get the 
value {(a), (b)). This process continues forever, with both relations empty on 
el-en rounds and {(a), (b)) on odd rounds. Therefore, we never obtain clear 
values for the two relations P and Q from their "definitions" in Fig. 10.14. 

I Example  10.34 : -1ggregation can also lead to nonmonotonicity, although the 
connection may not be obvious at first. Suppose lye have unary (one-attribute) 
relations P and Q defined by the following two conditions: 

1. P is the union of Q and an EDB relation R. 

'IVhen the recursion is not monotone. then the order in which we exaluate the relations in 
a WITH clause can affect the final answer, although when the recursion is monotone, the result 
is independent of order. In this and the next example, we shall assume that on each round, P 
and Q are evaluated '-in parallel." That is. the old value of each relation is used to  compute 
the other at each round. See the box on '.Using Kew Values in Fixedpoint Calculations." 
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2. Q has one tuple that is the sum of the members of P. 

We can express these conditions by a WITH statement, although this statement 
violates the monotonicity requirement of SQL. The query shown in Fig. 10.15 
asks for the value of P. 

1) WITH 
2) RECURSIVE P ( x )  AS 
3) (SELECT * FROM R) 
4) UNION 
5) (SELECT * FROM Q) , 

6 1 RECURSIVE Q(x) AS 
7) SELECT SUM(x) FROM P 

8) SELECT * FROM P; 

Figure 10.15: Nonrnonotone query involving aggregation, illegal in SQL 

Suppose that R consists of the tuples (12) and (34), and initially P and Q 
are both empty, as they must be at the beginning of the fixedpoint computation. 
Figure 10.16 summarizes the values computed in the first six rounds. Recall 
that we have adopted the strategy that all relations are computed in one round 
from the values at the previous round. Thus, P is computed in the first round 
to be the same as R, and Q is empty, since the old, empty value of P is used 
in line (7). 

At the second round, the union of lines (3) through (3) is the set R = 
{(12), (34)), so that becomes the new value of P. The old jalue of P was the 
same as the new value, so on the second round Q = ((46)). That is, 46 is the 
sum of 12 and 34. 

.At the third round, we get P = {(12), (34), (46)) at  lines (2) through (5). 
Using the old value of P, {(12), (34)), Q is defined by lines (6) and (7) to be 

Figure 10.16: Iterative calculation of fixedpoint for a nonmonotone aggregation 
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Using New Values in Fixedpoint Calculations 

One might wonder why we used the old values of P to compute Q in 
Esamples 10.33 and 10.34, rather than the new values of P. If these 
queries n-ere legal, and we used new values in each round, then the query 
results might depend on the order in which n-e listed the definitions of the 
recursive predicates in the WITH clause. In Example 10.33, P and Q n-ould 
converge to one of the two possible fixedpoints, depending 011 the order of 
evaluation. In Example 10.34, P and Q would still not converge, and in 
fact they would change at every round, rather than every other round. 

((46)) again. 
At the fourth round, P has the same value, {(12), (34),(46)), but Q gets 

the value ((92)): since 12+34+46=92. Notice that Q has lost the tuple (46), 
although it gained the tuple (92). That is, adding the tuple (46) to P has 
caused a tuple (by coincidence the same tuple) to be deleted from Q. That 
behavior is the nonmonotonicity that SQL prohibits in recursive definitions, 
confirming that the query of Fig. 10.15 is illegal. In general, at  the 2ith round, 
P will consist of the tuples (12), (34, and (46i - 46), TI-hile Q consists only of 
the tuple (4%). 

10.4.4 Exercises for Section 10.4 

Exercise 10.4.1 : In Example 10.23 we discussed a relation 

Sequelof (movie, sequel) 

that gil-FS the immediate sequels of a movie. \Ye also defined an IDB relation 
FollowOn whose pairs (x. y) were movies such that y u-as either a sequel of x, 
a sequel of a sequel. or so on. 

a) Write the definition of FollouOn as an SQL recursion. 

b) Write a recursive SQL query that returns the set of pairs (s, y) such that 
movie y is a follo~v-on to movie x. but not a sequel of x. 

c) Ifiite a recursil-e SQL query that returns the set of pairs (x. y) meaning 
that y is a follo\v-on of s, but neither a sequel nor a sequel of a sequel. 

! d)  \Trite a recursil-e SQL query that returns the set of movies .r that have 
at  least two follo~v-ons. Sote that both could be sequels. rather thau one 
being a sequel and the other a sequel of a sequel. 

! e) Write a recursire SQL query that returns the set of pairs (x. y) such that 
nlovie y is a follo~r-on of z but y has at  most one follow-on. 
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Exercise 10.4.2 : In Exercise 10.3.3, we introduced a relation 

that describes how one ODL class is related to other classes. Specifically, this 
relation has tuple (c, d, m) if there is a relation from class c to class d. This 
relation is multivalued if m = 'multi ' and it is single-valued if m = ' single ' . 
We also suggested in Exercise 10.3.3 that it is possible to view Re1 as defining 
a graph ~vhose nodes are classes and in which there is an arc from c to d labeled 
rn if and only if (c, d, m) is a tuple of Rel. Write a recursive SQL query that 
produces the set of pairs (c, d) such that: 

a) There is a path from class c to class d in the graph described above. 

* b) There is a path from c to d along mhich every arc is labeled single.  

*! c) There is a path from c to d along which at least one arc is labeled rnulti. 

d) There is a path from c to d but no path along which ail arcs are labeled 
single. 

! e) There is a path from c to d along which arc labels alternate s ingle  and 
multi. 

f) There are paths from c to d and from d to c along which every arc is 
labeled single. 

10.5 Summary of Chapter 10 

+ Datalog: This form of logic allows us to write queries in the relational 
model. In Datalog, one n-rites rules in which a head predicate or relation 
is defined in terms of a body. consisting of subgoals. 

+ Atoms: The head and subgoals are each atoms, and an atom consists of 
an (optionally negated) predicate applied to some number of arguments. 
Predicates may represent relations or arithmetic comparisons such as <. 

+ IDB and EDB Predicates: Some predicates correspond to stored relations. 
and are ralled EDB (extensional database) predicates or relations. Other 
prcdicatrs, called IDB (intensional database), are defined by the rules. 
EDB predicates may not appear in rule heads. 

+ Safe Rules: \fie generally restrict Datalog rules to be safe, meaning that 
every variable in the rule appears in some nonnegated, relational subgoal 
of the body. Safe rules guarantee that if the EDB relations are finite, then 
the IDB relations will be finite. 
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4 Relational Algebra and Datalog: All queries that can be expressed in 
relational algebra can also be expressed in Datalog. If the rules are safe 
and nonrecursive, then they define exactly the same set of queries as 
relational algebra. 

4 Recursive Datalog: Datalog rules can be recursive, allowing a relation 
to be defined in terms of itself. The meaning of recursive Datalog rules 
without negation is the least fixedpoint: the smallest set of tuples for the 
IDB relations that makes the heads of the rules exactly equal to  what 
their bodies collectively imply. 

fi + Stratified Negation: When a recursion involves negation, the least fixed- 

$ point may not be unique, and in some cases there is no acceptable meaning ..- to the Datalog rules. Therefore, uses of negation inside a recursion must $ be forbidden, leading to a requirement for stratified negation. For rules 

8 of this type, there is one (of perhaps several) least fixedpoint that is the 
generally accepted meaning of the rules. 

+ SQL Recursive Queries: In SQL, one can define temporary relations to be 
used in a manner similar to IDB relations in Datalog. These temporary 
relations may be used to construct answers to queries recursively. 

4 Stratification in SQL: Yegations and aggregations involved in an SQL re- 
cursion iliust be monotone, a generalization of the requirement for strat- 
ified negation in Datalog. Intuitively, a relation may not be defined, 
directly or indirectly. in terms of a negation or aggregation of itself. 

1 10.6 References for Chapter 10 
Codd introduced a form of first-order logic called relational calculus in one of 
his early papers on the relational model [4]. Relational calculus is an espression 
language. much like relational algebra, and is in fact equivalent in expressive 
pomer to relational algebra, a fact proved in [4]. 

Datalog. looking more like logical rules, was inspired by the programming 
language Prolog. Because it allows recursion, it is more expressive than rela- 
tional calculus. The book [GI originated much of the de\-elopn~ent of logic as a 
query language. ~vhile [2] placed the ideas in the context of database systems. 

The idea that the stratified approach gives the correct choice of fixedpoint 
comes from [3]. although using this approach to evaluating Datalog rules xvas 
the independent idea of [I]. [8]. and [lo]. Nore on stratified negation. on the 
relationship betxeen relational algebra, Datalog, and relational calculus; and 
on the e~aluation of Datalog rules: lvith or without negation. can be found in 
PI. 

[7] surveys logic-based query languages. The source of the SQL-99 proposal 
for recursion is [j]. 
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Chapter 

Data Storage 

This chapter begins our study of implementation of database management sys- 
tems. The first issues we must address involve how a DBMS deals with very 
large amounts of data efficiently. The study can be divided into txvo parts: 

1. How does a computer system store and manage very large amounts of 
data? 

2. What representations and data structures best support efficient manipu- 
lations of this data? 

We cover (1) in this chapter and (2) in Chapters 12 through 14. 
This chapter explains the devices used to store massive amounts of informa- 

tion. especially rotating dlsks. We introduce the "memory hierarchy," and see 
how the efficiency of algorithms involving very large amounts of data depends 
on the pattern of data moven~ent between main memory and secondary stor- 
age (tj-pically disks) or even ..tertiary storage" (robotic devices for storing and 
accessing large numbers of optical disks or tape cartridges). .A particular algo- 
rithm - tlvo-phase. multiway merge sort - is used as an important example 
of an algorithm that uses the memory hierarchy effectively. 

We also consider. in Section 11.5, a number of techniques for lowering the 
time it takes to read or ~vrite data from disk. The last two sections discuss 
methods for improl-ing the reliability of disks. Problems addressed include 
intermittent read- or write-errors; and "disk crashes." where data becomes per- 
manently unreadable. 

Our discussion begins ~vith a fanciful examination of \\-hat goes wrong if one 
does not use the special nlethods developed for DBlIS irnplcmentation. 

11.1 The "Megatron 2002" Database System 

If you have used a DBllS? you might imagine that implementing such a system 
is not hard. You might have in mind an implementation such as the recent 
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(fictitious) offering from PIlegatron Systems Inc.: the Megatron 2002 Database 
Management System. This system, which is available under UNIX and other 
operating systems, and which uses the relational approach, supports SQL. 

11.1.1 Megatron 2002 Implementation Details 

To begin, Megatron 2002 uses the UNIX file system t o  store its relations. For 
example, the relation S tudents  (name, i d ,  dept)  would be stored in the file 
/usr/db/Students. The file Students  has one line for each tuple. Values of 
components of a tuple are stored as character strings, separated by the special 
marker character #. For instance, the file /usr/db/Students might look like: 

The database schema is stored in a special file named /usr/db/schema. For 
each relation, the file schema has a line beginning with that  relation name, in 
which attribute names alternate with types. The character # separates elements 
of these lines. For example, the schema file might contain lines such as 

Here the relation Students(name, i d ,  dept)  is described; the types of at- 
tributes name and dep t  are strings while i d  is an integer. Another relation 
with schema Depts (name, o f f  i c e )  is shown as 1~11. 

Example  11.1 : Here is an example of a session using the IIegatron 2002 
DBMS. We are running on a machine called dbhost, and we invoke the DBMS 
by the UNIX-level command megatron2002. 

produces the response 

WELCOME TO MEGATRON 2002! 

We are now talking t o  the Ncgatron 2002 user interface, to  which we can type 
SQL queries in rcsponse to  thc 3Iegatron prompt (&). A # ends a query. Tlms: 

& SELECT * FROM Students  # 

produces as  an answer the table 

name 1 id 1 dept 

Smith 1 123 1 CS 
Johnson 1 522 1 EE 

Llegatron 2002 also allows us to execute a query and store the result in a 
new file, if we end the query with a vertical bar and the name of the file. For 
instance, 

& SELECT * FROM Students  WHERE i d  >= 500 1 HighId # 

creates a new file /usr/db/HighId in which only the line 

appears. 

11.1.2 How Megatron 2002 Executes Queries 

Let us consider a common form of SQL query: 

SELECT * FROM R WHERE <Condition> 

LIegatron 2002 will do the follo~~ing: 

1. Read the file schema t o  deterinine the attributes of relation R and their 
types. 

2. Check that the <Condition> is semantically valid for R. 

3. Display each of the attribute names as  the header of a column, and draw 
a line. 

4. Read the file named R; and for each line: 

(a) Check the condition, and 

(b) Display the line as a tuple, if the condition is true. 

To esecute 

SELECT * FROM R WHERE <condit ion> I T 

Negatron 2002 does the follo~i-ing: 

1. Process query as before, but omit step (3). which generates coluinn head- 
ers and a line separating the headers from the tuples. 

2. Write the result t o  a new file /usr/db/T. 

3. Add to the file /usr/db/schema an entry for T that looks just like the 
entry for R: except that relation nanle T replaces R. That is. the schenia 
for T is the sanie as  the schema for R. 

E x a m p l e  11.2 : Ton-, let us consider a more complicated query, one involving 
a join of our two example relations S tudents  and Depts: 
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SELECT o f f  i c e  
FROM Students ,  Depts 
WHERE Students.name = 'Smith' AND 

Students .dept  = Depts-name # 

This query requires that Megatron 2002 join relations S tudents  and Depts. 
That is, the system must consider in turn each pair of tuples, one from each 
relation, and determine whether: 

a) The tuples represent the same department, and 

b) The name of the student is Smith. 

The algorithm can be described informally as: 

FOR each t u p l e  s i n  Students  DO 
FOR each t u p l e  d i n  Depts DO 

I F  s and d s a t i s f y  t h e  where-condition THEN 
d i s p l a y  t h e  o f f i c e  va lue  from Depts; 

11.1.3 What's Wrong With Megatron 2002? 

It  may come as no surprise that a DBMS is not implemented like our imaginary 
AIegatron 2002. There are a number of ways that the implementation describrd 
here is inadequate for applications in\-olving significant amounts of data or 
multiple users of data. .A partial list of problems follows: 

The tuple layout on disk is inadequate, with no flexibility xhen the 
database is modified. For instance, if we change EE t o  ECON in one 
Students  tuple, the entire file has to be rewritten, as every subsequent 
character is moved two positions down the file. 

Search is very expensive. i r e  always have to read an entire relation. even 
if the query gives us a value or values that  enable us t o  focus on one 
tuple, as in the query of Example 11.2. There, we had to look at  the 
entire Student  relation, even though the only one we n-anted was that for 
student Smith. 

Query-processing is hy "brute force." and ~riucli cleverer ways of perform- 
ing operations like joins are available. For instance. n-c shall see that in a 
query like that of Example 11.2, it is not necessary to  look a t  all pairs of 
tuples. one from each relation, even if the name of one student (Smith) 
\ w e  not specified in the query. 

There is no way for useful data  to be buffered in main memory: all data 
comes off the disk, all the time. 
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There is no concurrency control. Several users can modify a file a t  the 
same time, with unpredictable results. 

There is no reliability; we can lose data  in a crash or lea\.e operations half 
done. 

The remainder of this book will introduce you t o  the technology that addresses 
these questions. We hope that  you enjoy the study. 

11.2 The Memory Hierarchy 

A typical computer system has several different components in which data  may 
be stored. These components have data  capacities ranging over a t  least seven 
orders of magnitude and also have access speeds ranging over seven or more 
orders of magnitude. The cost per byte of these components also varies, but 
Inore slowly. with perhaps three orders of magnitude between the cheapest and 
lnost expensive forms of storage. S o t  surprisingly, the devices with smallest 
capacity also offer the fastest access speed and have the highest cost per byte. 
A schematic of the memory hierarchy is shown in Fig. 11.1. 

DBMS 

I 

Programs, 1 Tertiary 
Main-memory I storage 

DBMS's 

4 

&.lain memory * 
I Cache I 

Figure 11.1: The memory hierarchy 

11.2.1 Cache 

.it the lowest level of the hierarchy is a cache. On-board cache is found on the 
same chip as the microprocessor itself, and additional level-2 cache is found 
on another chip. The data  items (including machine instructions) in the cache 
are copies of certain locations of main memory, the next higher level of the 
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memory hierarchy. Sometimes, the values in the cache are changed, but the 
corresponding change to the main memory is delayed. Nevertheless, each value 
in the cache at any one time corresponds to one place in main memory. The 
unit of transfer between cache and main memory is typically a small number 
of bytes. We may therefore think of the cache as holding individual machine 
instructions, integers, floating-point numbers or short character strings. 

When the machine executes instructions, it looks both for the instructions 
and for the data used by those instructions in the cache. If it doesn't find 
them there, it goes to main-memory and copies the instructions or data into 
the cache. Since the cache can hold only a limited amount of data, it is usually 
necessary to move something out of the cache in order to accommodate the 
new data. If what is moved out of cache has not changed since it was copied 
to cache, then nothing needs to be done. However, if the data being expelled 
from the cache has been modified, then the new value must be copied into its 
proper location in main memory. 

When data in the cache is modified, a simple computer with a single pro- 
cessor has no need to update immediately the corresponding location in main 
memory. However, in a multiprocessor system that allows several processors to 
access the same main memory and keep their own private caches, it is often nec- 
essary for cache updates to write through, that is, to change the corresponding 
place in main memory immediately. 

Typical caches in 2001 have capacities up to a megabyte. Data can be 
read or written between the cache and processor at the speed of the processor 
instructions, commonly a few nanoseconds (a nanosecond is seconds). On 
the other hand, moving an instruction or data item between cache and main 
memory takes much longer, perhaps 100 nanoseconds. 

11.2.2 Main Memory 

In the center of the action is the computer's main memory. \ e  may think of 
everything that happens in the computer - instruction executions and data 
manipulations - as working on information that is resident in main memory 
(although in practice, it is normal for what is used to migrate to the cache, as 
Ke discussed in Section 11.2.1). 

In 2001, typical machines are configured with around 100 megabytes (lo8 
bytes) of main memory. However. machines with much larger main memories. 
10 gigabytes or more (loT0 bytes) can be found. 

Main memories are random access, meaning that one can obtain any byte in 
the same amount of time.' Typical times to access data from main inernories 
are in the 10-100 nanosecond range to seconds). 

' ~ l t h o u ~ h  some modern parallel computers have a main memory shared by many proces- 
sors in a way that makes the access time of certain parts of memory different, by perhaps a 
factor of 3, for different processors. 
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Computer Quantities are Powers of 2 

It is conventional to talk of sizes or capacities of computer components 
as if they were powers of 10: megabytes, gigabytes, and so on. In reality, 
since it is most efficient to design components such as memory chips to 
hold a number of bits that is a power of 2, all these numbers are really 
shorthands for nearby powers of 2. Since 2'' = 1024 is very close to a 
thousand, we often maintain the fiction that 21° = 1000, and talk about 
2'' with the prefix LLkilo," 220 as 230 as "giga," 240 as "tera," and 
2j0 as "peta," even though these prefixes in scientific parlance refer to lo3, 
lo0, lo9, 1012 and 1015, respectively. The discrepancy grows as we talk of 
larger numbers. A "gigabyte" is really 1.074 x lo9 bytes. 

We use the standard abbreviations for these numbers: K, M, G, T, and 
P for kilo, mega, giga, tera, and peta, respectively. Thus, 16Gb is sixteen 
gigabytes, or strictly speaking 234 bytes. Since we sometimes want to talk 
about numbers that are the conventional pou-ers of 10, we shall reserve for 
these the traditional numbers, without the prefixes "kilo," "mega," and 
so on. For example, "one million bytes" is 1,000,000 bytes, while "one 
megabyte" is 1,048,576 bytes. 

&?hen n-e write programs. the data we use - variables of the program, files 
read. and so on - occupies a virtual memory address space. Instructions of 
the program likewise occupy an address space of their own. Many machines 
use a 32-bit address space; that is, there are 232, or about 4 billion, different 
addresses. Since each byte needs its own address. we can think of a typical 
virtual memory as 4 gigabytes. 

Since a virtual memory space is much bigger than the usual main memory, 
most of the content of a fully occupied rirtual memory is actually stored on 
the disk. \Ye discuss the typical operation of a disk in Section 11.3, but for the 
moment we need only to be aware that the disk is divided logically into blocks. 
The block size on common disks is in the range 4I< to 56K bytes, i.e., 4 to 56 
kilobytes. Virtual memory is moved between disk and main memory in entire 
blocks. which are usually called pages in main memory. The machine hardware 
and the operating system allow pages of rirtual memory to be brought into 
any part of the main memory and to have each byte of that block referred to 
properly b~ its virtual memory address. 

The path in Fig. 11.1 involving virtual memory represents the treatment 
of conventional programs and applications. It does not represent the typical 
way data in a database is managed. Ho~vever. there is increasing interest in 
main-memory database systems, which do indeed manage their data through 
virtual memory, relying on the operating system to bring needed data into main 
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Moore's Law 

Gordon Moore observed many years ago that integrated circuits were im- 
proving in many ways, following an exponential curve that doubles about 
every 18 months. Some of these parameters that follow "Moore's law'' are: 

1. The speed of processors, i.e., the number of instructions executed 
per second and the ratio of the speed to cost of a processor. 

I 2. The cost of main memory per bit and the number of bits that can 
be put on one chip. 

1 3. The cost of disk per bit and the capacity of the largest disks. I 
On the other hand, there are some other important parameters that 

do not follow hloore's law; they grow slowly if at all. Among these slowly 
growing parameters are the speed of accessing data in main memory, or the 
speed at  which disks rotate. Because they grow slowly, "latency7' becomes 
progressively larger. That is, the time to move data between levels of the 
memory hierarchy appears to take progressively longer compared with the 
time to compute. Thus, in future years, we expect that main memory will 
appear much further away from the processor than cache, and data on disk 
will appear even further away from the processor. Indeed, these effects of 
apparent "distance" are already quite severe in 2001. 

memory through the paging mechanism. hlain-memory database systems, like 
most applications, are most useful when the data is small enough to remain 
in main memory without being swapped out by the operating system. If a 
machine has a 32-bit address space, then main-memory database systems are 
appropriate for applications that need to keep no more than 4 gigabytes of data 
in memory at once (or less if the machine's actual main memory is smaller than 
232 bytes). That amount of space is sufficient for many applications, but not 
for large, ambitious applications of DBLIS's. 

Thus, large-scale database systems will manage their data directly on the 
disk. These systems are limited in size only by the amount of data that can 
be stored on all the disks and other storage devices available to the computer 
system. We shall introduce this mode of operation nest. 

11.2.4 Secondary Storage 

Essentially every computer has some sort of secondary storage, which is a form 
of storage that is both significantly slower and significantly more capacious than 
main memory, yet is essentially random-access, with relatively small differences 
among the times required to access different data items (these differences are 
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discussed in Section 11.3). Modern computer systems use some form of disk as 
secondary memory. Usually this disk is magnetic, although sometimes optical 
or magneto-optical disks are used. The latter types are cheaper, but may not 
support writing of data on the disk easily or at all; thus they tend to be used 
only for archival data that doesn't change. 

We observe from Fig. 11.1 that the disk is considered the support for both 
virtual memory and a file system. That is, while some disk blocks will be used 
to hold pages of an application program's virtual memory, other disk blocks are 
used to hold (parts of) files. Files are moved between disk and main memory 
in blocks, under the control of the operating system or the database system. 
Moving a block from disk to main memory is a disk read; moving the block 
from main memory to the disk is a disk write. We shall refer to either as a 
disk I/O. Certain parts of main memory are used to buffer files, that is, to hold 
block-sized pieces of these files. 

For example, when you open a file for reading, the operating system might 
reserve a 4K block of main memory as a buffer for this file, assuming disk blocks 
are 4K bytes. Initially, the first block of the file is copied into the buffer. When 
the application program has consumed those 4K bytes of the file, the next block 
of the file is brought into the buffer, replacing the old contents. This process. 
illustrated in Fig. 11.2. continues until either the entire file is read or the file is 
closed. 

Figure 11.2: A file and its main-memory buffer 

A DBMS will manage disk blocks itself, rather than relying on the operating 
system's file manager to move blocks between main and secondary memory. 
However: the issues in management are essentially the same whether we are 
looking at a file system or a DBlIS. It takes roughly 10-30 milliseconds (.01 to 
.03 seconds) to read or write a block on disk. In that time, a typical machine 
can execute several million instructions. As a result, it is common for the time 
to read or write a disk block to dominate the time it takes to do whatever must 
be done ~vith the contents of the block. Therefore it is vital that. whenever 
possible. a disk block containing data lye need to access should already be in 
a main-memory buffer. Then. 1-e do not hare to pay the cost of a disk I/O. 
l i e  shall return to this problem in Sections 11.4 and 11.5. where we see so~ne 
examples of how to deal with the high cost of moving data between levels in 
the memory hierarchy. 

In 2001, single disk units may have capacities of 100 gigabytes or more. 
JIoreover, machines can use several disk units, so hundreds of gigabytes of 
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secondary storage for a single machine is realistic. Thus, secondary memory is 
on the order of lo5 times slower but at  least 100 times more capacious thall 
typical main memory. Secondary memory is also significantly cheaper than 
main memory. In 2001, prices for magnetic disk units are 1 to 2 cents per 
megabyte, while the cost of main memory is 1 to 2 dollars per megabyte. 

11.2.5 Tertiary Storage 

.As capacious as a collection of disk units can be, there are databases much 
larger than what can be stored on the disk(s) of a single machine, or even 
of a substantial collection of machines. For example, retail chains accumulate 
many terabytes of data about their sales, while satellites return petabytes of 
information per year. 

To serve such needs, ter t iay  storage devices have been developed to hold 
data volumes measured in terabytes. Tertiary storage is characterized by sig- 
nificantly higher readlwrite times than secondary storage, but also by much 
larger capacities and smaller cost per byte than is available from magnetic 
disks. While main memory offers uniform access time for any datum, and disk 
offers an access time that does not differ by more than a small factor for access- 
ing any datum, tertiary storage devices generally offer access times that vary 
widely, depending on how close to a readlwrite point the datum is. Here are 
the principal kinds of tertiary storage devices: 

1. Ad-lzoc Tape Storage. The simplest - and in past pa r s  the only - 
approach to tertiary storage is to put data on tape reels or cassettes and 
to store the cassettes in racks. When some information from the tertiary 
store is wanted, a human operator locates and mounts the tape on a 
reader. The information is located by winding the tape to the correct 
position, and the information is copied from tape to secondary storage 
or to main memory. To write into tertiary storage, the correct tape and 
point on the tape is located, and the copy proceeds from disk to tape. 

2. Optical-Disk Juke Boxes. A "juke box" consists of racks of CD-ROlI's 
(CD = "compact disk"; ROlI = "read-only memory." These are optical 
disks of the type used commonly to distribute software). Bits on an optical 
disk are represented by small areas of black or white, so bits can be read 
by shining a laser on the spot and seeing whether the light is reflected. .I 
robotic arm that is part of the jukebox extracts any one CD-ROM and 
move it to a reader. The CD can then have its contents, or part thereof. 
read into secondary memory. 

3. Tape Silos A ..silo" is a room-sized device that holds racks of tapes. The 
tapes are accessed by robotic arms that can bring them to one of several 
tape readers. The silo is thus an automated version of the earlier ad- 
hoc storage of tapes. Since it uses computer control of inventory and 
automates the tape-retrieval process, it is at  least an order of magnitude 
faster than human-powered systems. 

11.2. THE AIELIIORY HIERARCHY 513 

The capacity of a tape cassette in 2001 is as high as 50 gigabytes. Tape 
silos can therefore hold many terabytes. CD's have a standard of about 213 of 
a gigabyte, with the next-generation standard of about 2.5 gigabytes (DVD's 
or digital uersatzle disks) becoming prevalent. CD-ROM jukeboxes in the mul- 
titerabyte range are also available. 

The time taken to access data from a tertiary storage device ranges from 
a few seconds to a few minutes. .2 robotic arm in a jukebox or silo can find 
the desired CD-ROM or cassette in several seconds, while human operators 
probably require minutes to locate and retrieve tapes. Once loaded in the 
reader, any part of the CD can be accessed in a fraction of a second, while it 
can take many additional seconds to move the correct portion of a tape under 
the read-head of the tape reader. 

In summary, tertiary storage access can be about 1000 times slower than 
secondary-memory access (milliseconds versus seconds). However, single tert- 
iary-storage units can be 1000 times more capacious than secondary storage 
devices (gigabytes versus terabytes). Figure 11.3 shows, on a log-log scale, the 
relationship between access times and capacities for the four levels of mem- 
ory hierarchy that rve have studied. We include "Zip" and "floppy" disks 
("diskettes"), ~vhich are common storage devices, although not typical of sec- 
ondary storage used for database systems. The horizontal axis measures seconds 
in exponents of 10: e.g., -3 means seconds, or one millisecond. The verti- 
cal axis measures bytes, also in exponents of 10: e.g., 8 means 100 megabytes. 

0 Floppy disk 0 cache 

Figure 11.3: lccess time versus capacity for various levels of the memory hier- 
archy 

11.2.6 Volatile and Nonvolatile Storage 

-An additional distinction among storage devices is whether they are volatile or 
nonz;olatile. .A volatile device "forgets" \%-hat is stored in it when the power goes 
off. .A nonvolatile device, on the other hand, is expected to keep its contents 
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intact even for long periods when the device is turned off or there is a power 
failure. The question of volatility is important, because one of the characteristic 
capabilities of a DBhIS is the ability to retain its data even in the presence of 
errors such as power failures. 

Magnetic materials will hold their magnetism in the absence of power, so 
devices such as magnetic disks and tapes are nonvolatile. Likewise, optical 
devices such as CD's hold the black or white dots with which they are imprinted, 
even in the absence of power. Indeed, for many of these devices it is impossiblc 
to change what is written on their surface by any means. Thus, essentially all 
secondary and tertiary storage devices are nonvolatile. 

On the other hand, main memory is generally volatile. It happens that a 
memory chip can be designed with simpler circuits if the value of the bit is 
allowed to degrade over the course of a minute or so; the simplicity lowers the 
cost per bit of the chip. What actually happens is that the electric charge that 
represents a bit drains slowly out of the region devoted to that bit. As a result, 
a so-called dynamic random-access memory, or DRAM, chip needs to have its 
entire contents read and rewritten periodically. If the power is off, then this 
refresh does not occur, and the chip will quickly lose what is stored. 

A database system that runs on a machine with volatile main memory must 
back up every change on disk before the change can be considered part of the 
database, or else we risk losing information in a power failure. As a consequence. 
qucry and database modifications must involve a large number of disk TI-rites. 
some of which could be avoided if we didn't have the obligation to preserve all 
information at all times. An alternative is to use a form of main memory that is 
not volatile. Sew types of memory chips, called flash memory; are nonvolatile 
and are becoming economical. An alternative is to build a so-called RAM dzsk 
from conventional memory chips by providing a battery backup to the main 
power supply. 

11.2.7 Exercises for Section 11.2 

Exercise 11.2.1 : Suppose that in 2001 the typical computer has a processor 
that runs at 1500 megahertz, has a disk of 40 gigabytes, and a, main menlory 
of 100 megabytes. Assume that Xloore's law (these factors doubIe every 18 
months) continues to hold into the indefinite future. 

* a) \Yhen will terabyte disks be common? 

b) When will gigabyte Inail1 memories be comnion? 

C)  When will terahcrtz processors be common? 

d) What will be a typical configuration (processor, disk. memory) in the year 
2008? 

! Exercise 11.2.2: Commander Data, the android from the 24th century on 
Star Trek: The Next Generation once proudly announced that his processor 

runs at  'L12 teraops." While an operation and a cycle may not be the same, let 
us suppose they are, and that hloore's law continues to hold for the next 300 
years. If so, what would Data's true processor speed be? 

11.3 Disks 

The use of secondary storage is one of the important characteristics of a DBMS, 
and secondary storage is almost exclusively based on magnetic disks. Thus, to 
mot.ivate many of the ideas used in DBhlS implementation, we must examine 
the operation of disks in detail. 

11.3.1 Mechanics of Disks 

The two principal moving pieces of a disk drive are shown in Fig. 11.4; they 
are a disk assembly and a head assembly. The disk assembly consists of one 
or more circular platters that rotate around a central spindle. The upper and 
lower surfaces of the platters are covered with a thin layer of magnetic material, 
on which bits are stored. A 0 is represented by orienting the magnetism of a 
small area in one direction and a 1 by orienting the magnetism in the opposite 
direction. -1 common diameter for disk platters is 3.5 inches, although disks 
with diameters from an inch to several feet have been built. 

disk . 

platter 
surfaces 

Figure 11.4: X typical disk 

The locations where bits are stored are organized into tracks, which are 
concentric circles on a single platter. Tracks occupy most of a surface. escept 
for the region closest to the spindle. as can be seen in the top view of Fig. 11.5. 
-1 track consists of many points, each of which represents a single bit by the 
direction of its magnetism. 
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Tracks are organized into sectors, which are segments of the circle separated 
by gaps that are not magnetized in either direction.' The sector is an indivisible 
unit, as far as reading and writing the disk is concerned. It is also indivisible 
as far as errors are concerned. Should a portion of the magnetic layer be 
corrupted in some way, so that it cannot store information, then the entire 
sector containing this portion cannot be used. Gaps often represent about 10% 
of the total track and are used to help identify the beginnings of sectors. As we 
mentioned in Section 11.2.3, blocks are logical units of data that are transferred 
between disk and main memory; blocks consist of one or more sectors. 

also responsible for knowing when the rotating spindle has reached the 
point where the desired sector is beginning to move under the head. 

3. Transferring the bits read from the desired sector to the computer's main 
memory or transferring the bits to be written from main memory to the 
intended sector. 

Figure 11.6 shows a simple, single-processor computer. The processor com- 
municates via a data bus with the main memory and the disk controller. A 
disk controller can control several disks; n-e show three disks in this computer. 

Figure 11.5: Top view of a disk surface 

The second movable piece shown in Fig. 11.4, the head assembly, holds the 
disk heads. For each surface there is one head. riding extremely close to rhe 
surface but never touching it (or else a "head crash" occurs and the disk is 
destroyed, along with everything stored thereon). -A head reads the magnetism 
passing under it, and can also alter the magnetism to write information on the 
disk. The heads are each attached to an arm, and the arms for all the surfaces 
move in and out together, being part of the rigid head assembly. 

11.3.2 The Disk Controller 

One or more disk drives are co~itrolled by a disk controller, which is a small 
processor capable of: 

1. Controlling the mechanical actuator that moves the head assembly. to 
position the hcads at  a particular radius. .It this radius, one track from 
each surface will be undrr the head for that surface and will tllcrefore be 
readable and ~vritable. The tracks that are under the hcads at  the same 
time are said to for111 a cylinder. 

2. Selecting a surface from which to read or write, and selecting a sector 
from the track on that surface that is under the head. The controller is 

2\\'e show each track with the same number of sectors in Fig. 11.5. However, as we shall 
discuss in Example 11.3. the number of sectors per track may vary, with the outer tracks 
having more sectors than inner tracks. 

Processor 

l I L I ! -  Bus - 
Disks 

Figure 11.6: Sche~natic of a simple computer system 

11.3.3 Disk Storage Characteristics 

Disk technology is in flux, as the space needed to store a bit shrinks rapidly. In 
2001, some of the typical measures associated with disks are: 

Rotation Speed of the Disk Assembly. 5400 RP%i, i.e., one rotation every 
11 milliseconds, is common, although higher and lower speeds are found. 

Number of Platters per Unit. A typical disk drive has about five platters 
and therefore ten surfaces. However. the common diskette ("floppy" disk) 
and '.Zip.' disk have a single platter with two surfaces. and disk drives 
with up to 30 surfaces are found. 

Number of Tracks per Sur-face. I surface may have as many as 20.000 
tracks, although diskettes hal-e a much smaller number: see Esample 11.4. 

Number of Bytes per Track. Common disk drives may base almost a 
million bytes per track, although diskettes' tracks hold much less. -4s 
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Sectors Versus Blocks 

Reinember that a "sector" is a physical unit of the disk, while a "block" is 
a logical unit, a creation of whatever software system - operating system 
or DBMS, for example - is using the disk. As we mentioned, it is typical 
today for blocks to be at  least as large as sectors and to consist of one or 
more sectors. However, there is no reason why a block cannot be a fraction 
of a sector, with several blocks packed into one sector. In fact, some older 
systems did use this strategy. 

mentioned, tracks are divided into sectors. Figure 11.5 shows 12 sectors 
per track, but in fact as many as 500 sectors per track are found in modern 
disks. Sectors, in turn, may hold several thousand bytes. 

Example 11.3 : The Megatron 747disk has the following characteristics, which 
are typical of a large, vintage-2001 disk dr i~e .  

There are eight platters providing sixteen surfaces. 

There are 21J, or 16,384 tracks per surface. 

There are (on average) 27 = 128 sectors per track. 

There are 2'" 4096 bytes per sector. 

The capacity of the disk is the product of 16 surfaces, times 16,384 tracks, 
times 128 sectors, times 4096 bytes, or 237 bytes. The llegatron 747 is thus 
a 128-gigabyte disk. d single track holds 128 x 4096 bytes, or 512K bytes. If 
blocks are 214, or 16,384 bytes, then one block uses 4 consecutive sectors, and 
there are 12814 = 32 blocks on a track. 

The llegatron 747 has surfaces of 3.5-inch diameter. The tracks occupy the 
outer inch of the surfaces, and the inner 0.7.5 inch is unoccupied. The density of 
bits in the radial direction is thus 16,384 per inch, because that is the number 
of tracks. , 

The density of bits around the tracks is far greater. Let us suppose at first 
that each track has the average number of sectors. 128. Suppose that the gaps 
occupy 10% of the tracks. so the 512K h ~ t c ~ s  per track (or 411 bits) occupy 
90% of the track. The length of the outermost track is 3 . 5 ~  or about 11 inches. 
Sinety percent of this distance, or about 9.9 inches. holds 4 megabits. Hence 
the density of bits i11 the occupied portio~i of the track is about 420,000 bits 
per inch. 

On the other hand, the innermost track has a diameter of only 1.5 inches 
and would store the same 4 megabits in 0.9 x 1.5 x ;i or about 4.2 inches. The 
bit density of the inner tracks is thus around one megabit per inch. 

Since the densities of inner and outer tracks would vary too much if the 
number of sectors and bits were kept uniform, the Megatron 747, like other 
modern disks, stores more sectors on the outer tracks than on inner tracks. For 
example. we could store 128 sectors per track on the middle third, but only 96 
sectors on the inner third and 160 sectors on the outer third of the tracks. If we 
did, then the density would range from 530,000 bits to 742,000 bits per inch, 
a t  the outermost and innermost tracks, respectively. 

Example 11.4 : At the small end of the range of disks is the standard 3.5-inch 
diskette. I t  has two surfaces with 40 tracks each, for a total of 80 tracks. The 
capacity of this disk, formatted in either the MAC or PC formats, is about 1.5 
megabytes of data, or 150,000 bits (18,750 bytes) per track. About one quarter 
of the available space is taken up by gaps and other disk overhead in either 
format. 

F 11.3.4 Disk Access Characteristics 

Our study of DBMS's requires us to understand not only the way data is stored 
on disks but the way it is manipulated. Since all computation takes place in 
main memory or cache, the only issue as far as the disk is concerned is how 
to move blocks of data between disk and main memory. As we mentioned in 
Section 11.3.2, blocks (or the consecutive sectors that comprise the blocks) are 
read or written when: 

a) The heads are positioned at the cylinder containing the track on which 
the block is located, and 

b) The sectors containing the block move under the disk head as the entire 
disk assembly rotates. 

The time taken between the moment at  which the command to read a block 
is issued and the time that the contents of the block appear in main memory is 
called the latency of the disk. It can be broken into the following components: 

1. The time taken by the processor and disk controller to process the request, 
usually a fraction of a millisecond, which we shall neglect. \Ire shall also 
neglect time due to contention for the disk controller (some other process 
might be reading or writing the disk at the same time) and other delays . 
due to contention. such as for the bus. 

2. Seek t ine:  the time to position the head assembly at the proper cylinder. 
Seek time can be 0 if the heads happen already to be at the proper cylin- 
der. If not, then the heads require some minimum time to start moving 
and to stop again, plus additional time that is roughly proportional to 
the distance traveled. Typical minimum times, the time to start, move 
by one track, and stop, are a few milliseconds, while maximum times to 
travel across all tracks are in the 10 to 40 millisecond range. Figure 11.7 
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suggests how seek time varies with distance. I t  shows seek time begin- 
ning a t  some value x for a distance of one cylinder and suggests that the 
maximum seek time is in the range 3 s  to 202. The average seek time is 
often used as a way to characterize the speed of the disk. We discuss how 
to calculate this average in Example 11.5. 

in range 
3r - 2 O x  

Cylinders traveled 

Figure 11.7: Seek time varies with distance traveled 

3. Rotational latency: the time for the disk to rotate so the first of the sectors 
containing the block reaches the head. X typical disk rotates completely 
about once every 10 milliseconds. On the average, the desired sector will 
be about half way around the circle when the heads arrive at  its cylinder, 
so the average rotational latency is around 5 milliseconds. Figure 11.8 
illustrates the problem of rotational latency. 

Example 11.5: Let us examine the time it takes to read a 16,384-byte block 
from the Sfegatron 747 disk. First, we need to know some timing properties of 
the disk: 

The disk rotates at  7200 rpm; i.e., it makes one rotation in 8.33 millisec- 
onds. 

To move the head assembly between cylinders takes one millisecond to 
start and stop, plus one additional millisecond for every 1000 cylinders 
traveled. Thus, the heads move one track in 1.001 milliseconds and move 
from the innermost to the outermost track, a distance of 16,383 tracks, in 
about 17.38 milliseconds. 

Let us calculate the minimum, maximum, and average times to read that 
16,384-byte block. The minimum time, since we are neglecting overhead and 
contention due to use of the controller, is just the transfer time. That is, the 
block might be on a track over which the head is positioned already, and the 
first sector of the block might be about to pass under the head. 

Since there are 4096 bytes per sector on the Megatron 747 (see Example 11.3 
for the physical specifications of the disk), the block occupies four sectors. The 
heads must therefore pass over four sectors and the three gaps between them. 
Recall that the gaps represent 10% of the circle and sectors the remaining 90%. 
There are 128 gaps and 128 sectors around the circle. Since the gaps together 
cover 36 degrees of arc and sectors the remaining 324 degrees, the total degrees 
of arc covered by 3 gaps and 1 sectors is: 

Head 
here 

\ \ \ Rotation / / 

we want 

Figure 11.8: The cause of rotational latellcy 

4. Transfer time: the time it takes the sectors of the block and any gaps 
between them to rotate past the head. If a disk has 250,000 bytes per 
track and rotates once in 10 milliseconds, we can read from the disk at 
25 megabytes per second. The transfer time for a 16.384-byte block is 
around two-thirds of a millisecond. 

degrees. The transfer time is thus (10.97/360) x 0.00833 = .000253 seconds, or 
about a quarter of a millisecond. That is, 10.97/360 is the fraction of a rotation 
needed to read the entire block, and .00833 seconds is the amount of time for a 
360-degree rotation. 

Sow, let us look at  the maximum possible time to read the block. In the 
worst case, the heads are positioned at the innermost cylinder, and the block 
we want to read is on the outermost cylinder (or vice versa). Thus, the first 
thing the controller must do is move the heads. -1s we observed above, the time 
it takes to more the Slegatron 747 heads across a11 cylinders is about 17.38 
milliseconds. This quantity is the seek time for the read. 

The worst thing that can happen when the heads arrive at  the correct cylin- 
der is that the beginning of the desired block has just passed under the head. 
=\ssuming n-e must read the block starting at the beginning, we have to wait 
essentially a full rotation. or 8.33 milliseconds for the beginning of the block 
to reach the head again. Once that happens, we have only to wait an amount 
equal to the transfer time, 0.25 milliseconds, to read the entire block. Thus, 
the worst-case latency is 17.38 + 8.33 + 0.25 = 25.96 milliseconds. 
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Trends in Disk-Controller Architecture 

As the cost of digital hardware drops precipitously, disk controllers are be- 
ginning to look more like computers of their own, with general-purpose pro- 
cessors and substantial random-access memory. Among the many things 
that might be done with such additional hardware, disk controllers are 
beginning to  read and store in their local memory entire tracks of a disk, 
even if only one block from that track is requested. This capability greatly 
reduces the average access time for blocks, as long as we need all or most 
of the blocks on a single track. Section 11.5.1 discusses some of the appli- 
cations of full-track or full-cylinder reads and writes. 

Last let us compute the average time to read a block. Two of the components 
of the latency are easy to compute: the transfer time is always 0.25 milliseconds, 
and the average rotational latency is the time to rotate the disk half way around, 
or 4.17 milliseconds. We might suppose that the average seek time is just the 
time to move across half the tracks. However, that is not quite right, since 
typically, the heads are initially somewhere near the middle and therefore will 
have to move less than half the distance, on average, to the desired cylinder. 

-4 more detailed estimate of the average number of tracks the head must 
move is obtained as follows. Assume the heads are initially at any of the 16,384 
cylinders with equal probability. If at  cylinder 1 or cylinder 16,384: then the 
average number of tracks to move is (1 + 2 + - .  . + 16383)/16384, or about 8192 
tracks. At the middle cylinder 8192, the head is equally likely to move in or 
out, and either way, it will move on average about a quarter of the tracks, 
or 4096 tracks. A bit of calculation shows that as the initial head position 
varies from cylinder 1 to cylinder 8192, the average distance the head needs 
to move decreases quadratically from 8192 to 4096. Likewise, as the initial 
position varies from 8192 up to 16,384, the average distance to travel increases 
quadratically back up to 8192, as suggested in Fig. 11.9. 

If we integrate the quantity in Fig. 11.9 over all initial positions, we find 
that the average distance traveled is one third of the way across the disk, or 
5461 cylinders. That is. the average seek time will be one millisecond, plus 
the time to travel 5461 cylinders, or 1 + 5461/1000 = 6.46  millisecond^.^ Our 
estimate of the average latency is thus 6.46 + 4.17 + 0.25 = 10.88 milliseconds: 
the three terms represent average seek time, average rotational latency. and 
transfer time, respectively. 

3Sote that this calculation ignores the possibility that we do not have to move the head 
at all, but that case occurs only once in 16,384 times assuming random block requests. On 
the other hand, random block requests is not necessarily a good assumption, as we shall see 
in Section 11.5. 

11.3. DISKS 

Average : 
0 1 
0 8192 16,384 

Starting track 

Figure 11.9: Average travel distance as a function of initial head position 

11.3.5 Writing Blocks 

The process of writinga block is, in its simplest form, quite analogous to reading 
a block. The disk heads are positioned a t  the proper cylinder, and we wait for 
the proper sector(s) to rotate under the head. But, instead of reading the data 
under the head we use the head to write new data. The minimum, maximum 
and average times to write would thus be exactly the same as for reading. 

A complication occurs if we want to verify that the block was written cor- 
rectly. If so, then we have to wait for an additional rotation and read each 
sector back to check that xi-hat Ivas intended to be written is actually stored 
there. .% simple ~i-ay to verify correct writing by using checksums is discussed 
in Section 11.6.2. 

11.3.6 Modifying Blocks 

It is not possible to modify a block on disk directly. Rather, even if we wish to 
modify only a few bytes (e.g., a component of one of the tuples stored in the 
block): we must do the follo~ving: 

1. Read the block into main memory. 

2. Make whatever changes to the block are desired in the main-memory copy 
of the block. 

3. n'rite'the new contents of the block back onto the disk. 

4. If appropriate: verify that the write Ti-as done correctly. 

The total time for this block modification is thus the sum of time it takes 
to read. the time to perform the update in main memory (which is usually 
negligible compared to the time to read or write to disk), the time to write. 
and, if verification is performed. another rotation time of the disk." 

+\Ye might wonder whether the time to write the block we just read is the same as the 
time to perform a "random" xvrite of a block. If the heads stay where they are, then we know 
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11.3.7 Exercises for Section 11.3 

Exercise 11.3.1 : The Megatron 777 disk has the following characteristics: 

1. There are ten surfaces, with 10,000 tracks each. 

2. Tracks hold an average of 1000 sectors of 512 bytes each. 

3. 20% of each track is used for gaps. 

4. The disk rotates at  10,000 rpm. 

5. The time it takes the head to move n tracks is 1 + 0.001n milliseconds. 

Answer the following questions about the Megatron 777. 

* a) What is the capacity of the disk? 

b) If all tracks hold the same number of sectors, what is the density of bits 
in the sectors of a track? 

* c) What is the maximum seek time? 

* d) What is the maximum rotational latency? 

e) If a block is 16,384 bytes (i.e., 32 sectors), what is the transfer time of a 
block? 

! f) What is the average seek time? 

g) What is the average rotational latency? 

! Exercise 11.3.2: Suppose the Megatron 747 disk head is at  track 2048, i.e., 
l /8 of the way across the tracks. Suppose that the next request is for a block 
on a random track. Calculate the average time to read this block. 

*!! Exercise 11.3.3 : At the end of Example 11.5 we computed the average dis- 
tance that the head travels moving from one randomly chosen track to another 
randomly chosen track, and found that this distance is 1/3 of the tracks. Sup- 
pose. however, that the number of sectors per track were proportional to the 
length (or radius) of the track, so the bit density is the same for ail tracks. 
Suppose also that we need to move the head from a random sector to another 
random sector. Since the sectors tend to congregate at  the outside of the disk. 
xe might expect that the average head move would be less than 1/3 of the way 
across the tracks. Assuming. as in the hlegatron 7-17, that tracks occupy radii 
from 0.75 inches to 1.75 inches, calculate the average number of tracks the head 
travels when moving between two random sectors. 

rrv have to wait a full rotation to write, but the seek time is zero. Hmvever, since the disk 
controller does not know when the application will finish writing the new value of the block, 
the heads may well have moved to  another track to perform some other disk 110 before the 
request to write the new value of the block is made. 

11.4. USING SECONDARY STORAGE EFFECTIVELY 

!! Exercise 11.3.4 : At the end of Example 11.3 we suggested that the maximum 
density of tracks could be reduced if we divided the tracks into three regions, 
with different numbers of sectors in each region. If the divisions between the 
three regions could be placed at  any radius, and the number of sectors in each 
region could vary, subject only to the constraint that the total number of bytes 
on the 16,384 tracks of one surface be 8 gigabytes, what choice for the five 
parameters (radii of the two divisions between regions and the numbers of 
sectors per track in each of the three regions) minimizes the maximum density 
of any track:' 

11.4 Using Secondary Storage Effectively 

In most studies of algorithms. one assumes that the data is in main memory, 
and access to any item of data takes as much time as any other. This model 
of computation is often called the ''FLA\,f model" or random-access model of 
computation. However, when impleme~~ting a DBMS, one must assume that 
the data does not fit into main memory. One must therefore take into account 
the use of secondary, and perhaps even tertiary storage in designing efficient 
algorithms. The best algorithms for processing very large amounts of data thus 
often differ from the best main-memory algorithms for the same problem. 

In this section, we shall consider primarily the interaction betn-een main 
and secondary memory. In particular, there is a great advantage in choosing an 
algorithm that uses few disk accesses, even if the algorithm is not very efficient 
when viewed as a main-menlor? algorithm. X similar principle applies at each 
level of the memory hierarchy. Even a main-memory algorithm can sometimes 
be improved if we remember the size of the cache and design our algorithm so 
that data moved to cache tends to be used many times. Likewise, an algorithm 
using tertiary storage needs to take into account the I-olume of data moved 
between tertiary and secondary memory, and it is wise to minimize this quantity 
even a t  the expense of more work at the lolver levels of the hierarchy. 

11.4.1 The I/O Model of Computation 

Let us imagine a simple computer running a DBMS and trying to serve a number 
of users who are accessing the database in various ways: queries and database 
modifications. For the moment. assume our computer has one processor, one 
disk controller. and one disk. The database itself is much too large to fit in 
main memory. Key parts of the database may be buffered in main memory, but 
generally. each piece of the database that one of the users accesses xi11 have to 
be retrieved initially from disk. 

Since there are many users. and each user issues disk-1/0 requests frequently, 
the disk controller often will have a queue of requests, which n-e assume it 
satisfies on a first-come-first-served basis. Thus, each request for a given user 
will appear random (i.e.. the disk head will be in a random position before the 
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request), even if this user is reading blocks belonging to a single relation, and 
that relation is stored on a single cylinder of the disk. Later in this section we 
shall discuss how to improve the performance of the system in various ways. 
However, in all that follows, the following rule, which defines the I/O model of 
computation, is assumed: 

Dominance of 1/0 cost: If a block needs to be moved between 
disk and main memory, then the time taken to perform the read 
or write is much larger than the time likely to be used manip- 
ulating that data in main memory. Thus, the number of block 
accesses (reads and writes) is a good approximation to the time 
needed by the algorithm and should be minimized. 

In examples, we shall assume that the disk is a Megatron 747, with 16K- 
byte blocks and the timing characteristics determined in Example 11.5. In 
particular, the average time to read or write a block is about 11 milliseconds. 

Example 11.6: Suppose our database has a relation R and a query asks for 
the tuple of R that has acertain key value k. As we shall see, it is quite desirable 
that an index on R be created and used to identify the disk block on which the 
tuple with key d u e  k appears. However it is generally unimportant whether 
the index tells us where on the block this tuple appears. 

The reason is that it will take on the order of 11 milliseconds to read this 
16K-byte block. In 11 milliseconds, a modern microprocessor can execute mil- 
lions of instructions. However, searching for the key value k once the block is 
in main memory will only take thousands of instructions, even if the dumbest 
possible linear search is used. The additional time to perform the search in 
main memory will therefore be less than 1% of the block access time and can 
be neglected safely. 

11.4.2 Sorting Data in Secondary Storage 

As an extended example of how algorithms need to change under the 1/0 model 
of computation cost, let us consider sorting data that is much larger than main 
memory. To begin, we shall introduce a particular sorting problem and give 
some details of the machine on which the sorting occurs. 

Example 11.7: Let us assume that we have a large relation R consisting of 
10.000,000 tuples. Each tuple is represented by a record with several fields. one 
of which is the sort key field, or just L*key field" if there is no confusion with 
orher kinds of keys. The goal of a sorting algorithm is to order the recolds by 
increasing value of their sort keys. 

h sort key may or may not be a "key" in the usual SQL sense of a primary 
key. where records are guaranteed to have unique values in their primary key. 
If duplicate values of the sort key are permitted, then any order of records 
~ i t h  equal sort keys is acceptable. For simplicity, we shall assume sort keys are 
unique. 
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The records (tuples) of R will be divided into disk blocks of 16,384 bytes per 
block. \lie assume that 100 records fit in one block. That is, records are about 
160 bytes long. With the typical extra information needed to store records in a 
block (as discussed in Section 12.2, e.g.), 100 records of this size is about what 
can fit in one 16,384-byte block. Thus, R occupies 100,000 blocks totaling 1.64 
billion bytes. 

Tlle machine on which the sorting occurs has one Megatron 747 disk and 
100 megabytes of main memory available for buffering blocks of the relation. 
The actual main memory is larger, but the rest of main-memory is used by the 
system. The number of blocks that can fit in 100hI bytes of memory (which, 
recall, is really 100 x 220 bytes), is 100 x 220/214, or 6400 blocks. 

If the data fits in main memory, there are a number of well-known algorithms 
that \vork 1ve11;~ variants of "Quicksort" are generally considered the fastest. 
The preferred version of Quicksort sorts only the key fields, carrying pointers 
to the full records along with the kegs. Only when the keys and their pointers 
were in sorted order, w-ould we use the pointers to bring every record to its 
proper position. 

Unfortunately, these ideas do not work very well when secondary memory 
is needed to hold the data. The preferred approaches to sorting. when the data 
is mostly in secondary memory, involve moving each block between main and 
secondary memory only a small number of times, in a regular pattern. Often, 
these algorithms operate in a small number of passes; in one pass every record 
is read into main memory once and written out to disk once. In Section 11.4.4, 
we see one such algorithm. 

11.4.3 Merge-Sort 

You may be familiar with a main-memory sorting algorithm called Merge-Sort 
that works by merging sorted lists into larger sorted lists. To merge two sorted 
lists, we repeatedly compare the smallest remaining keys of each list, move the 
record n-ith the smaller key to the output, and repeat. until one list is exhausted. 
.It that time, the output, in the order selected, followed by what remains of the 
nonexhausted list, is the complete set of records, in sorted order. 

Example 11.8: Suppose we have tn-o sorted lists of four records each. To 
make matters simpler. we shall represent records by their keys and no other 
data, and we assume keys are integers. One of the sorted lists is (1,3,4,9) and 
the other is (2..5.7,8). In Fig. 11.10 we see the stages of the merge process. 

.It the first step. the head elements of the t~vo lists. 1 and 2. are compared. 
Since 1 < 2, the 1 is removed from the first list and becomes the first element 
of the output. -It step (2), the heads of the remaining lists, now 3 and 2. 
are compared; 2 wins and is moved to the output. The merge continues until 

'See D. E. Knuth, The Art of Computer Progmmming, Vol. 3: Sorting and Searching, 
2nd Edrbon, Addison-1Vesley. Reading Xi.&. 1998. 
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Output 
none 
1 
172 
1,2,3 
1,2,3,4 
1,2,3,4,5 
1,2,3,4,5,7 
1,2,3,4,5,7,8 
1,2,3,4,5,7,8,9 

Figure 11.10: Merging two sorted lists to make one sorted list 

step (7), when the second list is exhausted. At that point, the remainder of the 
first list, which happens to be only one element, is appended to the output and 
the merge is done. Note that the output is in sorted order, as must be the case, 
because at  each step we chose the smallest of the remaining elements. a 

The time to merge in main memory is linear in the sum of the lengths of the 
lists. The reason is that, because the given lists are sorted, only the heads of 
the two lists are ever candidates for being the smallest unselected element, and 
we can compare them in a constant amount of time. The classic merge-sort 
algorithm sorts recursively, using log2 n phases if there are n elements to be 
sorted. It can be described as follows: 

BASIS: If there is a list of one element to be sorted, do nothing, because the 
list is already sorted. 

INDUCTION: If there is a list of more than one element to be sorted, then 
divide the list arbitrarily into two lists that are either of the same length, or as 
close as possible if the original list is of odd length. Recursively sort the two 
sublists. Then merge the resulting sorted lists into one sorted list. 

The analysis of this algorithm is well known and not too important here. Briefly 
T(n) ,  the time to sort n elements, is some constant times n (to split the list and 
merge the resulting sorted lists) plus the time to sort two lists of size 7212. That 
is. T(n)  = 2T(n/2) + an for some constant a. The solution to this recurrence 
equation is T(11) = O(n1og n),  that is, proportional to n logn. 

11.4.4 Two-Phase, Multiway Merge-Sort 

11-e shall use a variant of Merge-Sort, called Two-Phase, Multiway Merge-Sort 
(often abbreviated TPhlSlS), to sort the relation of Example 11.7 on the ma- 
chine described in that example. It is the preferred sorting algorithm in many 
database applications. Briefly, this algorithm consists of: 
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Phase 1 : Sort main-memory-sized pieces of the data, SO kvery record is 
part of a sorted list that just fits in the available main memory. There 
may thus be any number of these sorted sublists, which we merge in the 
next phase. 

Phase 2: Merge all the sorted sublists into a single sorted list. 

Our first observation is that nrith data on secondary storage, we do not want 
to start with a basis to the recursion that is one record or a few records. The 
reason is that Merge-Sort is not as fast as some other algorithn~s when the 
records to be sorted fit in main memory. Thus, we shall begin the recursion 
by taking an entire main memory full of records, and sorting them using an 
appropriate main-memory sorting algorithm such as Quicksort. \Ire repeat the 
following process as many times as necessary: 

1. Fill all available main memory with blocks from the original relation to 
be sorted. 

2. Sort the records that are in main memory. 

3. Write the sorted records from main memory onto new blocks of secondary 
memory, forming one sorted sublist. 

At the end of this first phase, all the records of the original relation will have 
been read once into main memory, and become part of a main-memory-size 
sorted sublist that has been written onto disk. 

Example 11.9: Consider the relation described in Example 11.7. \ire de- 
termined that 6400 of the 100.000 blocks will fill main memory. \Ye thus fill 
memory 16 times, sort the records in main memory, and write the sorted sub- 
lists out to disk. The last of the 16 sublists is shorter than the rest: it occupies 
only 4000 blocks, while the other 15 sublists occupy 6400 blocks. 

Hom- long does this phase take? \F'e read each of the 100,000 blocks once, 
and ~ve write 100,000 new blocks. Thus, there are 200,000 disk 110's. We have 
assumed. for the moment. that blocks are stored at random on the disk, an  
assumption that, as we shall see in Section 11.5: can be improved upon greatly. 
Ho~vever. on our randomness assumption, each block read or write takes about 
11 milliseconds. Thus, the 1/0 time for the first phase is 2200 seconds, or 37 
minutes. or over 2 minutes per sorted sublist. It is not hard to see that, at  
a processor speed of hundreds of millions of instructions per second, Jve can 
create one sorted sublist in main memory in far less than the 110 time for that 
sublist. We thus estimate the total time for phase one as 37 minutes. 

Sow, let us consider how we complete the sort by merging the sorted sublists. 
\Ye could merge them in pairs, as in the classical AIerge-Sort, but that lvould 
involve reading all data in and out of memory 210g2 n times if there were n 
sorted sublists. For instance, the 16 sorted sublists of Example 11.9 \%-ould be 



530 CHAPTER 11. DATA STORAGE 

read in and out of secondary storage once to merge into 8 lists; another complete 
reading and writing would reduce them to 4 sorted lists, and two more complete 
readlwrite operations would reduce them to one sorted list. Thus, each block 
would have 8 disk I/O's performed on it. 

A better approach is to read the first block of each sorted sublist into a 
main-memory buffer. For some huge relations, there would be too many sorted 
sublists from phase one to read even one block per list into main memory, a 
problem we shall deal with in Section 11.4.5. But for data such as that of 
Example 11.7, there are relatively few lists, 16 in that example, and a block 
from each list fits easily in main memory. 

We also use a buffer for an output block that will contain as many of the 
first elements in the complete sorted list as it can hold. Initially, the output 
block is empty. The arrangement of buffers is suggested by Fig. 11.11. We 
merge the sorted sublists into one sorted list with all the records as follows. 

Input buffers, one for each sorted list 

Pointers 
to first 

Select smallest 
unchosen for 

Output 
buffer 

Figure 11.11: Main-memory organization for multiway merging 

1. Find the smallest key among the first remaining elements of all the lists. 
Since this comparison is done in main memory, a linear search is suffi- 
cient. taking a number of machine instructions proportional to the num- 
ber of sublists. However, if Ire wish. there is a method based on "priorit? 
q u e ~ e s " ~  that takes time proportional to the logarithm of the number of 
sublists to find the smallest element. 

2. More the smallest element to the first available position of the output 
block. 

- -- 

'See Aho. A. V. and J. D. Cllman Foundations of Computer Science, Computer Science 
Press, 1992. 
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How Big Should Blocks Be? 

We have assumed a 16K byte block in our analysis of algorithms using 
the Xlegatron 747 disk. However, there are arguments that a larger block 
size would be advantageous. Recall from Example 11.5 that it takes about 
a quarter of a millisecond for transfer time of a 16K block and 10.63 
milliseconds for average seek time and rotational latency. If we doubled 
the size of blocks. tre n-ould halve the number of disk 110's for an algorithm 
like TPAIJIS. On the other hand, the only change in the time to access 
a block would be that the transfer time increases to 0.50 millisecond. \Ve 
~rould thus approxirnately halve the time the sort takes. For a block size 
of 512It (i.e., an entire track of the Megatron 747) the transfer time is 8 
milliseconds. At that point, the average block access time would be 20 
milliseconds, but we would need only 12,500 block accesses, for a speedup 
in sorting by a factor of 11. 

However, there are reasons to limit the block size. First, we cannot 
use blocks that cover several tracks effectively. Second, small relations 
11-ould occupy only a fraction of a block, so large blocks would waste space 
on the disk. There are also certain data structures for secondary storage 
organization that prefer to divide data anlong many blocks and therefore 
work less well when the block size is too large. In fact, \re shall see in 
Section 11.4.5 that the Iarger the blocks are, the fewer records we can 
sort by TPlllIS.  Sel-ertheless. as machines get faster and disks more 
capacious, there is a tendency for block sizes to grouT. 

3. If the output block is full, write it to disk arid reinitialize the same buffer 
in main memory to hold the nest output block. 

4. If the block from which the smallest element was just taken is now ex- 
hausted of records. read the nest block from the same sorted sublist into 
the same buffer that was used for the block just exhausted. If no blocks 
remain. then leave its buffer empty and do not consider elements from 
that list in any further conlpetition for smallest remaining elements. 

In the second phase. unlike the first phase. the blocks are read in an unpre- 
dictable order. since n-e cannot tell ~vhrn an input block will become exhausted. 
Ho~i-eyer. notice that every block Iiolding records from one of the sorted lists is 
read from disk esactly once. Thus, the total number of block reads is 100.000 
in the second phase, just as for the first. Likewise, each record is placed once in 
an output block, and each of these blocks is written to disk. Thus, the nur~iber 
of block writes in the second phase is also 100.000. As the amount of second- 
phase computation in main memory can again be neglected compared to the 
110 cost. we conclude that the second phase takes another 37 minutes. or 71 
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minutes for the entire sort. 

11.4.5 Multiway Merging of Larger Relations 

The Two-Phase, Multiway Merge-Sort (TPMMS) described above can be used 
to sort some very large sets of records. To see how large, let us suppose that,: 

1. The block size is B bytes. 

2. The main memory a&ilable for buffering blocks is M bytes. 

3. Records take R bytes. 

The number of buffers available in main memory is thus A4lB. On the 
second phase, all but one of these buffers may be devoted to one of the sorted 
sublists; the remaining buffer is for the output block. Thus, the number of 
sorted sublists that may be created in phase one is (M/B) - 1. This quantity 
is also the number of times we may fill main memory with records to be sorted. 
Each time we fill main memory, we sort A4/R records. Thus, the total number 
of records we can sort is ( M / R )  ((M/B) - I ) ,  or approximately M2/RB records. 

Example 11.10: If we use the parameters outlined in Example 11.7, then 
111 = 104,857,600, B = 16,384, and R = 160. We can thus sort up to Ma/RB 
= 4.2 billion records, occupying two thirds of a terabyte. Note that relations 
this size will not fit on a Megatron 747 disk. 

If we need to sort more records, we can add a third pass. Use TPAILIS to 
sort groups of M2/RB records, turning them into sorted sublists. Then. in a 
third phase, we merge up to (Al/B) - 1 of these lists in a final multiway merge. 

The third phase lets us sort approximately 11f3/~B2 records occupying 
M3/B3 blocks. For the parameters of Example 11.7, this amount is ahout 
27 trillion records occupying 4.3 petabytes. Such an amount is unheard of to- 
day. Since even the 0.67 terabyte limit for TPhfMS is unlikely to be carried 
out in secondary storage, we suggest that the two-phase version of Xlultiway 
IIerge-Sort is likely to be enough for all practical purposes. 

11.4.6 Exercises for Section 11.4 

Exercise 11.4.1 : Using TPJIIIS, how long would it take to sort the relation 
of Example 11.7 if the Aiegatron 747 disk were replaced by the hlegatron 777 
disk described in Exercise 11.3.1, and all other characteristics of the machine 
and data remained the same? 

Exercise 11.4.2 : Suppose we use TPMMS on the machine and relation R of 
Example 11.7, with certain modifications. Tell how many disk I/O's are needed 
for the sort if the relation R and/or machine characteristics are changed as 
follows: 
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* a) The number of tuples in R is doubled (all else remains the same). 

b) The length of tuples is doubled to 320 bytes (and everything else remains 
as in Example 11.7). 

* c) The size of blocks is doubled, to 32,768 bytes (again, as throughout this 
exercise. all other parameters are unchanged). 

C 3 
d) The size of available main memory is doubled to 200 megabytes. 

L ! Exercise 11.4.3: Suppose the relation R of Example 11.7 grows to have as 
i many tuples as can be sorted using TPhlhIS on the machine described in that 
i. 

1 example. Also assume that the disk grows to accommodate R, but all other 
characteristics of the disk, machine, and relation R remain the same. How long 
would it take to sort R? 

c 
* Exercise 11.4.4: Let us again consider the relation R of Example 11.7, but 

assume that it is stored sorted by the sort key (which is in fact a "key" in the 
usual sense, and uniquely identifies records). Also, assume that R is stored in 
a sequence of blocks whose locations are known, so that for any i it is possible 
to locate and retrieve the ith block of R using one disk 110. Given a key value 
K, we can find the tuple with that key value by using a standard binary search 
technique. What is the maximum number of disk 110's needed to find the tuple 
with key I<? 

!! Exercise 11.4.5: Suppose we have the same situation as in Esercise 11.4.4, 
but we are given 10 key d u e s  to find. What is the maxirnum nunlber of disk 
1 / 0 3  needed to find all 10 tuples? 

* Exercise 11.4.6 : Suppose we have a relation whose n tuples each require R 
bytes, and \ve have a machine whose main memory A1 and disk-block size B 
are just sufficient to sort the n tuples using TPIIhIS. How ~vould the maximum 
n change if n-e doubled: (a) B (b) R (c) AI? 

! Exercise 11.4.7: Repeat Exercise 11.4.6 if it is just possible to perform the 
sort using Three-Phase, Xlulti\vay Merge-Sort. 

*! Exercise 11.4.8: -4s a function of parameters R, Ai, and B (as in Exer- 
cise 11.4.6) and the integer k. how many records can be sorted using a k-phase, 
IIultin-ay Merge-Sort'? 

11.5 Accelerating Access to Secondary Storage 

The analysis of Section 11.4.4 assumed that data was stored on a single disk and 
that blocks were chosen randomly from the possible locations on the disk. That 
assumption may be appropriate for a system that is executing a large number 
of small queries simultaneously. But if all the system is doing is sorting a large 
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relation, then we can save a significant amount of time by being judicious about 
where we put the blocks involved in the sort, thereby taking advantage of the 
way disks work. In fact, even if the load on the system is from a large number 
of unrelated queries accessing "random" blocks on disk, we can do a number of 
things to make the queries run faster and/or allow the system to process more 
queries in the same time ("increase the throughput"). Among the strategies we 
shall consider in this section are: 

Place blocks that are accessed together on the same cylinder so we can 
often avoid seek time, and possibly rotational latency as well. 

Divide the data among several smaller disks rather than one large one. 
Having more head assemblies that can go after blocks independently can 
increase the number of block accesses per unit time. 

"Blirror" a disk: making two or more copies of the data on single disk. 
In addition to saving the data in case one of the disks fails, this strategy, 
like dividing the data among several disks, lets us access several blocks at  
once. 

Use a disk-scheduling algorithm, either in the operating system, in the 
DBMS, or in the disk controller, to select the order in which several 
requested blocks will be read or written. 

Prefetch blocks to main memory in anticipation of their later-use. 

In our discussion, we shall emphasize the improvements possible when the 
system is dedicated, at  least momentarily, to doing a particular task such as 
the sorting operation we introduced in Example 11.7. However, there are at 
least two other viewpoints with which to measure the performance of systems 
and their use of secondary storage: 

1. What happens when there are a large number of processes being supported 
simulta~ieously by the system? An example is an airline reservation sys- 
tem that accepts queries about flights and new bookings from many agents 
at the same time. 

2. What do we do if we have a fixed budget for a computer system, or we. 
must execute a mix of queries on a system that is already in place and 
not easily changed? 

Ke address these questions in Section 11.3.6 after exploring the options. 

11.5.1 Organizing Data by Cylinders 

Since seek time represents about half the average time to access a block, there 
are a number of applications where it makes sense to store data that is likely 
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to be accessed together, such as relations, on a single cylinder. If there is not 
enough room, then several adjacent cylinders can be used. 

In fact, if we choose to read all the blocks on a single track or on a cylinder 
consecutively, then we can neglect all but the first seek time (to move to the 
cylinder) and the first rotational latency (to wait until the first of the blocks 
moves under the head). In that case, we can approach the theoretical transfer 
rate for moving data on or off the disk. 

Example 11.11 : Let us review the performance of TPMhIS (Section 11.4.4). 
Recall from Example 11.5 that we determined the average block transfer time, 
seek tirne, and rotational latency to be 0.25 n~illiseconds, 6.46 milliseconds, and 
4.17 milliseconds, respectively, for the llegatron 747 disk. We also found that 
the sorting of 10,000,000 records occupying a gigabyte took about 74 minutes. 
This time was divided into four components, one for reading and one for writing 
in each of the two phases of the algorithm. 

Let us consider whether the organization of data by cylinders can improve 
the time of these operations. The first operation was the reading of the original 
records into main memory. Recall from Example 11.9 that we loaded main 
memory 16 times, with 6400 blocks each time. 

The original 100,000 blocks of data may be stored on consecutive cylinders. 
Each of the 16,384 cylinders of the Megatron 747 stores about eight megabytes 
on 312 blocks; technically this figure is an average, because inner tracks store 
less and outer tracks more, but for simplicity we shall assume all tracks and 
cylinders are average. We must thus store the initial data on 196 cylinders, and 
we must read from 13 different cylinders to fill main memory once. 
\i can read one cylinder with a single seek time. We do not even h a ~ e  to 

wait for any particular block of the cylinder to pass under the head. because 
the order of records read is not important at this phase. We must move the 
heads 12 times to adjacent cylinders. but recall that a move of one track takes 
only onc millisecond according to the parameters of Example 11.5. The total 
time to fill main memory is thus: 

1. 6.46 milliseconds for one average seck. 

2. 12 milliseconds for 12 one-cylinder seeks. 

3. 1.60 seconds for the transfer of 6400 blocks. 

-411 but the last quantity can be ncglccted. Since we fill nielnor~ 16 times. 
the total reading time for phase 1 is about 26 seconds. This nuniber should 
he cornpared ~vith the 18 minutes that the readi~~g part of phase 1 takes in 
Example 11.9 ~vhen we assu~ncd blocks were distributed randomly on disk. The 
writing part of phase 1 can like~visc use adjacent cylinders to store the 16 sorted 
sublists of records. They can be written out onto another 196 cylinders, using 
the same head motions as for reading: one random seek and 12 one-cylinder 
seeks for each of the 16 lists. Thus. the ~vriting time for phase 1 is also about 
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26 seconds, or 52 seconds for all of phase 1, compared with 37 minutes when 
randomly distributed blocks were used. 

On the other hand, storage by cylinders does not help with the second phase 
of the sort. Recall that in the second phase, blocks are read from the fronts of 
the 16 sorted sublists in an order that is determined by the data and by which 
list next exhausts its current block. Likewise, output blocks, containing the 
complete sorted list, are written one at  a time, interspersed with block reads. 
Thus, the second phase will still take about 37 minutes. ?XTe have consequently 
cut the sorting time almost in half, but cannot do better by judicious use of 
cylinders alone. 0 

11.5.2 Using Multiple Disks 

?Ve can often improve the speed of our system if we replace one disk, with 
many heads locked together, by several disks with their independent heads. The 
arrangement was suggested in Fig. 11.6, where we showed three disks connected 
to a single controller. As long as the disk controller, bus, and main memory can 
handle the data transferred a t  a higher rate, the effect will be approximately 
as if all times associated with reading and writing the disk were divided by the 
number of disks. An example should illustrate the difference. 

Example 11.12: The hIegatron 737 disk has all the characteristics of the 
hlegatron 747 outlined in Examples 11.3 and 11.5, but it has only two platters 
and four surfaces. Thus, each Llegatron 737 holds 32 gigabytes. Suppose that 
we replace our one Megatron 747 by four Megatron 73'7's. Let us consider how 
TP1IlIS can be conducted. 

First. we can divide the given records among the four disks; the data xi11 
occupy 196 adjacent cylinders on each disk. When we want to load main mem- 
ory from disk during phase 1, we shall fill 1/4 of main memory from each of 
the four disks. We still get the benefit observed in Example 11.11 that the seek 
time and rotational latency go essentially to zero. However, we can read enough 
blocks to fill 114 of main memory, which is 1600 blocks, from a disk in about 
400 milliseconds. As long as the system can handle data at this rate coming 
from four disks, we can fill the 100 megabytes of main memory in 0.4 seconds. 
compared with 1.6 seconds when we used one disk. 

Similarly, when we %*rite out main memory during phase 1, lye can distribute 
each sorted sublist onto the four disks, occupying about 13 adjacent cylinders 
on each disk. Thus, there is a factor-of-4 speedup for the writing part of phase 1 
too. and the entire phase 1 takes about 13 seconds. compared with 52 seconds 
using only the cylinder-based improvement of Section 11.5.1 and 37 minutes for 
the original, random approach. 

Sor .  let us consider the second phase of TPMhlS. We must still read blocks 
from the fronts of the various lists in a seemingly random, data-dependent 
way. If the core algorithm of phase 2 - the selection of smallest remaining 
elements from the 16 sublists - requires that all 16 lists be represented by 

blocks completely loaded into main memory, then we cannot use the four disks 
to advantage. Every time a block is exhausted, we must wait until a new block 
is read from the same list to replace it. Thus, only one disk at  a time gets used. 

However, if we write our code more carefully, we can resume comparisons 
among the 16 smallest elements as soon as the first element of the new block 
appears in main memory.7 If so, then several lists might be having their blocks 
loaded into main memory at the same time. -4s long as they are on separate 
disks, then we can perform several block reads at the same time, and we have 
the potential of a factor-of-4 increase in the speed of the reading part of phase 2. 
Itre are also limited by the random order in which blocks must be read; if the 
next two blocks we need happen to be on the same disk, then one has to wait 
for the other, and all main-memory processing stops until a t  least the beginning 
of the second arrives in main memory. 

The writing part of phase 2 is easier to speed up. We can use four output 
buffers and fill each in turn. Each buffer, when full, is written to one particular 
disk, filling cylinders in order. We can thus fill one of the buffers while the other 
three are written out. 

Nevertheless, we cannot possibly write out the complete sorted list faster 
than rve can read the data from the 16 intermediate lists. As we saw above, 
it is not possible to keep all four disks doing useful work all the time, and our 
speedup for phase 2 is probably in the 2-3 times range. However, even a factor 
of 2 saves us 18 minutes. By using cylinders to organize data and four disks to 
hold data, we can reduce the time for our sorting example from 37 nlinutes for 
each of the two phases to 13 seconds for the first phase and 18 minut~s  for the 
second. 5 

11.5.3 Mirroring Disks 

There are situations where it makes sense to have two or more disks hold identi- 
cal copies of data. The disks are said to be mirrors of each other. One important 
motivation is that the data will survive a head crash by either disk, since it is 
still readable on a mirror of the disk that crashed. Systenls designed to enhance 
reliability often use pairs of disks as mirrors of each other. 

However, mirror disks can also speed up access to data. Recall our discussion 
of phase 2 in Example 11.12, where we observed that if we were very careful 
about timing, we could arrange to load up to four blocks from four different 
sorted lists whose previous blocks were exhausted. Hon-ever, we could not 
choose which four lists \c-ould get new blocks. Thus. we could be unlucky and 
find that the first two lists were on the same disk. or two of the first three lists 
were 011 the same disk. 

If we are willing to buy and use four copies of a single large disk, then we 

7\Ve should emphasize that this approach requires extremely delicate implementation and 
should onlv be attempted if there is an important benefit to doing so. There is a si~nificant 
risk that, if we are not careful, there \rill be an attempt to read a record before it actually 
arrives in main memory. 
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can guarantee that the system can always be retrieving four blocks at  once. 
That is, no matter which four blocks we need, we can assign each block to any 
of the four disks and read the block off of that disk. 

In general, if we make n copies of a disk, we can read any n blocks in parallel. B 
Moreover, if we have fewer than n blocks to read at  once, then we can often its 
obtain a speed increase by judiciously choosing which disk to read from. That 
is, we can pick the available disk whose head is closest to the cylinder from 
which we desire to read. 

Using mirror disks does not speed up writing, but neither does it slow writing 
down, when compared with using a single disk. That is, whenever we need to 
write a block, we write it on all disks that have a copy. Since the writing can 
take place in parallel, the elapsed time is about the same as for writing to a 
single disk. There is a slight opportunity for differences among the writing 
times for the various mirror disks, because we cannot rely on them rotating 
in exact synchronism. Thus, one disk's head might just miss a block, while 
another disk's head might be about to pass over the position for the same block. 
However, these differences in rotational latency average out, and if we are using 
the cylinder-based strategy of Section 11.5.1, then the rotational latency can 
be neglected anyway. 

11.5.4 Disk Scheduling and the Elevator Algorithm 

Another effective way to speed up disk accesses in some situations is to have 
the disk controller choose which of several requests to execute first. This op- 
portunity is not useful when the system needs to read or write disk blocks in a 
certain sequence, such as is the case in parts of our running merge-sort example. 
However, when the system is supporting many small processes that each access 
a few blocks, one can often increase the throughput by choosing which process' 
request to honor first. 
.-I simple and effective way to schedule large numbers of block requests is 

known as the elevator algorithm. ?Ve think of the disk head as making sweeps 
across the disk, from innermost to outermost cylinder and then back again, 
just as an elevator makes vertical sweeps from the bottom to top of a building 
and back again. As heads pass a cylinder, they stop if there are one or more 
requests for blocks on that cylinder. All these blocks are read or written, as 
requested. The heads then proceed in the same direction they were traveling 
until the next cylinder with blocks to access is encountered. When the heads 
reach a position where there are no requests ahead of them in their direction of 
tra\-el, they reverse direction. 

Example 11.13: Suppose we are scheduling a Megatron 747 disk, which we 
recall has average seek, rotational latency, and transfer times of 6.46, 4.17, 
and 0.25, respectively (in this example, all times are in milliseconds). Suppose 
that at  some time there are pending requests for block accesses a t  cylinders 
2000, 6000, and 14,000. The heads are located at  cylinder 2000. In addition, 
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there are three more requests for block accesses that come in a t  later times, as 
summarized in Fig. 11.12. For instance, the request for a block from cylinder 
4000 is made a t  time 10 milliseconds. 

Figure 11.12: Arrival times for six block-access requests 

We shall assume that each block access incurs time 0.25 for transfer and 4.17 
for average rotational latency, i.e., we need 4.12 milliseconds plus whatever the 
seek time is for each block access. The seek time can be calculated by the rule 
for the Xegatron 747 given in Example 11.5: 1 plus the number of tracks divided 
by 1000. Let us see what happens if we schedule by the elevator algorithm. The 
first request at  cylinder 2000 requires no seek, since the heads are already there. 
Thus, at time 4.42 the first access will be complete. The request for cylinder 
4000 has not arrived at this point, so we move the heads to cylinder 6000, the 
next requested "stop" on our sweep to the highest-numbered tracks. The seek 
from cylinder 2000 to 6000 t a b  5 milliseconds, so we arrive at time 9.42 and 
complete the access in another 4.42. Thus, the second access is complete at 
time 13.84. By this time, the request for cylinder 4000 has arrived, but we 
passed that cylinder at time 7.42 and will not come back to it until the next 
pass. 

TVe thus move next to cylinder 14,000, taking time 9 to seek and 4.42 for 
rotation and transfer. The third access is thus complete at time 27.26. ?\'OW, 
the request for cylinder 16,000 has arrived, so we continue outward. \l'e require 
3 milliseconds for seek time, so this access is complete at time 27.26+3+4.42 = 
34.68. 

.At this time, the request for cylinder 10.000 has been made, so it and the 
request at cylinder 1000 remain. \Ye thus sweep inward, honoring these two 
requests. Figure 11.13 summarizes the times a t  which requests are honored. 

Let us compare the perforniance of the elevator algorithm with a more naive 
approach such as first-come-first-serred. The first three requests are satisfied in 
exactly the same manner, assuming that the order of the first three requests n-as 
2000,6000, and 14,000. Hon-eyer, at that point, we go to cylinder 4000, because 
that was the fourth request to arrive. The seek time is 11 for this request, since 
we travel from cylinder 14.000 to 4000, more than half way across the disk. 
The fifth request, at cylinder 16,000, requires a seek time of 13, and the last, 
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Figure 11.13: Finishing times for block accesses using the elevator algorithm 

at 10,000, uses seek time 7. Figure 11.14 summarizes the activity caused by 
first-come-first-serve scheduling. The difference between the two algorithms - 
14 milliseconds - may not appear significant, but recall that the number of 
requests in this simple example is small and the algorithms were assumed not 
to deviate until the fourth of the six requests. 

Cylinder 
of Request 

2000 
6000 

14000 
4000 

16000 
10000 

Time 
completed 

Figure 11.14: Finishing times for block accesses using the first-come-first-serl-ed 
algorithm 

If the average number of requests waiting for the disk increases, the elevator 
algorithm further improves the throughput. For instance, should the pool of 
waiting requests equal the number of cylinders, then each seek will cover but a 
few cylinders, and the average seek time will approximate the minimum. If the 
pool of requests grows beyond the number of cylinders, then there will typically 
be more than one request at  each cylinder. The disk controller can then order 
the requests around the cylinder. reducing the average rotational latency as 
well as the average seek time. However, should request pools grow that big. the 
time taken to serve any request becomes extremely large. An example should 
illustrate the situation. 

Example 11.14 : Suppose again we are operating a Megatron 747 disk, with its 
16>384 cylinders. Imagine that there are 1000 disk access requests waiting. For 
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Waiting for the Last of Two Blocks 

Suppose there are two blocks at random positions around a cylinder. Let 
XI and xa be the positions, in fractions of the full circle, so these are 
numbers between 0 and 1. The probability that both XI and 2 2  are less 
than some number y between 0 and 1 is y2. Thus, the probability density 
for y is the derivative of y2, or 2y. That is, the probability that y has a 
given value increases linearly, as y grows from 0 to 1. The average 1 of y is 

the integral of y times the probability density of g ,  that is I, 2y2 or 213. 

simplicity, assume that these are all for blocks on different cylinders, spaced 
16 apart. If Ire start at one end of the disk and sweep across, each of the 
1000 requests has just a fraction more than 1 millisecond for seek time, 4.17 
milliseconds for rotational latency, and 0.25 milliseconds for transfer. ?Ve can 
thus satisfy one request every 5.42 milliseconds, about half the 10.88 millisecolld 
average time for random block accesses. However, the entire 1000 accesses take 
5.42 seconds, so the average delay in satisfying a request is half that, or 2.71 
seconds, a quite noticeable delay. 

Xow. suppose the pool of requests is as large as 32,768, which we shall 
assume for siinplicity is exactly two accesses per cylinder. In this case, each 
seek time is one millisecond (0.5 per access), and of course the transfer time 
is 0.25 millisecond. Since there are two blocks accessed on each cylinder, on 
average the further of the two blocks will be 213 of the way around the disk 
when the heads arrive at  that track. The proof of this estimate is tricky; we 
explain it in the box entitled "IVaiting for the Last of TWO Blocks." 

Thus the average latency for these two blocks will be half of 213 of the time 
for a single revolution, or & x $ x 8.33 = 2.78 milliseconds. We thus have reduced 
the average time to access a block to 0.5+0.25+2.78 = 3.53 milliseconds, about 
a third the average time for first-come-first-served scheduling. On the other 
hand, the 32.768 accesses take a total of 116 seconds, so the average delay in 
satisfying a request is almost a minute. 0 

11.5.5 Prefetching and Large-Scale Buffering 

Our final suggestion for speeding up some secondary-memory algorithms is 
called prefetching or solnetimes double buffering. In some applications 1~-e can 
predict the order in ~vl~icli blocks will be requested from disk. If so. then can 
load them into main memory buffers before they are needed. One advantage to 
doing so is that \re are thus better able to schedule the disk, such as by using 
the elevator algorithm, to reduce the average time needed to access a block If-e 
could gain the speedup in block access suggested by Example 11.14 without the 
long delay in satisfying requests that we also saw in that example. 
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Example 11.15: For an example of the use of double buffering, let us again 
focus on the second phase of TP3,fMS. Recall that we merged 16 sorted sublists 
by bringing into main memory one block from each list. If we had so many 
sorted sublists to merge that one block from each would fill main memory, then 
we could not do any better. But in our example, there is plenty of main memory 
left over. For instance, we could devote two block buffers to each list and fill 
one buffer while records were being selected from the other during the merge. 
When a buffer is exhausted, we switch to the other buffer for the same list, with 
no delay. 0 

However, the scheme of Example 11.15 still takes whatever time is required 
to read all 100,000 blocks of the sorted sublists. We could combine prefetching 
with the cylinder-based strategy of Section 11.5.1 if we: 

1. Store the sorted sublists on whole, consecutive cylinders, with the blocks 
on each track being consecutive blocks of the sorted sublist. 

2. Read whole tracks or whole cylinders whenever we need some more records 
from a given list. 

Example 11.16 : To appreciate the benefit of track-sized or cylinder-sized 
reads, again let us consider the second phase of TPhlMS. We have room in 
main memory for two track-sized buffers for each of the 16 lists. &call a track 
of the hfegatron 747 holds half a megabyte, so the total space requirement is 16 
megabytes of main memory. \Ve can read a track starting at any sector, so the 
time to read a track is essentially the average seek time plus the time for the 
disk to rotate once, or 6.46 + 8.33 = 14.79 milliseconds. Since we must read all 
the blocks on 196 cylinders, or 3136 tracks, to read the 16 sorted sublists, the 
total time for reading of all data is about 46 seconds. 

\Ve can do even better if we use two cylinder-sized buffers per sorted sublist, 
and fill one while the other is being used. Since there are 16 tracks on a 
cylinder of the Sfegatron 747, x e  would need 32 buffers of 4 megabytes each, 
or 128 megabytes. We said that there was only 100 megabytes of main niemory 
available, but 128 megabytes is quite reasonable as a main-memory size. 

Csing cylinder-sized buffers, we need only do a seek once per cylinder. The 
time to seek and read all 16 tracks of a cylinder is thus 6.46 + 16 x 8.33 = 140 
milliseconds. The time to read all 196 cylinders is 196 times as long, or about 
27 seconds. 

The ideas just discussed for reading have their analogs for writing. In the 
spirit of prefetching, we can delay the writing of buffered blocks, as long as we 
don't need to reuse the buffer immediately. This strategy allows us to avoid 
delays while we wait for a block to be written out. 

However, much more powerful is the strategy of using large output buffers - 
track-sized or cylinder-sized. If our application permits us to write in such large 
chunks, then we can essentially eliminate seek time and rotational latency, and 
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write to disk at  the maximum transfer rate of the disk. For instance, if we 
modified the writing part of the second phase of our sorting algorithm so there 
were tno output buffers of 4 megabytes each, then we could fill one buffer with 
sorted records, and write it to a cylinder at  the same time we filled the other 
output buffer with the next sorted records. Then, the writing time would be 
27 seconds, like the reading time in Example 11.16, and the entire phase 2 
would take under a minute, just like the improved phase 1 of Example 11.11. 
X combination of the tricks of storing data on whole cylinders, cylinder-sized 
buffering, and prefetching has given us a sort in less than two minutes that 
takes 74 minutes by a naive disk-management strategy. 

11.5.6 Summary of Strategies and Tradeoffs 

We have seen five different "tricks" that can sometimes improve the performance 
of a disk system. They are: 

1. Organizing data by cylinders. 

2. Using several disks in place of one. 

3. Mirroring disks. 

4. Scheduling requests by the elevator algorithm. 

5 .  Prefetching data in track- or cylinder-sized chunks 

We also considered their effect on two situations, which represent the extremes 
of disk-access requirements: 

a) A very regular situation, exemplified by phase 1 of TPAIAIS, where blocks 
can be read and written in a sequence that can be predicted in advance, 
and there is only one process using the disk. 

b) .2 collection of short processes. such as airline reservations or bank-account 
changes, that execute in parallel, share the same disk(s), and cannot be 
predicted in advance. Phase 2 of TPAIIIS has some of these characteris- 
tics. 

Below ~ v e  summarize the advantages and disadvantages of each of these methods 
for these applications and those in bet~veen. 

Cylinder-Based Organization 

.-idvantage: Excellent for type (a) applications, where accesses can be 
predicted in advance, and only one process is using the disk. 

Disadvantage: No help for type (b) applications, where accesses are un- 
predictable. 
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Multiple Disks 

Advantage: Increases the rate at which readlwrite requests can be satis- 
fied, for both types of applications. 

Problem: Read or write requests for the same disk cannot be satisfied at  
the same time, so speedup factor may be less than the factor by which 
the number of disks increases. 

Disadvantage: The cost of several small disks exceeds the cost of a single 
disk with the same total capacity. 

Mirroring 

Advantage: Increases the rate at which readlwrite requests can be satis- 
fied, for both types of applications; does not have the problem of colliding 
accesses mentioned for multiple disks. 

Advantage: Improves fault tolerance for all applications. 

Disadvantage: We must pay for two or more disks but get the storage 
capacity of only one. 

Elevator Algorithm 

Advantage: Reduces the average time to readlwrite blocks when the ac- 
cesses to blocks are unpredictable. 

Problem: The algorithm is most effective in situations where there are 
many waiting disk-access requests and therefore the average delay for the 
requesting processes is high. 

Prefetching/Double Buffering 

Advantage: Speeds up access when the needed blocks are known but the 
t,iming of requests is data-dependent, as in phase 2 of TPMMS. 

Disadvantage: Requires extra main-memory buffers. No help when ac- 
cesses are random. 

11.5.7 Exercises for Section 11.5 

Exercise 11.5.1 : Suppose we are scheduling I/O requests for a Megatron 747 
disk: and the requests in Fig. 11.15 are made, ivith the head initially at track 
f3000. At what time is each request seviced fully if: 

a) We use the elevator algorithm (it is permissible to start moving in either 
direction at  first). 
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Figure 11.15: Arrival times for six block-access requests 

b) \&'e use first-come, first-served scheduling. 

*! Exercise 11.5.2 : Suppose we use two Ylegatron 747 disks as mirrors of one 
another. However, instead of allowing reads of any block from either disk, we 
keep the head of the first disk in the inner half of the cylinders, and the head 
of the second disk in the outer half of the cylinders. Assuming read requests 
are on random tracks, and we never have to write: 

a) What is the average rate at which this system can read blocks? 

b) How does this rate compare mith the average rate for mirrored Megatron 
747 disks mith no restriction? 

c) What disadvantages do you forsee for this system? 

! Exercise 11.5.3: Let us explore the relationship between the arrival rate of 
requests, the throughput of the elevator algorithm, and the average delay of 
requests. To simplify the problem. we shall make the follo~ving assumptions: 

1. A pass of the elevator algoritlim allvays proceeds from the innermost to 
outermost track, or vice-versa, eren if there are no requests at  the extreme 
cylinders. 

2. When a pass starts. only those requests that are already pending will be 
honored, not requests that come in while the pass is in progress, even if 
the head passes their cylinder.8 

3. There will never be two requests for blocks on the same cylinder waiting 
on one pass. 

Let .4 be the interarrival rate. that is the time between requcsts for block ac- 
cesses. .lssume that the system is in steady state. that is, it has been accepting 
and anslvering requests for a long time. For a llegatron 747 disk, compute as 
a function of .-1: 

sThe purpose of this assumption is to avoid having to deal with the fact that a typical pass 
of the elevator algorithm goes fast as first, as there will be few waiting requests where the 
head has recently been, and speeds up as it moves into an area of the disk where it ha5 not 
recently been. The analysis of the way request density varies during a pass is an interesting 
exercise in its own right. 
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status "good"), by using a sufficiently large number of checksum bits, we can 
reduce this probability to whatever small level we wish. 

A simple form of checksum is based on the parity of all the bits in the sector. 
If there is an odd number of 1's among a collection of bits, we say the bits have 
odd parity, or that their parity bit is 1. Similarly, if there is an even number of 
1's among the bits, then we say the bits have even parity, or that their parity 
bit is 0. As a result: 

The number of 1's among a collection of bits and their parity bit is al~vays 
even. 

When we write a sector, the disk controller can compute the parity bit and 
append it to the sequence of bits written in the sector. Thus, every sector nil1 
have even parity. 

Example 11.17 : If the sequence of bits in a sector were 01101000, then there 
is an odd number of l's, so the parity bit is 1. If we follow this sequence by its 
parity bit we have 011010001. If the given sequence of bits were 11101110, we 
have an even number of l's, and the parity bit is 0. The sequence followed by 
its parity bit is 111011100. Note that each of the nine-bit sequences constructed 
by adding a parity bit has even parity. 0 

Any one-bit error in reading or writing the bits and their parity bit results 
in a sequence of bits that has odd panty; i.e., the number of 1's is odd. It is 
easy for the disk controller to count the number of 1's and to determine the 
presence of an error if a sector has odd parity. 

Of course. more than one bit of the sector may be corrupted. If so. the 
probability is 50% that the number of 1-bits will be even, and the error ivill 
not be detected. \?'e can increase our chances of detecting even large numbers 
of errors if we keep several parity bits. For example, we could keep eight parity 
bits, one for the first bit of every byte, one for the second bit of every byte. and 
so on. up to the eighth and last bit of every byte. Then, on a massive error. the 
probability is 50% that any one parity bit will detect an error, and the chance 
that none of the eight do so is only one in 28, or 11256. In general, if n-e use 
n independent bits as a checksum. then the chance of missing an error is only 
112". For instance, if we devote 4 bytes to a checksum, then theie is only one 

' 

chance in about four billion that the error I\-ill go undetected. 

11.6.3 Stable Storage 

n'llile checksums will almost certainly detect the existence of a media failure 
or a failure to read or write correctly, it does not help us correct the error. 
lIoreover, ~vhen writing we could find ourselves in a position where we over~vrite 
the previous contents of a sector and yet cannot read the new contents. That 
situation couid be serious in a situation where, say, we were adding a small 
increment to an account balance and ha1-e now lost both the original balance 

and the new balance. If we could be assured that the contents of the sector 
contained either the new or old balance, then we would only have t.0 determine 
whether the write was successful or not. 

To deal with the problems above, we can implement a policy known as 
stable storage on a disk or on several disks. The general idea is that sectors 
are paired, and each pair represents one sector-contents X. ?Ve shall refer to 
the pair of sectors representing X as the "left" and "right" copies, X L  and XR. 
We continue to assume that the copies are written with a sufficient number of 
parity-check bits so that we can rule out the possibility that a bad sector looks 
good when the parity checks are considered. Thus, we shall assume that if the 
read function returns (w,good) for either X L  or XR, then w is the true value 
of X. The stable-storage writing policy is: 

1. Write the value of X into Xt. Check that the value has status "good"; 
i.e., the parity-check bits are correct in the written copy. If not, repeat the 
write. If after a set number of write attempts, we have not successfully 
written ,Y into XL, assume that there is a media failure in this sector. A 
fix-up such as substituting a spare sector for X L  must be adopted. 

2. Repeat (1) for XR. 

The stable-storage reading policy is: 

1. To obtain the value of X ,  read .YL. If status "bad" is returned, repeat the 
read a set number of times. If a value with status "good" is eventually 
returned, take that value as X .  

2. If n-e cannot read X L ,  repeat (1) with XR.  

11.6.4 Error-Handling Capabilities of Stable Storage 

The policies described in Section 11.6.3 are capable of compensating for several 
different kinds of errors. We shall outline them here. 

1. ,Wedia failures. If, after storing .Y in sectors .YL and -YR, one of them 
undergoes a media failure and becomes permanently unreadable, we can 
al~vays read X from the other. If XR has failed but SL has not, then 
the read policy will correctly read SL and not even look at  XR;  we shall 
discover that SR is failed when we next try to write a new value for X .  
If only Sr has failed, then we shall not be able to get a "good" status 
for S in any of our attempts to read X L  (recall that n-e assume a bad 
sector n-ill always return status "bad," even though in reality there is a 
tiny chance that "good" will be returned because all the parity-check bits 
happen to match). Thus, we proceed to step (2) of the read algorithm 
and correctly read X from XR. Note that if both X L  and .YR have failed, 
then we cannot read X, but the probability of both failing is extremely 
small. 
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Each of these schemes starts with one or more disks that hold the data (we'll 
call these the data disks) and adding one or more disks that hold information 
that is completely determined by the contents of the data disks. The latter are 
called redundant disks. When there is a disk crash of either a data disk or a 
redundant disk, the other disks can be used to restore the failed disk, and there 
is no permanent information loss. 

11.7.2 Mirroring as a Redundancy Technique 

The simplest scheme is to mirror each disk, as discussed in Section 11.5.3. 
We shall call one of the disks the data disk, while the other is the redundant 
disk; which is which doesn't matter in this scheme. Mirroring, as a protection 
against data loss, is often referred to as RAID level 1. It gives a mean time 
to memory loss that is much greater than the mean time to disk failure, as 
the following example illustrates. Essentially, with mirroring and the other 
redundancy schemes we discuss, the only way data can be lost is if there is a 
second disk crash while the first crash is being repaired. 

Example 11.18: Suppose each disk has a 10 year mean time to failure, which 
we shall take to mean that the probability of failure in any given year is 10%. 
If disks are mirrored, then when a disk fails, we have only to replace it with a 
good disk and copy the mirror disk to the new one. At the end, we have two 
disks that are mirrors of each other, and the system is restored to its former 
state. 

The only thing that could go wrong is that during the copying the mirror 
disk fails. Now, both copies of at least part of the data have been lost, and 
there is no way to recover. 

But how often will this sequence of events occur? Suppose that the process 
of replacing the failed disk takes 3 hours, which is 118 of a day, or 112920 of a 
year. Since we assume the average disk lasts 10 years, the probability that the 
mirror disk will fail during copying is (1/10) x (1/2920), or one in 29,200. If 
one disk fails every 10 years, then one of the two disks will fail once in 5 years 
on the average. One in every 29,200 of these failures results in data loss. Put 
another way, the mean time to a failure involving data loss is 5 x 29,200 = 
146,000 years. 0 

11.7.3 Parity Blocks 

While mirroring disks is an effective way to reduce the probability of a disk crash 
involving data loss, it uses as many redundant disks as there are data disks. 
Another approach, often called RAID level 4, uses only one redundant disk no 
matter how many data disks there are. We assume the disks are identical, SO we 
can number the blocks on each disk from 1 to some number n. Of course, all the 
blocks on all the disks have the same number of bits; for instance, the 16,384- 
byte blocks in our Megatron 747 running example have 8 x 16,384 = 131,072 
bits. In the redundant disk, the ith block consists of parity checks for the ith 
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blocks of all the data disks. That is, the j th bits of all the ith blocks, including 
both the data disks and the redundant disk, must have an even number of 1's 
among them, and we always choose the bit of the redundant disk to make this 
condition true. 

We saw in Example 11.17 how to force the condition to be true. In the 
redundant disk, we choose bit j to be 1 if an odd number of the data disks 
have 1 in that bit, and we choose bit j of the redundant disk to be 0 if there 
are an even number of 1's in that bit among the data disks. The term for this 
calculation is the modulo-2 sum. That is, the modulo-2 sum of bits is 0 if there 
are an even number of 1's among those bits, and 1 if there are an odd number 
of 1's. 

Example 11.19 : Suppose for sake of an extremely simple example that blocks 
consist of only one byte - eight bits. Let there be three data disks, called 1, 
2, and 3, and one redundant disk, called disk 4. Focus on, say, the first block 
of all these disks. If the data disks have in their first blocks the following bit 
sequences: 

disk 1: 11110000 
disk 2: 10101010 
disk 3: 00111000 

then the redundant disk will hz;e in block 1 the parity check bits: 
! 

disk 4: 01100010 

Notice how in each position, an even number of the four 8-bit sequences have 
! 1's. There are two 1's in positions 1. 2. 4, 5, and 7, four 1's in position 3, and 

zero 1's in positions 6 and 8. 

Reading 

Reading blocks from a data disk is no different from reading blocks from any 
disk. There is generally no reason to read from the redundant disk. but tve could. 
In some circumstances, 11-e can actually get the effect of tli-o simultaneous reads 
from one of the data disks; the following example shows how, although the 
conditions under which it could be used are expected to be rare. 

Example 11.20: Suppose we are reading a block of the first data disk. and 
another request comes in to read a different block, say block 1. of the same data 
disk. Ordinarily. we ~ o u l d  have to nait for the first request to finish. Hoivemr. 

I if none of the other disks are busy. Ive could read block 1 from each of them. 

I 
and compute block 1 of the first disk by taking the modulo-2 sum. 

Specifically. if the disks and their first blocks were as in Example 11.19, then 
we could read the second and third data disks and the redundant disk. to get 
the follo.iving blocks: 
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disk 2: 10101010 
disk 3: OO111OOO 
disk 4: 01100010 

If we take the modulo-2 sum of the bits in each colunln, we get 

disk 1: 11110000 

which is the same as block 1 of the first disk. 

Writing 

When we write a new block of a data disk, me need not only to change that 
block, but we need to change the corresponding block of the redundant disk 
so it continues to hold the parity checks for the corresponding blocks of all the 
data disks. A naive approach would read the corresponding blocks of the n data 
disks, take their modulo-:! sum, and rewrite the block of the redundant disk. 
That approach requires a write of the data block that is rewritten, the reading 
of the n - 1 other data blocks, and a write of the block of the redundant disk. 
The total is thus n + 1 disk IJO's. 

A better approach is to look only at the old and new versions of the data 
block i being rewritten. If we take their modulo-2 sum, we know in which 
positions there is a change in the number of 1's among the blocks numbered i 
on all the disks. Since these changes are always by one, any even number of 1's 
changes to an odd number. If we change the same positions of the redundant 
block, then the number of 1's in each position becomes even again. We can 
perform these calculations using four disk I/O1s: 

1. Read the old value of the data block being changed. 

2. Read the corresponding block of the redundant disk. 

3. iVrit,e the new data block. 

4. Reca1culat.e and write the block of the redundant disk. 

Example 11.21: Suppose the three first blocks of the data disks are as in 
Example 11.19: 

disk 1: 1111OOOO 
disk 2: 10101OlO 
disk 3: 00111000 
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The Algebra of Modulo-2 Sums 

It niay be helpful for understanding some of the tricks used with parity 
checks to know the algebraic rules involving the modulo-2 sum opera- 
tion on bit vectors. N7e shall denote this operation 8. As an example, 
1100 8 1010 = 0110. Here are some useful rules about @: 

6 The conamutative law: x S y = y 8 X. 

The associative law: x 9 (y 0 z )  = (X 8 Y) 69 z. 

The all-0 vector of the appropriate length, which we denote 0, is the 
identity for s; that is, x 0 = 0 Fax = X. 

9 is its own inverse: xGx = 0. As a useful consequence, if x@ y = t, 
then we can "add" x to both sides and get y = x €9 2. 

i replace this block by a new block that n-e get by changing the appropriate po- 
sitions; in effect we replace the redundant block by the modulo-2 sum of itself 
and 01100110, to get 00000100. Another way to express the new redundant 

I block is that it is the modulo-2 sum of the oid and new versions of the block 
being rewritten and the old value of the redundant block. In our example, the 

/ first blocks of the four disks - three data disks and one redundant - have 
become 

disk 1: 11110000 
disk 2: 11001100 
disk 3: 00111000 
disk 4: 00000100 

after the ~vrite to the block on the second disk and the necessary recomputation 
of the redundant block. Sotice that in the blocks above, each column continues 
to have an even number of 1's. 

Incidentally. notice that this write of a data block, like all writes of data 
blocks using the scheme described above. takes four disk 110's. The naive 
scheme - read all but the rewritten block and recompute the redundant block 
directl\- - 15-ould also require four disk 110's in this example: two to read data 
from the first and third data disks. and t ~ o  to write the second data disk and 
the redundant disk. Holyever, if we had more than three data disks, the number 
of 110's for the naive scheme rises linearly with the number of data disks, while 
the cost of the scheme advocated here continues to require only four. 

Suppose also that the block on the second disk changes from 10101010 to 
11001100. We take the modulo-:! sum of the old and new values of the block 
on disk 2, to get 01100110. That tells us we must change positions 2, 3, 6, and 
7. of the first block of the redundant disk. \Ye read that block: 01100010. We 
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Failure Recovery 

Now, let us consider what we xvould do if one of the disks crashed. If it is the 
redundant disk, we swap in a new disk, and recompute the redundant blocks. If 
the failed disk is one of the data disks, then we need to swap in a good disk and 
recompute its data from the other disks. The rule for recomputing any missing 
data is actually simple, and doesn't depend on which disk, data or redundant, 
is failed. Since we know that the number of 1's among corresponding bits of all 
disks is even, it follows that: 

The bit in any position is the modulo-2 sum of all the bits in the corre- 
sponding positions of all the other disks. 

If one doubts the above rule, one has only to consider the two cases. If the bit 
in question is 1, then the number of corresponding bits that are 1 must be odd, 
so their modulo-2 sum is 1. If the bit in question is 0, then there are an even 
number of 1's among the corresponding bits, and their modulo-2 sum is 0. 

Example 11.22 : Suppose that disk 2 fails. We need to recompute each block 
of the replacement disk. Following Example 11.19, let us see how to recompute 
the first block of the second disk. \Ve are given the corresponding blocks of the 
first and third data disks and the redundant disk, so the situation looks like: 

disk 1: 11110000 
disk 2: ???????? 
disk 3: 00111000 
disk 4: 01100010 

If we take the modulo-2 sum of each column, we deduce that the missing block 
is 10101010, as was initially the case in Example 11.19. 

11.7.4 An Improvement: RAID 5 

The RAID level 4 strategy described in Section 11.7.3 effectively preserves data 
unless there are two, almost-simultaneous disk crashes. However, it suffers from 
a bottleneck defect that we can see when we re-examine the process of writing 
a new data block. Whatever scheme we use for updating the disks, we need to 
read and write the redundant disk's block. If there are n data disks, then the 
number of disk writes to the redundant disk will be n times the average number 
of writes to any one data disk. 

However, as we observed in Example 11.22, the rule for recovery is the 
same as for the data disks and redundant disks: take the modulo-2 sum of 
corresponding bits of the other disks. Thus, we do not have to treat one disk as 
the redundant disk and the others as data disks. Rather, we could treat each 
disk as the redundant disk for some of the blocks. This improvernent is often 
called RAID level 5. 
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For instance, if there are n + 1 disks numbered 0 through n, we could treat 
the ith cylinder of disk j as redundant if j is the remainder when i is divided 
by n + 1. 

Example 11.23: In our running example, n = 3 so there are 4 disks. The 
first disk, numbered 0, is redundant for its cylinders numbered 4, 8, 12, and so 
on, because these are the numbers that leave remainder 0 when divided by 4. 
The disk numbered 1 is redundant for blocks numbered 1, 5, 9, and so on; disk 
2 is redundant for blocks 2, 6 .  10,. . ., and disk 3 is redundant for 3, 7, 11,. . . . 

-4s a result, the reading and writing load for each disk is the same. If all 
blocks are equally likely to he written, then for one write, each disk has a 114 
chance that the block is on that disk. If not, then it has a 1/3 chance that 
it will be the redundant disk for that block. Thus, each of the four disks is 
involved in + $ x = $ of the writes. 

11.7.5 Coping With Multiple Disk Crashes 

i There is a theory of error-correcting codes that allows us to deal with any 

I number of disk crashes - data or redundant - if we use enough redundant 

i disks. This strategy leads to the highest M I D  "level," RAID level 6. We 
shall give only a simple example here, where two simultaneous crashes are 

i correctable, and the strategy is based on the simplest error-correcting code, 
known as a Hamming code. 

In our description ~5-e focus on a system with seven disks, numbered 1 
through 7. The first four are data disks: and disks 5 through 7 are redun- 

I dant. The relationship between data and redundant disks is summarized by t 
the 3 x 7 matrix of 0's and 1's in Fig. 11.17. Xotice that: 

a) Every possible column of three 0's and l's, except for the all-0 column, 
appears in the matrix of Fig. 11.27. 

I b) The columns for the redundant disks have a single 1. 
i 
I 
i 

c) The columns for the data disks each have at least two 1's. 

I 

Data : Redundant 

Disknumber 1 2 3 4 1 5 6 7 
I 

Figure 11.17: Redundancy pattern for a system that can recover from two 
simultaneous disk crashes 
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The meaning of each of the three rows of 0's and 1's is that if we look at  
the corresponding bits from all seven disks, and restrict our attention to those 
disks that have 1 in that row, then the modulo-2 sum of these bits must be 0. 
Put another way, the disks with 1 in a given row of the matrix are treated as 
if they were the entire set of disks in a RAID level 4 scheme. Thus, we can 
compute the bits of one of the redundant disks by finding the row in which that 
disk has 1, and taking the modulo-2 sum of the corresponding bits of the other 
disks that have 1 in the same row. 

For the matrix of Fig. 11.17, this rule implies: 

1. The bits of disk 5 are the modulo-2 sum of the corresponding bits of disks 
1, 2, and 3. 

2. The bits of disk 6 are the modulo-2 sum of the corresponding bits of disks 
1, 2, and 4. 

3. The bits of disk 7 are the module2 sum of the corresponding bits of disks 
1, 3, and 4. 

We shall see shortly that the particular choice of bits in this matrix gives us a 
simple rule by which we can recover from two simultaneous disk crashes. 

Reading 

\Ve may read data from any dat.a disk normally. The redundant disks can be 
ignored. 

Writing 

The idea is similar to the writing strategy outlined in Section 11.7.4, but now 
several redundant disks may be involved. To write a block of some data disk, 
we compute the modulo-2 sum of the new and old versions of that block. These 
bits are then added, in a modulo-2 sum, to the corresponding blocks of all those 
redundant disks that have 1 in a row in which the written disk also has 1. 

Example 11.24: Let us again assume that blocks are only eight bits long. 
and focus on the first blocks of the seven disks involved in our RAID level 6 
example. First, suppose the data and redundant first blocks are as g i ~ e n  in 
Fig. 11.18. Notice that the block for disk 5 is the modulo-:! sum of the blocks 
for the first three disks, the sixth row is the modulo-2 sum of rows 1, 2, and 1, 
and the last row is the modulo-2 sum of rows 1: 3, and 4. 

Suppose we rewrite the first block of disk 2 to be 00001111. If we sum this 
sequence of bits modulo-2 with the sequence 10101010 that is the old value of 
this block, we get 10100101. If we look at the column for disk 2 in Fig. 11.17, 
we find that this disk has 1's in the first two rows, but not the third. Since 
redundant disks 5 and 6 have 1 in rows 1 and 2, respectively, we must perform 
the sum modulo-2 operation on the current contents of their first blocks and 

Disk I Contents 

Figure 11.18: First blocks of all disks 

the sequence 10100101 just calculated. That is, we flip the values of positions 1, 
3, 6, and 8 of these two blocks. The resulting contents of the first blocks of all 
disks is shown in Fig. 11.19. Xotice that the new contents continue, to satisfy the 
constraints implied by Fig. 11.17: the modulo-2 sum of corresponding blocks 
that have 1 in a particular row of the matrix of Fig. 11.17 is still all 0's. 

Disk 1 Contents 

Figure 11.19: First blocks of all disks after rewriting disk 2 and changing the 
redundant disks 

Failure Recovery 

Sow, let us see hen- the redundancy scheme outlined above can be used to 
correct up to two simultaneous disk crashes. Let the failed disks be a and b. 
Since all columns of the matrix of Fig. 11.17 are different, we must be able to 
find some row r in which the columns for a and b are different. Suppose that n 
has 0 in row r ,  while b has 1 there. 

Then we can compute the correct b by taking the modulo-2 sum of corre- 
sponding bits from all the disks other than b that have 1 in row r. Sote that 
a is not among these. so none of them have failed. Having done so, we must 
recompute a ,  with all other disks available. Since every column of the matrix 
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of Fig. 11.17 has a 1 in some row, we can use this row to recompute disk a b i  
taking the modulo-2 sum of bits of those other disks with a 1 in this row. 

Disk 1 Contents 

Figure 11.20: Situation after disks 2 and 5 fail 

Example 11.25: Suppose that disks 2 and 5 fail at  about the same time. 
Consulting the matrix of Fig. 11.17, we find that the columns for these two 
disks differ in row 2, where disk 2 has 1 but disk 5 has 0. We may thus 
reconstruct disk 2 by taking the modulo-2 sum of corresponding bits of disks 
1, 4, and 6, the other three disks with 1 in row 2. Notice that none of these 
three disks has failed. For instance, following from the situation regarding the 
first blocks in Fig. 11.19, we would initially have the data of Fig. 11.20 available 
after disks 2 and 5 failed. 

If we take the modulo-:! sum of the contents of the blocks of disks 1, 4, and 
6, we find that the block for disk 2 is 00001111. This block is correct as can be 
verified from Fig. 11.19. The situation is now as in Fig. 11.21. 

Disk 1 Contents 

Figure 11.21: dfter recovering disk 2 

Sow, we see that disk 5's column in Fig. 11.17 has a 1 in the first row. We 
can therefore recompute disk 5 by taking the modulo-:! sum of corresponding 
bits from disks 1, 2, and 3, the other three disks that have 1 in the first row. 
For block 1, this sum is 11000111. Again, the correctness of this calculation 
can be confirmed by Fig. 11.19. O 

i 
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Additional Observations About RAID Level 6 

1. \Ye can combine the ideas of RAID levels 5 and 6, by varying the 
redundant disks according to the block or cylinder number. Do- 
ing so will avoid bottlenecks when writing; the scheme described in 
Section 11.7.3 will cause bottlenecks at  the redundant disks. 

2. The scheme described in Section 11.7.5 is not restricted to four data 
disks. The number of disks can be one less than any power of 2, say 
2" I. Of these disks, k are redundant, and'the remaining 2" k - 1 
are data disks, so the redundancy grows roughly as the logarithm of 
the number of data disks. For any k, we can construct the matrix 
corresponding to Fig. 11.17 by writing all possible columns of k 0's 
and l's, except the all-0's column. The colnmns with a single 1 
correspond to the redundant disks, and the columns with more than 
one 1 are the data disks. 

I 
I 11.7.6 Exercises for Section 11.7 

Exercise 11.7.1: Suppose we use mirrored disks as in Example 11.18, the 
failure rate is 4% per year, and it takes 8 hours to replace a disk. What is the 
mean time to a disk failure involving loss of data? 

*! Exercise 11.7.2: Suppose that a disk has probability F of failing in a given 
year. and it takes H hours to replace a disk. 

a) If n-e use mirrored disks, what is the mean time to data loss, as a function 
of F and H ?  

b) If u-e use a R.UD level 4 or 5 scheme. with S disks, what is the mean 
time to data loss? 

!! Exercise 11.7.3: Suppose we use three disks as a mirrored group; i.e., all 
three hold identical data. If the yearly probability of failure for one disk is F, 
and it takes H hours to restore a disk. what is the mean time to data loss? 

Exercise 11.7.4: Suppose we are using a R.UD level 4 scheme with four data 
disks and one redundant disk. -1s in Exaxnple 11.19 assulne blocks are a single 
byte. Give the block of the redundant disk if the corresponding blocks of the 
data disks are: 

* a) 01010110,11000000,00111011, and 11111011. 

b) 11110000, 11111000,00111111, and 00000001. 



CHAPTER 11. DATA STORAGE 

Error-Correcting Codes and RAID Level 6 

There is a theory that guides our selection of a suitable matrix, like that 
of Fig. 11.17, to determine the content of redundant disks. A code of 
length n is a set of bit-vectors (called code words) of length n. The Ham- 
ming distance between two code words is the number of positions in which 
they differ, and the minimum distance of a code is the smallest Hamming 
distance of any two different code words. 

If C is any code of length n, we can require that the corresponding 
bits on n disks have one of the sequences that are members of the code. As 
a very simple example, if we are using a disk and its mirror, then n = 2, 
and we can use the code C = (00,ll). That is, the corresponding bits 
of the two disks must be the same. For another example, the matrix of 
Fig. 11.17 defines the code consisting of the 16 bit-vectors of length 7 that 
have arbitrary values for the first four bits and have the remaining three 
bits determined by the rules for the three redundant disks. 

If the minimum distance of a code is d, then disks whose corresponding 
bits are required to be a vector in the code will be able to tolerate d - 1 
simultaneous disk crashes. The reason is that, should we obscure d - 1 
positions of a code word, and there were two different ways these positions 
could be filled in to make a code word, then the two code words would have 
to differ in a t  most the d - 1 positions. Thus, the code could not have 
minimum distance d. -4s an example. the matrix of Fig. 11.17 actually 
defines the well-known Hamming wde, which has minimum distance 3. 
Thus, it can handle two disk crashes. 

Exercise 11.7.5 : Using the same RAID level 4 scheme as in Exercise 11.7.4, 
suppose that data disk 1 has failed. Recover the block of that disk under the 
follon-ing circumstances: 

* a) The contents of disks 2 through 4 are 01010110, 11000000, and 00111011, 
while the redundant disk holds 11111011. 

b) The contents of disks 2 through 4 are 11110000, 11111000~ and 00111111. 
while the redundant disk holds 00000001. 

Exercise 11.7.6: Suppose the block on the first disk in Exercise 11.7.1 is 
changed to 10101010. What changes to the corresponding blocks on the other 
disks must be made? 

Exercise 11.7.7: Suppose we have t,he RAID level 6 scheme of Example 11.21, 
and the blocks of the four dat.a disks are 00111100, 11000111, 01010101, and 
10000100, respectively. 

11.8. SUA4AJARY OF CHAPTER 11 563 

a) What are the corresponding blocks of the redundant disks? 

b) If the third disk's block is rewritten to be 10000000, what steps must be 
taken to change other disks? 

Exercise 11.7.8 : Describe the steps taken to recover from the following fail- 
ures using the RAID level 6 scheme with seven disks: 

* a) Disks 1 and 7. 

b) Disks 1 and 4. 

c) Disks 3 and 6. 

Exercise 11.7.9: Find a RAID level 6 scheme using 15 disks, four of which 
are redundant. Hint: Generalize the 7-disk Hamming matrix. 

Exercise 11.7.10: List the 16 code words for the Hamming code of length 7. 
That is, what are the 16 lists of bits that could be corresponding bits-on the 
seven disks of the R.UD level 6 scheme based on the matrix of Fig. 11.17? 

Exercise 11.7.11 : Suppose we have four disks, of which disks 1 and 2 are data 
disks, and disks 3 and 4 are redundant. Disk 3 is a mirror of disk 1. Disk 4 
holds the parity check bits for the corresponding bits of disks 2 and 3. 

a) Express this situation by giving a parity check matrix analogous to Fig. 
11.17. 

!! b) It is possible to recover from some but not all situations where two disks 
fail at  the same time. Determine for n-hich pairs it is possible to recover 
and for which pairs it is not. 

*! Exercise 11.7.12: Suppose ~ve have eight data disks numbered 1 through 8, 
and three redundant disks: 9. 10, and 11. Disk 9 is a parity check on disks 
1 through 4, and disk 10 is a parity check on disks 5 through 8. If all pairs 
of disks are equally likely to fail simultaneously, and we want to maximize the 
probability that we can recover from the simultaneous failure of two disks, then 
on which disks should disk 11 be a parity check? 

!! ~ x e r c i s e  11.7.13: Find a R.IID level 6 scheme with ten disks. such that it 
is possible to recover from the failure of any three disks simultaneously You 
should use as many data disks as you can. 

11.8 Summary of Chapter 11 

+ A4emory Hierarchy: -4 computer system uses storage components ranging 
over many orders of magnitude in speed, capacity, and cost per bit. From 
the smallest/most expensive to largest/cheapest, they are: cache, main 
memory, secondary memory (disk), and tertiary memory. 
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+ Tertiary Storage: The principal devices for tertiary storage are tape cas- 
settes, tape silos (mechanical devices for managing tape cassettes), and 
"juke boxes" (mechanical devices for managing CD-ROM disks). These 
storage devices have capacities of many terabytes, but are the slowest 
available storage devices. 

+ D:sks/Seconday Storage: Secondary storage devices are principally mag- 
netic disks with multigigabyte capacities. Disk units have several circular 
platters of magnetic material, with concentric tracks to store bits. Plat- 
ters rotate around a central spindle. The tracks at  a given radius from 
the center of a platter form a cylinder. 

+ Blocks and Sectors: Tracks are divided into sectors, which are separated 
by unmagnetized gaps. Sectors are the unit of reading and writing from 
the disk. Blocks are logical units of storage used by an application such 
as a DBMS. Blocks typically consist of several sectors. 

+ Disk Controller: The disk controller is a processor that controls one or 
more disk units. It is responsible for moving the disk heads to the proper 
cylinder to read or write a requested track. It also may schedule competing 
requests for disk access and buffers the blocks to be read or written. 

+ Disk Access Time: The latency of a disk is the time between a request to 
read or write a block, and the time the access is completed. Latency is 
caused principally by three factors: the seek time to move the heads to 
the proper cylinder, the rotational latency during which the desired block 
rotates under the head, and the transfer time, while the block moves under 
the head and is read or written. 

+ Moore's Law: A consistent trend sees parameters such as processor speed 
and capacities of disk and main menlory doubling every 18 months. How- 
ever, disk access times shrink little if at all in a similar period. An im- 
portant consequence is that the (relative) cost of accessing disk appears 
to grow as the years progress. 

+ Algorithms Using Secondary Storage: When the data is so large it does 
not fit in main memory, the algorithms used to manipulate the data must 
take into account the fact that reading and writing disk blocks bet~veen 
disk and memory often takes much longer than it does to process the 
data once it is in main memory. The evaluation of algorithms for data in 
secondary storage thus focuses on the number of disk I/O's required. 

+ Two-Phase, Multiway Merge-Sort: This algorithm for sorting is capable 
of sorting enormous amounts of data on disk using only two disk reads 
and two disk writes of each datum. It is the sorting method of choice in 
most database applications. 
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+ Speeding Up Disk Access: There are several techniques for accessing disk 
blocks faster for some applications. They include dividing the data among 
several disks (to allow parallel access), mirroring disks (maintaining sev- 
eral copies of the data, also to allow parallel access), organizing data that 
will be accessed together by tracks or cylinders, and prefetching or double 
buffering by reading or writing entire tracks or cylinders together. 

+ Elevator Algorithm: l i e  can also speed accesses by queueing access re- 
quests and handling them in an order that allon-s the heads to make one 
sweep across the disk. The heads stop to handle a request each time 
it reaches a cylinder containing one or more blocks with pending access 
requests. 

+ Disk Failure Modes: To avoid loss of data, systems must be able to handle 
errors. The principal types of disk failure are intermittent (a read or write 
error that will not reoccur if repeated), permanent (data on the disk is 
corrupted and cannot be properly read), and the disk crash, where the 
entire disk becomes unreadable. 

+ Checksums: By adding a parity check (extra bit to make the number of 
1's in a bit string even), intermittent failures and permanent failures can 
be detected, although not corrected. 

+ Stable Storage: By making two copies of all data and being careful about 
the order in which those copies are written. a single disk can be used to 
protect against almost all permanent failures of a single sector. 

+ RAID: There are several sche~nes for using an extra disk or disks to enable 
data to survive a disk crash. RAID level 1 is mirroring of disks; level 1 
adds a disk whose contents are a parity check on corresponding bits of all 
other disks, level 5 ~ar ie s  the disk holding the parity bit to avoid making 
the parity disk a writing bottleneck. Level 6 involves the use of error- 
correcting codes and may allo~t- survival after several sinlultaneous disk 
crashes. 

11.9 References for Chapter 11 

The RAID idea can be traced back to 161 on disk striping. The name and 
error-correcting capability is from [j]. 

The model of disk failures in Section 11.6 appears in unpublished work of 
Lampson and Sturgis [4]. 

There are several useful surveys of material relevant to this chapter. [2] 
discusses trends in disk storage and similar systems. .\ study of RAID systems 
is in [I]. [7] surl-eys algorithms suitable for the secondary storage model (block 
model) of computation. 

[3] is an important study of how one optimizes a system involving processor. 
memory, and disk, to perform specific tasks. 
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Representing Data 
Elements 

This chapter relates the block model of secondary storage that we covered in 
Section 11.4 to the requirements of a DBMS. We begin by looking at the way 
that relations or sets of objects are represented in secondary storage. 

Attributes need to be represented by fixed- or variable-length sequences 
of bytes, called "fields." 

e Fields, in turn, are put together in fixed- or variable-length collections 
called ..records." which correspond to tuples or objects. 

Records need to be stored in physical blocks. Various data structures 
are useful: especially if blocks of records need to be reorganized when the 
database is modified. 

I A collection of records that forms a relation or the extent of a class is 
t 
f 

stored as a collection of blocks; called a file.' To support efficient querying 

B and modification of these collections, we put one of a number of "index" 
structures on the file: these structures are the subject of Chapters 13 
and 14. 

i 12.1 Data Elements and Fields 
I iYe shall begin by looking at the representation of the most basic data elements: 

the values of attributes found in relational or object-oriented database systems. 
These are represented by -fields." Subsequently, we shall see how fields are put 

'The database notion of a '.file" is somewhat more general than the .'file" in an operating 
system. \Vhile a database file could be an unstructured stream of bytes, it is more common 
for the file to consist of a collection of blocks organized in some useful \ray, with indexes or 
other specialized access methods. We discuss these organizations in Chapter 13. 
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j 

i identifiers (or other pointers to records) and "blobs" (binary, large objects, 
such as a 2-gigabyte MPEG video). These matters are addressed in Sections 

i 12.3 and 12.4. 

I 

568 CHAPTER 12. REPRESENTING D4TA ELElMENTS 

together to form the larger elements of a storage system: records, blocks, and 
files. 

12.1.1 Representing Relational Database Elements 
12.1.2 Representing Objects 

Suppose we have declared a relation in an SQL system, by a CREATE TABLE 
statement such as that of Fig. 12.1, which repeats the definition in Fig. 6.16. 
The DBMS has the job of representing and storing the relation described by 
this declaration. Since a relation is a set of tuples, and tuples are similar to 
records or "structs" (the C or C++ term), we may imagine that each tuple will 
be stored on disk as a record. The record will occupy (part of) some disk block, 
and within the record there will be one field for every attribute of the relation. 

To a first approximation, an object is a tuple, and its fields or "instance vari- 
ables" are attributes. Likewise, tuples in object-relational systems resemble 
tuples in ordinary, relational systems. However, there are two important exten- 
sions beyond what we discussed in Section 12.1.1: 

1. Objects can have methods or special-purpose functions associated with 
them. The code for these functions is part of the schema for a class of 
objects. 

CREATE TABLE Moviestar ( 
name CHAR(30) PRIMARY KEY, 
address VARCHAR(255) , 
gender CHAR(1) , 
birthdate DATE 

1; 

2. Objects may have an object identifier (OID): which is an address in some 
global address space that refers uniquely to that object. Moreover, ob- 
jects can have relationships to other objects, and these relationships are 
represented by pointers or lists of pointers. 

Methods are generally stored with the schema, since they properly belong to 
the database as a whole, rather than any particular object. However, to access 
methods, the record for an object needs to have a field that indicates what class 
it belongs to. 

Techniques for representing addresses, whether object ID'S or references to 
other objects, are discussed in Section 12.3. Relationships that are part of an 
object, as are permitted in ODL, also require care in storage. Since we don't 
know 110117 many related objects there can be (at least not in the case of a 
many-many relationship or the .'manyn side of a many-one relationship), we 
must represent the relationship by a "variable-length record," the subject of 
Section 12.4. 

Figure 12.1: An SQL table declaration 

While the general idea appears simple, the "devil is in the det,ails," and we 
shall have to discuss a number of issues: 

1. How do we represent SQL datatypes as fields? 

2. How do we represent tuples as records? 

3. How do we represent collections of records or tuples in blocks of memory? 

I 
f 12.1.3 Representing Data Elements 

4. How do rve represent and store relations as collections of blocks? 

5. How do we cope with record sizes that may be different for different tuples 
or that do not divide the block size evenly, or both? Let us begin by considering how the principal SQL datatypes are represented 

as fields of a record. Ultimately: all data is represented as a sequence of bytes. 
For example, an attribute of type INTEGER is normally represented by two or 
four bytes, and an attribute of type FLOAT is normally represented by four or 
eight bytes. The integers and real numbers are represented by bit strings that 
are specially interpreted by the machine's hardware so the usual arithmetic 
operations can be performed on them. 

6. What happens if the size of a record changes because some field is up- 
dated? How do we find space within its block, especially when the record 
grows? 

The first item is the subject of this section. The next two items are covered 
in Section 12.2. We shall discuss the last two in Sections 12.4 and 12.5. re- 
spectively. The fourth question - representing relations so their tuples can be 
accessed efficiently - will be studied in Chapter 13. 

Further, we need to consider how to represent certain kinds of data that are 
found in modern object-relational or object-oriented systems, such as object 

Fixed-Length Character Strings 

The simplest kind of character strings to represent are those described by the 
SQL type CHAR(n). These are fixed-length character strings of length n. The 
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A Note on Terminology 

Depending on whether you have experience with file systems, conventional 
programming languages like C, with relational database languages (SQL 
in particular), or object-oriented languages (e.g., Smalltalk, C++, or the 
object-oriented database language OQL), you may know different terms 
for essentially the same concepts. The following table summarizes the 
correspondence, although there are some differences, e.g., a class can have 
methods; a relation cannot. 

Data Element I Record 

struct 
tuple 

relationship 

r t i o n  

array, file 
relation 
extent (of 
a class) 

We shall tend to use file-system terms - fields and records - unless we 
are referring to specific uses of these concepts in database applications. In 
the latter case we shall use relational and/or object-oriented terms. 

field for an attribute with this type is an array of n bytes. Should the value for 
this attribute be a string of length shorter than n, then the array is filled out 
with a special pad character, whose 8-bit code is not one of the legal characters 
for SQL strings. 

Example 12.1 : If an attribute A were declared to have type CHAR(51, then 
the field corresponding to A in all tuples is an array of five characters. If in one 
tuple the component for attribute A were ' ca t ' ,  then the value of the array 
would be: 

c a t l l  

Here, I is the "pad" character, which occupies the fourth and fifth bytes of 
the array. Note that the quote marks, which are needed to indicate a character 
string in SQL programs, are not stored with the value of the string. O 

Variable-Length Character Strings 

Sometimes the values in a column of a relation are character strings whose 
length may vary widely. The SQL type VARCHAR(~) is often used as the type 
of such a column. However, there is an intended implementation of attributes 
declared this way, in which n + 1 bytes are dedicated to the value of the string 
regardless of how long it is. Thus, the SQL VARCHAR type actually represents 

fields of fixed length, although its 'value has a length that ~ ~ i e s .  I e  shall 
examine character strings whose representation's length varies in Section 12.4. 
There are two common representations for VARCHAR strings: 

1. Length plus content. \Ve allocate an array of n + 1 bytes. The first byte 
holds, as an 8-bit integer, the number of bytes in the string. The string 
cannot exceed n characters, and n itself cannot exceed 235, or we shall 
not be able to represent the length in a single byte.2 The second and 
subsequent bytes hold the characters of the string. Any bytes of the 
array that are not used, because the string is shorter than the maximum 
possible, are ignored. These bytes cannot possibly be construed as part 
of the value, because the first byte tells us when the string ends. 

2. Null-terminated string. Again allocate an array of n +  1 bytes for the value 
of the string. Fill this array with the characters of the string, followed by 
a null character, which is not one of the legal characters that can appear 
in character strings. As with the first method, unused positions of the 
array cannot be construed as part of the value; here the null terminator 
warns us not to look further, and also makes the representation of VARCHAR 
strings compatible with that of character strings in C. 

Example 12.2: Suppose attribute A is declared VARCHAR(10). We allocate 
an array of I1 characters in each tuple's record for the value of A. Suppose 
'ca t '  is the string to represent. Then in method 1: \ve ~vould put 3 in the first 
byte to represent the length of the string, and the next three characters would 
be the string itself. The final seven positions are irrelevant. Thus, the value 
appears as: 

Note that the ''3" is the &bit integer 3. i.e., 00000011~ not the character '3'. 
In the second method, we fill the first three positions with the string; the 

fourth is the null character (for which Ive use the symbol -1, as we did for the 
"pad" character), and the remaining seven positions are irrelevant. Thus, 

c a t l  

is the representation of 'cat  as a null-terminated string. U 

Dates a n d  Times 

A date is usually represented as a fixed-length character string. as discussed in 
Section 6.1.4. Thus. a date can be represented just as 11-e 1-ould represent any 
other fixed-length character string. Times may similarly be represented as if 
they were character strings. Ho~vever, the SQL standard also allows a value of 
type TIME to include fractions of a second. Since such strings are of arbitrary 
length, we have two choices: 

20f course we could use a scheme in xhich two or more bytes are dedicated to the length. 
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1. The system can put a limit on the precision of times, and times can then 
be stored as if they were type VARCHAR(n1, where n is the greatest length 
a time can have: 9 plus the number of fractional digits allowed in seconds. 

2. Times can be stored as true variable-length values and dealt with as dis- 
cussed in Section 12.4. 

Bits 

A sequence of bits - that is, data described in SQL by the type BIT(n) - can 
be packed eight to a byte. If n is not divisible by 8, then we are best off ignoring 
the unused bits of the last byte. For instance, the bit sequence 010111110011 
might be represented by 01011111 as the first byte and 00110000 as the second; 
the final four 0's are not part of any field. As a special case, we can represent 
a boolean value, that is, a single bit, as 10000000 for true and 00000000 for 
false. However, it may in some contexts be easier to test a boolean if we make 
the distinction appear in all bits; i.e., use 11111111 for true and 00000000 for 
false. 

Enumerated Types 

Sometimes it is useful to have an attribute whose values take on a small, fixed 
set of values. These values are given symbolic names, and the type consisting 
of all those names is an enumerated type. Common examples of enumerated 
types are days of the week, e.g., {SUN, MON, TUE, WED, THU, FRI, SAT), or 
a set of colors, e.g., {RED, GREEN, BLUE, YELLOW). 

It'e can represent the values of an enumerated type by integer codes, using 
only as many bytes as needed. For instance, we could represent RED by 0, GREEN 
by 1: BLUE by 2, and YELLOW by 3. These integers can each be represented by 
tn-o bits, 00, 01, 10, and 11, respectively. It is more convenient, however. to 
use full bytes for representing integers chosen from a small set. For example, 
YELLOW is represented by the integer 3, which is 00000011 as an eight-bit byte. 
Any enumerated type with up to 256 values can be represented by a single byte. 
If the enumerated type has up to 216 values, a short integer of two bytes will 
suffice, and so on. 

12.2 Records 

\I-e shall now begin the discussion of how fields are grouped together into 
records. The study continues in Section 12.1, where we look at variable-length 
fields and records. 

In general, each type of record used by a database system must have a 
schema, which is stored by the database. The schema includes the names and 
data types of fields in the record, and their offsets within the record. The 
schema is consulted when it is necessary to access components of the record. 

12.2. RECORDS 

Packing Fields Into a Single Byte 

One may be tempted to take advantage of fields that have small enumer- 
ated types or that are boolean-valued, to pack several fields into a single 
byte. For instance, if we had three fields that were a boolean, a day of the 
week, and one of four colors, respectively, we could use one bit for the first, 
3 bits for the second, and two bits for the third, put them all in a single 
byte and still have two bits left over. There is no impediment to doing so, 
but it makes retrieval of values from one of the fields or the writing of new 
values for one of the fields more complex and error-prone. Such packing of 
fields used to be more important when storage space was more expensive. 
Today, we do not advise it in common situations. 

12.2.1 Building Fixed-Length Records 

Tuples are represented by records consisting of the sorts of fields discussed in 
Section 12.1.3. The simplest situation occurs when all the fields of the record 
have a fixed length. IVe may then concatenate the fields to form the record. 

Example 12.3: Consider the declaration of the MovieStar relation in Fig. 
12.1. There are four fields: 

1. name, a 30-byte string of characters. 

2. address, of type VARCHAR(255). This field will be represented by 256 
bytes, using the schema discussed in Example 12.2. 

3. gender, a single byte, which we suppose ~iyill alwval-s hold either the char- 
acter 'F' or the character ' M ' .  

4. bir thdate,  of type DATE. Ilk shall assume that the 10-byte SQL repre- 
sentation of dates is used for this field. 

Thus, a record of type MovieStar takes 30 + 256 f 1 + 10 = 297 bytes. It looks 
as suggested in Fig. 12.2. We have indicated the offset  of each field, which is 
the number of bytes from the beginning of the record at  which the field itself 
begins. Thus: field name begins at offset 0; address begins a t  offset 30, gender 
at 286. and bi r thdate  at offset 287. 

Some machines ailow more efficient reading and writing of data that begins 
at a byte of main memory whose address is a multiple of 4 (or 8 if the machine 
has a 64-bit processor). Certain types of data, such as integers, may be abso- 
lutely required to begin at an address that is a multiple of 4, while others, such 
as double-precision reals, may need to begin with a multiple of 8. 
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gender ~7% . . 

0 30 286 287 297 

Figure 12.2: A MovieStar record 

While the tuples of a relation are stored on disk and not in main memory, 
we have to be aware of this issue. The reason is that when we read a block 
from disk to main memory, the first byte of the block will surely be placed 
at a memory address that is a multiple of 4, and in fact will be a multiple of 
some high power of 2, such as 2" if blocks and pages have length 4096 = 212. 
Requirements that certain fields be loaded into a main-memory position whose 
first byte address is a multiple of 4 or 8 thus translate into the requirement that 
those fields have an offset within their block that has the same divisor. 

For simplicity, let us assume that the only requirement on data is that fields 
start at  a main-memory byte whose address is a multiple of 4. Then it is 
sufficient that 

a) Each record start at  a byte within its block that is a multiple of 4, and 

b) All fields within the record start at  a byte that is offset from the beginning 
of the record by a multiple of 4. 

Put another way, we round all field and record lengths up to the next multiple 
of 4. 

Example 12.4 : Suppose that the tuples of the MovieStar relation need to be 
represented so each field starts at a byte that is a multiple of 4. Then the offsets 
of the four fields would be 0, 32,288, and 292, and the entire record would take 
304 bytes. The format is suggested by Fig. 12.3. 

Figure 12.3: The layout of MovieStar tuples when fields are required to start 
at multiple of 4 bytes 

I 

For instance, the first field, name, takes 30 bytes, but we cannot start the 
second field until the next multiple of 4, or offset 32. Thus, address has offset 
32 in this record format. The second field is of length 256 bytes, which means 
the first available byte following address is 288. The third field, gender, needs 

The Need for a Record Schema 

/ . . 

We might wonder why we need to indicate the record schema in the record 
itself, since currently we are only considering fixed-format records. For 
example, fields in a "struct," as used in C or similar languages, do not 
have their offsets stored when the program is running; rather the offsets 
are compiled into the application programs that access the struct. 

However, there are several reasons why the record schema must be 
stored and accessible to the DBMS. For one, the schema of a relation (and 
therefore the schema of the records that represent its tuples) can change. 
Queries need to use the current schema for these records, and so need to 
know what the schema currently is. In other situations, we may not be 
able to tell immediately what the record type is simply from its location 
in the storage system. For example, some storage organizations permit 
tuples of different relations to appear in the same block of storage. 

7 

only one byte, but we cannot start the last field until a total of 4 bytes later, 
at 292. The fourth field, b i r thdate ,  being 10 bytes long, ends a t  byte 301, 
which makes the record length 302 (notice that the first byte is 0). However if 
all fields of all records must start at  a multiple of 4, the bytes numbered 302 
and 303 are useless, and effectively, the record consumes 304 bytes. \17e shall 
assign bytes 302 and 303 to the b i r thdate  field, so they do not get used for 
any other purpose accidentally. 

4 
. . . . . . 

name : address ; . ; . biihdate 

12.2.2 Record Headers 

. . . . 

There is another issue that must be raised when n-e design the layout of a 
record. Often, there is information that must be kept in the record but that is 
not the value of any field. For example, we may want to keep in the record: 

/ 

1. The record schema, or more likely, a pointer to a place where the DBMS 
stores the schema for this type of record, 

0 32 288292 304 

2. The length of the record, 

3. Timestamps indicating the time the record was last modified, or last read. 

among other possible pieces of information. Thus: many record layouts include 
a header of some small number of bytes to provide this additional information. 

The database system maintains schema information, which is essentially 
what appears in the CREATE TABLE statement for that relation: 

1. The attributes of the relation, 

2. Their types, 
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3. The order in which attributes appear in the tuple, 

4. Constraints on the attributes and the relation itself, such as primary key 
declarations, or a constraint that some integer attribute must have a value 
in a certain range. 

We do not have to put all this information in the header of a tuple's record. 
It is sufficient to put there a pointer to the place where the information about 
the tuple's relation is stored. Then all this information can be obtained when 
needed. 

As another example, even though the length of the tuple may be deducible 
from its schema, it may be convenient to have the length in the record itself. 
For instance, we may not wish to examine the record contents, but just find the 
beginning of the next record quickly. A length field lets us avoid accessing the 
record's schema, which may involve a disk 110. 
Example 12.5 : Let us modify the layout of Example 12.4 to include a header 
of 12 bytes. The first four bytes are the type. It is actually an offset in an area 
where the schemas for all the relations are kept. The second is the record length, 
a Cbyte integer, and the third is a timestamp indicating when the tuple was 
inserted or last updated. The timestamp is also a 4-byte integer. The resulting 
layout is shown in Fig. 12.4. The length of the record is now 316 bytes. 0 

p 
1 timestamp 1 gender 

I I I I 
. . . . 
. . ,  , . 
. , ,  

, . 
. . .  , . 
: : : name : address : ' : birthdate v/, 

4 header * 

Figure 12.4: Adding some header information to records representing tuples of 
the Moviestar relation 

12.2.3 Packing Fixed-Length Records into Blocks 

Records representing tuples of a relation are stored in blocks of the disk and 
moved into main memory (along with their entire block) xhen we need to 
access or update them. The layout of a block that holds records is suggested 
in Fig. 12.5. 

There is an optional block header that holds information such as: 

1. Links to one or more other blocks that are part of a network of blocks 
such as those described in Chapter 13 for creating indexes to the tuples 
of a relation. 
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Figure 12.5: A typical block holding records 

header 

2. Information about the role played by this block in such a network. 

3. Information about which relation the tuples of this block belong to. 

record 1 

4. A "directory" giving the offset of each record in the block. 

5. A "block ID"; see Section 12.3. 

6. Timestamp(s) indicating the time of the block's last modification and/or 
access. 

record tt record 2 

By far the simplest case is when the block holds tuples from one relation, 
and the records for those tuples have a fixed format. In that case, following 
the header, we pack as many records as we can into the block and leave the 
remaining space unused. 

... 

Example 12.6 : Suppose we are storing records with the layout developed in 
Example 12.5. These records are 316 bytes long. Suppose also that wue use 
4096-byte blocks. Of these bytes, say 12 will be used for a block header. leaving 
4084 bytes for data. In this space we can fit twelve records of the given 316-byte 
format, and 292 bytes of each block are xasted space. 

12.2.4 Exercises for Section 12.2 

* Exercise 12.2.1 : Suppose a record has the follo~ving fields in this order: A 
character string of length 15, an integer of 2 bytes, an SQL date, and an SQL 
time (no decimal point). How many bytes does the record take if: 

a) Fields can start at any byte. 

b) Fields must start at  a byte that is a multiple of 4. 

c) Fields must start at a byte that is a multiple of 8. 

Exercise 12.2.2 : Repeat Exercise 12.2.1 for the list of fields: -1 real of 8 bytes. 
a character string of length 17. a single byte. and an SQL date. 

* Exercise 12.2.3 : Assunie fields are as in Exercise 12.2.1. but records also have 
a record header consisting of two 4-byte pointers and a character. Calculate 
the record length for the three situations regarding field alignment (a) through 
(c) in Exercise 12.2.1. 
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Exercise 12.2.4 : Repeat Exercise 12.2.2 if the records also include a header 
consisting of an &byte pointer, and ten 2-byte integers. 

* Exercise 12.2.5: Suppose records are as in Exercise 12.2.3, and we wish to 
pack as many records as we can into a block of 4096 bytes, using a block 
header that consists of ten 4-byte integers. How many records can we fit in the 
block in each of the three situations regarding field alignment (a) through (c) 
of Exercise 12.2.1? 

Exercise 12.2.6: Repeat Exercise 12.2.5 for the records of Exercise 12.2.4, 
assuming that blocks are 16,384 bytes long, and that block headers consist of 
three 4-byte integers and a directory that has a 2-byte integer for every record 
in the block. 

12.3 Representing Block and Record Addresses 

Before proceeding with the study of how records with more complex structure 
are represented, we must consider how addresses, pointers, or references to 
records and blocks can be represented, since these pointers often form part 
of complex records. There are other reasons for knowing about secondary- 
storage address representation as well. When we look a t  efficient structures for 
representing files or relations in Chapter 13, we shall see several important uses 
for the address of a block or the address of a record. 

The address of a block when it is loaded into a buffer of main memory can 
be taken to be the virtual-memory address of its first byte, and the address of a 
record within that block is the virtual-memory address of the first byte of that 
record. Howel-er, in secondary storage, the block is not part of the applica- 
tion's virtual-memory address space. Rather, a sequence of bytes describes the 
location of the block within the overall system of data accessible to the DBIIS: 
the device ID for the disk, the cylinder number. and so on. A record can be 
identified by giving its block and the offset of the first byte of the record within 
the block. 

To complicate further the matter of representing addresses, a recent trend 
ton-ard "object brokers" allows independent creation of objects by many coop- 
erating systems. These objects may be represented by records that are part of 
an object-oriented DBMS, although we can think of them as tuples of relations 
without losing the principal idea. However, the capability for independent 
creation of objects or records puts additional stress on the mechanism that 
maintains addresses of these records. 

In this section, we shall begin with a discussion of address spaces, especially 
as they pertain to the common "client-server" architecture for DBXIS's. We 
then discuss the options for representing addresses, and finally look at  "pointer 
sdzzling," the ways in which we can con~ert addresses in the data server's 
world to the world of the client application programs. 

12.3. REPRESENTING BLOCK AND RECORD ADDRESSES 

12.3.1 Client-Server Systems 

Commonly, a database consists of a server process that provides data from 
secondary storage to one or more client processes that are applications using the 
data. The server and client processes may be on one machine, or the server and 
the various clients can be distributed over many machines. See Section 8.3.4, 
where the idea was first introduced. 

The client application uses a conventional "virtual" address space, typically 
32 bits, or about 4 billion different addresses. The operating system or DBMS 
decides which parts of the address space are currently located in main memory, 
and hardware maps the virtual address space to physical locations in main 
memory. \Ve shall not think further of this virtual-to-physical translation, and 
shall think of the client address space as if it were main memory itself. 

The server's data lives in a database address space. The addresses of this 
space refer to blocks, and possibly to offsets within the block. There are several 
ways that addresses in this address space can be represented: 

1. Physical Addresses. These are byte strings that let us determine the 
place within the secondary storage system where the block or record can 
be found. One or more bytes of the physical address are used to indicate 
each of: 

(a) The host to which the storage is attached (if the database is stored 
across more than one machine), 

(b) An identifier for the disk or other device on which the block is lo- 
cated, 

(c) The number of the cylinder of the disk, 

(d) The number of the track within the cylinder (if the disk has more 
than one surface), 

(e) The number of the block within the track. 

(f) (In some cases) the offset of the beginning of the record within the 
block. 

2. Logical Addresses. Each block or record has a "logical address," which is 
an arbitrary string of bytes of some fixed length. A map table, stored on 
disk in a known location, relates logical to physical addresses, as suggested 
in Fig. 12.6. 

Notice that physical addresses are long. Eight bytes is about the minimum 
we could use if n-e incorporate all the listed elements. and some systems use up 
to 16 bytes. For example, imagine a database of objects that is designed to last 
for 100 years. In the future, the database may grow to encompass one million 
machines, and each machine might be fast enough to create one object every 
nanosecond. This system would create around 2'? objects, which requires a 
minimum of ten bytes to represent addresses. Since we would probably prefer 
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logical physical 

Logical address 

address 

Figure 12.6: A map table translates logical to physical addresses 

to reserve some bytes to represent the host, others to represent the storage 
unit, and so on, a rational address notation would use considerably more than 
10 bytes for a system of this scale. 

12.3.2 Logical and Structured Addresses 

One might wonder what the purpose of logical addresses could be. All the infor- 
mation needed for a physical address is found in the map table, and following 
logical pointers to records requires consulting the map table and then going 
to the physical address. However, the level of indirection involved in the map 
table allows us considerable flexibility. For example, many data organizations 
require us to move records around, either within a block or from block to block. 
If we use a map table, then all pointers to the record refer to this map table, 
and all we have to do when ure move or delete the record is to change the entry 
for that record in the table. 

Many combinations of logical and physical addresses are possible as well, 
yielding structured address schemes. For instance, one could use a physical 
address for the block (but not the offset within the block), and add the key value 
for the record being referred to. Then, to find a record given this structured 
address, we use the physical part to reach the block containing that record, and 
xe examine the records of the block to find the one with the proper key. 

Of course, to survey the records of the block, we need enough information 
to locate them. The simplest case is when the records are of a known, fixed- 
length type, with the key field at  a known offset. Then, we only have to find in 
the block header a count of how many records are in the block, and xve know 
exactly where to find the key fields that might match the key that is part of the 
address. However, there axe many other ways that blocks might be organized 
so that we could survey the records of the block; we shall cover others shortly. 

A similar, and very useful, combination of physical and logical addresses is 
to keep in each block an oflset table that holds the offsets of the records within 
the block, as suggested in Fig. 12.7. Notice that the table grows from the front 
end of the block, while the records are placed starting at  the end of the block. 
This strategy is useful when the records need not be of equal length. Then, we 
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do not know in advance how many records the block will hold, and we do not 
have to allocate a fixed amount of the block header to the table initially. 

offset - table-) 

header -'- unused -+ 

record 
record 4 record 3 record 1 

t t I 
Figure 12.7: A block with a table of offsets telling us the position of each record 
within the block 

The address of a record is now the physical address of its block plus the offset 
of the entry in the block's offset table for that record. This level of indirection 
within the block offers many of the advantages of logical addresses, without the 
need for a global map table. 

1% can move the record around within the block, and all we have to do 
is change the record's entry in the offset table; pointers to the record will 
still be able to find it. 

We can even allow the record to move to another block, if the offset table 
entries are large enough to hold a '.forwarding address" for the record. 

Finally, we have an option, should the record be deleted, of leaving in its 
offset-table entry a tombstone, a special value that indicates the record has 
been deleted. Prior to its deletion, pointers to this record may have been 
stored a t  various places in the database. After record deletion, following 
a pointer to this record leads to the tombstone, whereupon the pointer 
can either be replaced by a null pointer, or the data structure otherwise 
modified to reflect the deletion of the record. Had we not left the tomb- 
stone. the pointer might lead to some new record. with surprising, and 
erroneous. results. 

12.3.3 Pointer Swizzling 

Often, pointers or addresses are part of records. This situation is not typical 
for records that represent tuples of a relation, but it is common for tuples 
that represent objects. Also, modern object-relational database systems allow 
attributes of pointer type (called references), so even relational systems need the 
ability to represent pointers in tuples. Finally, index structures are composed 
of blocks that usually have pointers within them. Thus, we need to study 
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Ownership of Memory Address Spaces 

In this section we have presented a view of the transfer between secondary 
and main memory in which each client owns its own memory address 
space, and the database address space is shared. This model is common 
in object-oriented DBMS's. However, relational systems often treat the 
memory address space as shared; the motivation is to support recovery 
and concurrency as we shall discuss in Cliapters 17 and 18. 

A useful compromise is to have a shared memory address space on 
the server side, with copies of parts of that space on the clients' side. 
That organization supports recovery and concurrency, while also allowing 
processing to be distributed in "scalable" way: the more clients the more 
processors can be brought to bear. 

the management of pointers as blocks are moved between main and secondary 
memory; we do so in this section. 

As we mentioned earlier, every block, record, object, or other referenceable 
data item has two forms of address: 

1. Its address in the server's database address space, which is typically a 
sequence of eight or so bytes locating the item in the secondary storage 
of the system. We shall call this address the database address. 

2. An address in virtual memory (provided that item is currently buffered 
in virtual memory). These addresses are typically four bytes. lVe shall 
refer to such an address as the memory  address of the item. 

I?-hen in secondary storage, we surely must use the database address of the 
item. However, when the item is in the main memoiy, we can refer to the item 
by either its database address or its memory address. It is more efficient to put 
memory addresses wherever an item has a pointer, because these pointers can 
be followed using single machine instructions. 

In contrast, following a database address is much more time-consuming. \I-e 
need a table that translates from all those database addresses that are currently 

' 

in virtual memory to their current memory address. Such a translation table is 
suggested in Fig. 12.8. It may be reminiscent of the map table of Fig. 12.6 that 
translates between logical and physical addresses. Ho~vever: 

a) Logical and physical addresses are both representations for the database 
address. In contrast, memory addresses in the translation table are for 
copies of the corresponding object in memory. 

b) .Ill addressable items in the database have entries in the map table, while 
only those items currently in memory are mentioned in the translation 
table. 
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DBaddr mem-addr 
database 
address 

memory 
address 

Figure 12.8: The translation table turns database addresses into their equiva- 
lents in memory 

To a ~ o i d  the cost of translating repeatedly from database addresses to mem- 
ory addresses, several techniques have been developed that are collectively 
known as pointer swizzling. The general idea is that when we move a block 
from secondary to main memory, pointers within the block may be "s~vizzled," 
that is, translated from the database address space to the virtual address space. 
Thus, a pointer actually consists of: 

1. Al bit indicating whether the pointer is currently a database address or a 
(swizzled) memory address. 

2. The database or memory pointer, as appropriate. The same space is used 
for ~vllirhever address form is present at the moment. Of course. not all 
the space may be used when the memory address is present, because it is 
typically shorter than the database address. 

Exatnple 12.7: Figure 12.9 shoxvs a simple situation in which the Block 1 has 
a record ri-ith pointers to a second record or; the same block and to a record on 
another block. The figure also sho~vs what might happen n-hen Block 1 is copied 
to memory. The first pointer. which points within Block 1, can be stvizzled so 
it points directly to the memory address of the target record. 

However. if Block 2 is not in memory at this time. then we cannot sn-izzle the 
iecond pointer: it must remain unslvizzled. pointing to the database address of 
its target. Should Block 2 be brought to memory later. it becomes theoretically 
possible to swizzle the second pointer of Block 1. Depending on the swizzling 
strategy used. there n~ay  or may not be a list of such pointers that are in 
memory. referring to Block 2; if so; then we have the option of sx-izzling the 
pointer at that time. 

There are several strategies we can use to determine ~vhen to sn-izzle point- 
ers. 
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Disk Memory r8 . . . . Read memory into pq 
s Swizzle 

Block 1 

I I Unswizzled u 
Block 2 

Figure 12.9: Structure of a pointer when swizzling is used 

Automatic Swizzling 

As soon as a block is brought into memory, we locate d l  its pointers and 
addresses and enter them into the translation table if they are not already 
there. These pointers include both the pointers from records in the block to 
elseivhere and the addresses of the block itself and/or its records. if tliese are 
addressable items. We need some mechanism to locate the pointers within the 
block. For example: 

1. If the block holds records with a known schema, the schema will tell us 
where in the records the pointers are found. 

2. If the block is used for one of the index structures we shall discuss in 
Chapter 13. then the block will hold pointers at  known locations. 

3. We may keep within the block header a list of where the pointers are. 

When we enter into the translation table the addresses for the block just 
moved into memory. and/or its records, we know where in memory the block 
has been buffered. We ma?; thus create the translation-table entry for tliese 
database addresses straightfor~vardly. When I\-e inscrt one of these database 
addresses -4 into the translatio~l table, we may find it in the table already. 
because its block is currently in memory. In this case, we replace -4 in the block 
just moved to memory by the corresponding memory address, and we set the 
'.swizzledT bit to true. On the other hand, if .4 is not yet in the translation 
table. then its block has not been copied into main memory. We therefore 
cannot swizzle this pointer and leave it in the block as a database pointer. 
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If we try to follow a pointer P from a block, and we find that pointer P is 
still unswizzled, i.e., in the form of a database pointer, then we need to niake 
sure the block B containing the item that P points to is in memory (or else 
why are we following that pointer?). We consult the translation table to see if 
database address P currently has a memory equivalent. If not, we copy block 
B into a memory buffer. Once B is in memory, we can "swizzle" P by replacing 
its database form by the equivalent memory form. 

Swizzling on  Demand 

Another approach is to leave all pointers unswizzled when the block is first 
brought into memory. We enter its address, and the addresses of its pointers, 
into the translation table, along with their memory equivalents. If and when 
we follow a pointer P that is inside some block of memory, we swizzle it, using 
the same strategy that we followed when we found an unswizzled pointer using 
automatic swizzling. 

The difference between on-demand and automatic swizzling is that the latter 
tries to get all the pointers swizzled quickly and efficiently when the block is 
loaded into memory. The possible time saved by swizzling all of a block's 
pointers a t  one time must be weighed against the possibility that some swizzled 
pointers will never be followed. In that case, any time spent swizzling and 
unswizzling the pointer will be wasted. 

An interesting option is to arrange that database pointers look like invalid 
memory addresses. If so, then we can allow the computer to follow any pointer 
as if it were in its memory form. If the pointer happens to be unswizzled, then 
the memory reference will cause a hardware trap. If the DBMS provides a 
function that is invoked by the trap, and this function "swizzles" the pointer 
in the manner described above, then we can follow swizzled pointers in single 
instructions, and only need to do something more time consuming when the 
pointer is unswizzled. 

N o  Swizzling 

Of course it is possible newr to swizzle pointers. We still need the translation 
table, so the pointers may be followed in their unswizzled form. This approach 
does offer the advantage that records cannot be pinned in memory, as discussed 
in Section 12.3.5, and decisions about which form of pointer is present need not 
be made. 

P rogrammer  Control  of Swizzling 

In some applications, it may be known by the application programmer whether 
the pointers in a block are likely to be follo~ved. This programmer may be able 
to specify explicitly that a block loaded into memory is to have its pointers 
slvizzled, or the programmer may call for the pointers to be swizzled only as 
needed. For example, if a programmer knows that a block is likely to be accessed 
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heavily, such as the root block of a B-tree (discussed in Section 13.3), then the 
pointers would be swizzled. However, blocks that are loaded into memory, used 
once, and then likely dropped from memory: would not be swizzled. 

12.3.4 Returning Blocks to Disk 

When a block is moved from memory back to disk, any pointers within that 
block must be "unswizzled"; that is, their memory addresses must be replaced 
by the corresponding database addresses. The translation table can be used 
to associate addresses of the two types in either direction, so in principle it is 
possible to find, given a memory address, the database address to which the 
memory address is assigned. 

However, we do not want each unswizzling operation to require a search of 
the entire translation table. While we have not discussed the implementation of 
this table, we might imagine that the table of Fig. 12.8 has appropriate indexes. 
If we think of the translation table as a relation, then the problem of finding 
the memory address associated with a database address x can be expressed as 
the query: 

SELECT memAddr 
FROM TranslationTable 
WHERE dbAddr = x; 

For instance, a hash table using the database address as the key might be 
appropriate for an index on the dbAddr attribute; Chapter 13 suggests many 
possible data structures. 

If we want to support the reverse query, 

SELECT dbAddr 
FROM TranslationTable 
WHERE memAddr = y; 

then ~c-e need to have an index on attribute memAddr as well. Again, Chapter 13 
suggests data structures suitable for such an index. Also, Section 12.3.5 talks 
about linked-list structures that in some circumstances can be used to go from 
a memory address to all main-memory pointers to that address. 

12.3.5 Pinned Records and Blocks 

A block in memory is said to be pinned if it cannot at the moment be written 
back to disk safely. A bit telling whether or not a block is pinned can be located 
in the header of the block. There are many reasons why a block could be pinned, 
including requirements of a recovery system as discussed in Chapter 17. Pointer 
swizzling introduces an important reason why certain blocks must be pinned. 

If a block B1 has within it a swizzled pointer to some data item in block Bg, 
then n-e must be very careful about moving block B2 back to disk and reusing 
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its main-memory buffer. The reason is that, should we follow the pointer in 
B1, it will lead us to the buffer, which no longer holds Bz; in effect, the pointer 
has become dangling. A block, like B2, that is referred to by a swizzled pointer 
from somewhere else is therefore pinned. 

When we write a block back to disk, we not only need to "unswizzle" any 
pointers in that block. We also need to make sure it is not pinned. If it is 
pinned, we must either unpin it, or let the block remain in memory, occupying 
space that could otherwise be used for some other block. To unpin a block 
that is pinned because of swizzled pointers from outside, we xllust "unswizzle" 
any pointers to it. Consequently, the translation table must record, for each 
database address whose data item is in memory, the places in memory where 
swizzled pointers to that item exist. TWO possible approaches are: 

1. Keep the list of references to a memory address as a linked list attached 
to the entry for that address in the translation table. 

2. If memory addresses are significantly shorter than database addresses, we 
can create the linked list in the space used for the pointers themselves. 
That is, each space used for a database pointer is replaced by 

(a) The swizzled pointer, and 

(b) Another pointer that forms part of a linked list of all occurrences of 
this pointer. 

Figure 12.10 suggests how all the occurrences of a memory pointer y 
could be linked, starting at  the entry in the translation table for database 
address x and its corresponding memory address y. 

I Swizzled pointer 

Translation table 

Figure 12.10: .A linked list of occurrences of a swizzled pointer 

12.3.6 Exercises for Section 12.3 

* Exercise 12.3.1 : If we represent physical addresses for the Megatron 747 disk 
by allocating a separate byte or bytes to each of the cylinder, track within 
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a cylinder, and block within a track, how many bytes do we need? Make a 
reasonable assumption about the maximum number of blocks on each track; 
recall that the Megatron 747 has a variable number of sectorsltrack. 

Exercise 12.3.2: Repeat Exercise 12.3.1 for the Megatron 777 disk described 
in Exercise 11.3.1 

Exercise 12.3.3: I£ we wish to represent record addresses as well as block 
addresses, we need additional bytes. Assuming we want addresses for a single 
Megatron 747 disk as in Exercise 12.3.1, how many bytes would we need for 
record addresses if we: 

* a) Included the number of the byte within a block as part of the physical 
address. 

b) Used structured addresses for records. Assume that the stored records 
have a 4-byte integer as a key. 

Exercise 12.3.4: Today, IP addresses have four bytes. Suppose that block 
addresses for a world-wide address system consist of an IP address for the host, 
a device number between 1 and 1000, and a block address on an individual 
device (assumed to be a Megatron 747 disk). How many bytes would block 

. addresses require? 

Exercise 12.3.5 : In IP  version 6, I P  addresses are 16 bytes long. In addition, 
we may want to address not only blocks, but records, which may start at any 
byte of a block. However, devices will have their own IP address, so there will 
be no need to represent a device within a host, as we suggested was necessary 
in Exercise 12.3.4. How many bytes would be needed to represent addresses in 
these circumstances, again assuming devices were Xegatron 747 disks? 

! Exercise 12.3.6: Suppose we wish to represent the addresses of blocks on a 
Megatron 747 disk logically, i.e., using identifiers of k bytes for some k. We also 
need to store on the disk itself a map table, as in Fig. 12.6, consisting of pairs 
of logical and physical addresses. The blocks used for the map table itself are 
not part of the database, and therefore do not have their own logical addresses 
in the map table. Assuming that physical addresses use the minimum possible 
number of bytes for physical addresses (as calculated in Exercise 12.3.1), and 
logical addresses likewise use the minimum possible number of bytes for logical 
addresses, how many blocks of 4096 bytes does the map table for the disk 
occupy? 

*! Exercise 12.3.7: Suppose that we have 4096-byte blocks in which wve store 
records of 100 bytes. The block header consists of an offset table, as in Fig. 12.7. 
using 2-byte pointers to records within the block. On an average day. two 
records per block are inserted, and one record is deleted. h deleted record must 
have its pointer replaced by a "tombstone," because there may be da~lgling 
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pointers to it. For specificity, assume the deletion on any day always occurs 
before the insertions. If the block is initially empty, after how many days will 
there be no room to insert any more records? 

! Exercise 12.3.8: Repeat Exercise 12.3.7 on the assumption that each day 
there is one deletion and 1.1 insertions on the average. 

Exercise 12.3.9: Repeat Exercise 12.3.7 on the assumption that instead of 
deleting records, they are mored to another block and must be given an 8-byte 
forwarding address in their offset-table entry. Assume either: 

! a) All offset-table entries are given the maximum number of bytes needed in 
an entry. 

!! b) Offset-table entries are allowed to vary in length in such a way that all 
entries can be found and interpreted properly. 

* Exercise 12.3.10: Suppose that if we swizzle all pointers automatically, we 
can perform the swizzling in half the time it would take to swizzle each one 
separately. If the probability that a pointer in main memory xvill be followed at  
least once is p, for what values of p is it more efficient to swizzle automatically 
than on demand? 

! Exercise 12.3.11 : Generalize Exercise 12.3.10 to include the possibility that 
we never swizzle pointers. Suppose that the important actions take the following 
times, in some arbitrary time units: 

i.  On-demand swizzling of a pointer: 30. 

ii. dutomatic swizzling of pointers: 20 per pointer. 

iii. Following a sn-izzled pointer: 1. 

iv. Following an unswizzled pointer: 10. 

Suppose that in-memory pointers are either not follorved (probability 1 - p) 
or are follon-ed k times (probability p). For what values of k and p do no- 
srvizzling, automatic-swizzling, and on-demand-sn-izzling each offer the best 
average performance? 

12.4 Variable-Length Data and Records 

Until now, we have made the simplifying assumptions that every data item has 
a fised length, that records have a fixed schema, and that the schema is a list of 
fixed-length fields. Howerer, in practice, life is rarely so simple. We may wish 
to represent: 
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1. Data items whose size varies. For instance, in Fig. 12.1 we considered a 
Moviestar relation that had an address field of up to 255 bytes. While 
there might be some addresses that long, the vast majority of them will 
probably be 50 bytes or less. We could probably save more than half the 
space used for storing MovieStar tuples if we used only as much space as 
the actual address needed. 

2. Repeating fields. If we try to represent a many-many relationship in a 
record representing an object, we shall have to store references to as many 
objects as are related to the given object. 

3. Variable-format records. Sometimes we do not know in advance what the 
fields of a record will be, or how many occurrences of each field there 
will be. For example, some movie stars also direct movies, and we might 
want to add fields to their record referring to the movies they directed. 
Likewise, some stars produce movies or participate in other ways, and we 
might wish to put this information into their record as well. However, 
since most stars are neither producers nor directors, we would not want 
to reserve space for this information in every star's record. 

4. Enormous fields. Modern DBMS's support attributes whose value is a 
very large data item. For instance, we might want to include a p ic ture  
attribute with a movie-star record that is a GIF image of the star. -1 
movie record might have a field that is a 2-gigabyte MPEG encoding of 
the movie itself, as well as more mundane fields such as the title of the 
movie. These fields are so large, that our intuition that records fit within 
blocks is contradicted. 

12.4.1 Records With Variable-Length Fields 
If one or more fields of a record have variable length, then the record must 
contain enough information to let us find any field of the record. A simple 
but effective scheme is to put all fixed-length fields ahead of the variable-length 
fields. We then place in the record header: 

1. The length of the record. 

2. Pointers to (i.e., offsets of) the beginnings of all the variable-length fields. 
However, if the variable-length fields always appear in the same order. 
then the first of them needs no pointer; we know it immediately follo~vs 
the fiscd-length fields. 

Example 12.8: Suppose that w-e have movie-star records with name, address: 
gender, and birthdate. \Ve shall assume that the gender and birthdate are 
fixed-length fields, taking 4 and 12 bytes, respectively. However, both name 
and address will be represented by character strings of xhatever length is ap- 
propriate. Figure 12.11 suggests what a typical movie-star record would look 
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like. We shall always put the name before the address. Thus, no pointer to 
the beginning of the name is needed; that field will always begin right after the 
fixed-length portion of the record. 0 

other header information 
record length 

to address 

I I l l  

. . .  . . .  . , , ibirthdate j name i address . . . . . . . .  . . . .  

Figure 12.11: A MovieStar record with name and address implemented as 
variable-length character strings 

12.4.2 Records With Repeating Fields 
A similar situation occurs if a record contains a variable number of occurrences 
of a field F, but the field itself is of fixed length. It is sufficient to group all 
occurrences of field F together and put in the record header a pointer to the 
first. We can locate all the occurrences of the field F as follows. Let the number 
of bytes del-oted to one instance of field F be L. We then add to the offset for 
the field F all integer multiples of L, starting a t  0, then L, 2L, 3L, and so on. 
Eventually, we reach the offset of the field following F. whereupon we stop. 

other header information 
record length 

to address I , to movie pointers 
1 I . ' . ' .  . . .  . . . . , . . t ' t i t .  . . . . . . . . . . . . . . . . . . . .  

, . . . ,  . . : name i address i . i i i i i i ; 
. . . .  . . . . . . , 
. . . ,  . , . . . . . , . . .  . , . .  

L A - 
pointers to movies 

Figure 12.12: -1 record with a repeating group of references to movies 

Example 12.9 : Suppose that we redesign our movie-star records to hold only 
the name and address (which are variable-length strings) and pointers to all 
the movies of the star. Figure 12.12 shows how this type of record could be 
represented. The header contains pointers to the beginning of the address fieid 
(we assume the name field always begins right after the header) and to the 
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Representing Null Values 

Tuples often have fields that may be NULL. The record format of Fig. 12.11 
offers a convenient way to represent NULL values. If a field such as address 
is null, then we put a null pointer in the place where the pointer to an 
address goes. Then, we need no space for an address, except the place for 
the pointer. This arrangement can save space on average, even if address 
is a fixed-length field but frequently has the value NULL. 

first of the movie pointers. The length of the record tells us how many movie 
pointers there are. 

An alternative representation is to keep the record of fixed length, and put 
the variabklength portion - be it fields of variable length or fields that sepeat 
an indefinite number of times - on a separate block. In the record itself we 
keep: 

1. Pointers to the place where each repeating field begins, and 

2. Either how many repetitions there are, or where the repetitions end. 

Figure 12.13 shows the layout of a record for the problem of Example 12.9, 
but with the variable-length fields name and address, and the repeating field 
starredrn (a set of movie references) kept on a separate block or blocks. 

There are advantages and disadvantages to using indirection for the variable- 
length components of a record: 

Keeping the record itself fixed-length allows records to be searched more 
efficiently, minimizes the overhead in block headers, and allows records to 
be moved within or among blocks with minimum effort. 

On the other hand, storing variable-length components on another block 
increases the number of disk I/07s needed to examine all components of 
a record. 

A compromise strategy is to keep in the fixed-length portion of the record 
enough space for: 

1. Some reasonable number of occurrences of the repeating fields, 

2. A pointer to a place where additional occurrences could be found, and 

3. X count of how many additional occurrences there are. 

If there are fewer than this number, some of the space would be unused. If there 
are more than can fit in the fixed-length portion, then the pointer to additional 
space will be nonnull, and we can find the additional occurrences by following 
this pointer. 
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I record header information 
I to name 

length of name 
to address 

length of address 
to movie references 

Record 

. . . . . . .  . . . . . . .  . . . . . . .  . . . . . . .  . . . . . . .  address . . . . . . .  name 

Additional space 

Figure 12.13: Storing variable-length fields separately from the record 

12.4.3 Variable-Format Records 

An even more complex situation occurs when records do not have a fixed 
schema. That is, the fields or their order are not completely determined by 
the relation or class whose tuple or object the record represents. The simplest 
representation of sariable-format records is a sequence of tagged fields, each of 
which consists of: 

1. Information about the role of this field, such as: 

(a) The attribute or field name, 

(b) The type of the field, if it is not apparent from the field name and 
some readily available schema information, and 

(c) The length of the field, if it is not apparent from the type. 

2. The value of the field. 

There are at least tn-o reasons why tagged fields would make sense. 

1. Information-integration applicattons. Sometimes, a relation has been con- 
structed from several earlier sources, and these sources hare different kinds 
of information; see Section 20.1 for a discussion. For instance, our niovie- 
star information may h a ~ e  come from several sources, one of which records 
birthdates and the others do not, some gire addresses, others not, and so 
on. If there are not too many fields, 1%-e are probably best off leaving NULL 
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those values we do not know. However, if there are many sources, with 
many different kinds of information, then there may be too many NULL'S, 
and we can save significant space by tagging and listing only the nonnull 
fields. 

2 .  Records with a very flexible schema. If many fields of a record can repeat 
and/or not appear a t  all, then even if we know the schema, tagged fields 
may be useful. For instance, medical records may contain information 
about many tests, but there are thousands of possible tests, and each 
patient has results for relatively few of them. 

Example 12.10 : Suppose some movie stars have information such as movies 
directed, former spouses, restaurants owned, and a number of other fixed but 
unusual pieces of information. In Fig. 12.14 we see the beginning of a hypothet- 
ical movie-star record using tagged fields. We suppose that single-byte codes 
are used for the various possible field names and types. Appropriate codes are 
indicated on the figure, along with lengths for the two fields shown, both of 
which happen to be of type string. 

I code for name 1 code for restaurant owned 
code for string type code for string type 

1 length 7 length 
. .  , . .  . , , .  . 
. .  . . .  . . . .  . 

N; . .  s j 14; . Clint ~astwood R! S; 16; Hog's Breath 1% 
, .  . . . .  . 
. .  . . . .  . . , .  . 

Figure 12.14: A record with tagged fields 

12.4.4 Records That Do Not Fit in a Block 

We shall now address another problem whose importance has been increasing 
as DBMS's are more frequently used to manage datatypes with large values: 
often values do not fit in one block. Typical examples are video or audio "clips." 
Often, these large values have a vaiiable length, but even if the length is fixed 
for all values of the type, we need to use some special techniques to represent 
these values. In this section we shall consider a technique called '.spanned 
records" that can be used to manage records that are larger than blocks. The 
management of extremely large values (megabytes or gigabytes) is addressed in 
Section 12.4.5. 

Spanned records also are useful in situations where records are smaller than 
blocks, but packing whole records into blocks wastes significant amounts of 
space. For instance, the waste space in Example 12.6 was only 7%, but if 
records are just slightly larger than half a block, the wasted space can approach 
50%. The reason is that then we can pack only one record per block. 

12.4. VARIABLELENGTH D.4TA AND RECORDS 595 

For both these reasons, it is sometimes desirable to allow records to be split 
across two or more blocks. The portion of a record that appears in one block is 
called a record fragment. A record with two or more fragments is called spanned, 
and records that do not cross a block boundary are unspanned. 

If records can be spanned, then every record and record fragment requires 
some extra header information: 

1. Each record or fragment header must contain a bit telling whether or not 
it is a fragment. 

2. If it is a fragment, then it needs bits telling whether it is the first or last 
fragment for its record. 

3. If there is a next and/or previous fragment for the same record, then the 
fragment needs pointers to these ot,her fragments. 

Example 12.11: Figure 12.15 suggests how records that were about GO% of a 
block in size could be stored with three records for every two blocks. The header 
for record fragment 2a contains an indicator that it is a fragment, an indicator 
that it is the first fragment for its record, and a pointer to nest fragment, 2b. 
Similarly, the header for 2b indicates it is the last fragment for its record and 
holds a back-pointer to the previous fragment 2a. 

block header 

block 1 block 2 

Figure 12.15: Storing spanned records across blocks 

: recor 
I i 2-bd 

12.4.5 BLOBS 

i ; record 3 

Xow, let us consider the representation of truly large values for records or fields 
of records. The common esamples include images in ~arious formats (e.g., GIF, 
or JPEG), movies in formats such as IIPEG, or signals of all sorts: audio, radar, 
and so on. Such values are often called binary, large objects, or BLOBS. When 
a field has a BLOB as value, we must rethink at  least two issues. 

t 
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Storage of BLOBS 

A BLOB must be stored on a sequence of blocks. Often we prefer that these 
blocks are allocated consecutively on a cylinder or cylinders of the disk, so the 
BLOB may be retrieved efficiently. However, it is also possible to store the 
BLOB on a linked list of blocks. 

lloreo\rer, it is possible that the BLOB needs to be retrieved so quickly 
(e.g., a movie that must be played in real time), that storing it on one disk 
does not allow us to retrieve it fast enough. Then, it is necessary to stripe the 
BLOB across several disks, that is, to alternate blocks of the BLOB among 
these disks. Thus, several blocks of the BLOB can be retrieved simultaneously. 
increasing the retrieval rate by a factor approximately equal to the number of 
disks involved in the striping. 

Retrieval of BLOBS 

Our assumption that when a client wants a record, the block containing the 
record is passed from the database server to the client in its entirety may not 
hold. We may want to pass only the "small" fields of the record, and allow the 
client to request blocks of the BLOB one a t  a time, independently of the rest of 
the record. For instance, if the BLOB is a 2-hour movie, and the client requests 
that the movie be played, the BLOB could be shipped several blocks at  a time 
to the client, at  just the rate necessary to play the movie. 

In many applications, it is also important that the client be able to request 
interior portions of the BLOB without having to receive the entire BLOB. 
Examples would be a request to see the 45th minute of a movie, or the ending 
of an audio clip. If the DBMS is to support such operations, then it requires a 
suitable index structure, e.g., an index by seconds on a movie BLOB. 

12.4.6 Exercises for Section 12.4 

* Exercise 12.4.1 : .A patient record consists of the follolving fixed-length fields: 
the patient's date of birth, social-security number, and patient ID, each 10 bytes 
long. It also has the following variable-length fields: name, address, and patient 
history. If pointers within a record require 4 bytes, and the record length is a 
$-byte integer, how many bytes. esclusire of the space needed for the variable- 
length fields, are needed for the record? You may assume that no alignment of 
fields is required. 

* Exercise 12.4.2: Suppose records arc as in Exercise 12.4.1, and the variable- 
length fields name. address. and history each have a length that is unifornlly 
distributed. For the name. the range is 10-30 bytes; for address it is 20-80 
bytes, and for history it is 0-1000 bytes. What is the average length of a 
patient record? 

Exercise 12.4.3: Suppose that the patient records of Exercise 12.4.1 are aug- 
mented by an additional repeating field that represents cholesterol tests. Each 
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cholesterol test requires 16 bytes for a date and an integer result of the test. 
Show the layout of patient records if: 

a) The repeating tests are kept with the record itself. 

b) The tests are stored on a separate block, with pointers to them in the 
record. 

Exercise 12.4.4 : Starting with the patient records of Exercise 12.4.1, suppose 
we add fields for tests and their results. Each test consists of a test name, a 
date, and a test result. Assume that each such test requires 40 bytes. Also, 
suppose that for each patient and each test a result is stored with probability 
P. 

a) Assuming pointers and integers each require 4 bytes, what is the average 
number of bytes devoted to test results in a patient record, assuming that 
all test results are kept within the record itself, as a variable-length field? 

b) Repeat (a), if test results are represented by pointers within the record 
to test-result fields kept elselvhere. 

! c) Suppose we use a hybrid scheme, where room for k test results are kept 
within the record, and additional test results are found by following a 
pointer to another block (or chain of blocks) where those results are kept. 
As a function of p. what value of k minimizes the amount of storage used 
for test results? 

!! d) The antount of space used by the repeating test-result fields is not the 
only issue. Let us suppose that the figure of merit 1%-e wish to minimize 
is the number of bytes used. plus a penalty of 10,000 if we have to store 
some results on another block (and therefore will require a disk I/O for 
many of the test-result accesses we need to do. Under this assumption, 
what is the best value of k as a function of p? 

*!! Exercise 12.4.5: Suppose blocks have 1000 bytes available for the storage of 
records, and 1%-e wish to store on them fixed-length records of length r ,  where 
500 < r 5 1000. The value of r includes the record header, but a record 
fragment requires an additional 16 bytes for the fragment header. For what 
values of r can we improve space utilization by spanning records? 

!! Exercise 12.4.6: An NPEG movie uses about one gigahyte per hour of play. 
If we carefully organized several mox-ies on a Megatron 747 disk, ho~v many 
could we deliver with only small delay (say 100 milliseconds) from one disk. 
Use the tinling estimates of Example 11.5: but remember that )pu can choose 
how the movies are laid out on the disk. 
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12.5 Record Modifications 
Insertions, deletions, and update of records often create special problems. These 
problems are most severe when the records change their length, but they come 
up even when records and fields are all of fixed length. 

12.5.1 Insertion 

First, let us consider insertion of new records into a relation (or equivalently, 
into the current extent of a class). If the records of a relation are kept in 
no particular order, we can just find a block with some empty space, or get 
a new block if there is none, and put the record there. Usually, there is some 
mechanism for finding all the blocks holding tuples of a given relation or objects 
of a class, but we shall defer the question of how to keep track of these blocks 
until. Section 13.1. 

There is more of a problem when the tuples must be kept in some fixed 
order, such as  sorted by their primary key. There is good reason to keep records 
sorted, since it facilitates answering certain kinds of queries, as we shall see in 
Section 13.1. If we need to insert a new record, we first locate the appropriate 
block for that record. Fortuitously, there may be space in the block to put the 
new record. Since records must be kept in order, we may have to slide records 
around in the block to make space available at  the proper point. 

If we need to slide records, then the block organization that me showed in 
Fig. 12.7, which we reproduce here as Fig. 12.16, is useful. Recall from our 
discussion in Section 12.3.2 that we may create an "offset table" in the header 
of each block, with pointers to the location of each record in the block. A 
pointer to a record from outside the block is a "structured address," that is, 
the block address and the location of the entry for the record in the offset table. 

offset - table-) 

+-- header --tf unused - 
- 

record 
record 4 record 3 record 1 

4 C 4 

Figure 12.16: An offset table lets us slide records xithin a block to ilinke room 
for new records 

If we can find room for the inserted record in the block at hand, then we 
simply slide the records within the block and adjust the pointers in the offset 
table. The new record is inserted into the block, and a new pointer to the 
record is added to the offset table for the block. 
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However, there may be no room in the block for the new record, in which 
case we have to find room outside the block. There are two major approaches 
to solving this problem, as well as combinations of these approaches. 

1. Find space on a "nearby" block. For example, if block B1 has no available 
space.for a record that needs to be inserted in sorted order into that block, 
then look at the following block B2 in the sorted order of the blocks. If 
there is room in B2, move the highest record(s) of B1 to B2, and slide the 
records around on both blocks. However, if there are external pointers to 
records, then we have to be careful to leave a forwarding address in the 
offset table of B1 to say that a certain record has been moved to Bz and 
where its entry in the offset table of B2 is. Allowing forwarding addresses 
typically increases the amount of space needed for entries of the offset 
table. 

2. Create an  overflow block. In this scheme, each block B has in its header 
a place for a pointer to an overflow block where additional records that 
theoretically belong in B can be placed. The overflow block for B can 
point to a second overflow block, and so on. Figure 12.17 suggests the 
structure. We show the pointer for overflow blocks as a nub on the block, 
although it is in fact part of the block header. 

Block B overflow block 
for B 

Figure 12.17: A block and its first overflow block 

12.5.2 Deletion 

When we delete a record, we may be able to reclaim its space. If we use an 
offset table as in Fig. 12.16 and records can slide around the block. then we 
can compact the space in the block so there is aln-ays one unused region in the 
center. as suggested by that figure. 

If we cannot slide records, we should maintain an available-space list in the 
block header. Then we shall knon where. arid how large, the available regions 
are, n-hen a new record is inserted into the block. Sote that the block header 
normally does not need to hold the entire available space list. It is sufficient to 
put the list head in the block header, and use the available regions themsell-es 
to hold the links in the list. much as we did in Fig. 12.10. 

When a record is deleted, we may be able to do away with an overflow block. 
If the record is deleted either from a block B or from any block on its overflow 
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chain, we can consider the total amount of used space on all the blocks of that 
chain. If the records can fit on fewer blocks, and we can safely move records 
among blocks of the chain, then a reorganization of the entire chain can be 
performed. 

However, there is one additional complication involved in deletion, which we 
must remember regardless of what scheme we use for reorganizing blocks. There 
may be pointers to the deleted record, and if so, we don't want these pointers 
to dangle or wind up pointing to a new record that is put in the place of the 
deleted record. The usual technique, which we pointed out in Section 12.3.2, is 
to place a tombstone in place of the record. This tombstone is permanent; it 
must exist until the entire database is reconstructed. 

Where the tombstone is placed depends on the nature of record pointers. 
If pointers go to fixed locations from which the location of the record is found, 
then we put the tombstone in that fixed location. Here are two examples: 

1. We suggested in Section 12.3.2 that if the offset-table scheme of Fig. 12.16 
were used, then the tombstone could be a null pointer in the offset table, 
since pointers to the record were really pointers to the offset table entries. 

2. If we are using a map table, as in Fig. 12.6, to translate logical record 
addresses to physical addresses, then the tombstone can be a null pointer 
in place of the physical address. 

If we need to replace records by tombstones, it would be wise to have at the 
very beginning of the record header a bit that serves as a tombstone; i.e., it is 
0 if the record is not deleted, while 1 means that the record has been deleted. 
Then, only this bit must remain where the record used to begin, and subsequent 
bytes can be reused for another record, as suggested by Fig. 12.18.~ \$'hen we 
follow a pointer to the deleted record, the first thing we see is the "tombstone" 
bit telling us that the record was deleted. We then know not to look at the 
following bytes. 

t 1 

i record 2 

Figure 12.18: Record 1 can be replaced, but the tombstone remains: record 2 
has no tombstone and can be seen when we follow a pointer to it 

3~o~ve\ .er,  the field-alignment problem discussed in Section 12.2.1 may force us to leave 
four bytes or more unused. 
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12.5.3 Update 

When a fixed-length record is updated, there is no effect on the storage system, 
because we know it can occupy exactly the same space it did before the update. 
However, when a variable-length record is updated, we have all the problems 
associated with both insertion and deletion, except that it is never necessary to 
create a tombstone for the old version of the record. 

If the updated record is longer than the old version, then we map need 
to create more space on its block. This process may involve sliding records 
or even the creation of an overflow block. If variable-length portions of the 
record are stored on another block, as in Fig. 12.13, then we may need to move 
elements around that block or create a new block for storing variable-length 
fields. Conversely, if the record shrinks because of the update, me have the 
same opportunities as with a deletion to recover or consolidate space, or to 
eliminate overflow blocks. 

12.5.4 Exercises for Section 12.5 

Exercise 12.5.1 : Suppose we have blocks of records sorted by their sort key 
field and partitioned among blocks in order. Each block has a range of sort 
keys that is known from outside (the sparse-index structure in Section 13.1.3 is 
an example of this situation). There are no pointers to records from outside, so 
it is possible to move records between blocks if \ye wish. Here are some of the 
ways we could manage insertions and deletions. 

i. Split blocks whenever there is an overflow. Adjust the range of sort keys 
for a block when we do. 

ii. Keep the range of sort keys for a block fixed: and use overflow blocks as 
needed. Keep for each block and each overflow block an offset table for 
the records in that block alone. 

iii. Same as (ii), but keep the offset table for the block and all its overflow 
blocks in the first block (or overflow blocks if the offset table needs the 
space). Note that if more space for the offset table is needed. n-e can move 
records from the first block to an overflow block to make room. 

iv. Same as (ii), but keep the sort key along. n-ith a pointer in the offset 
tables. 

2:. Same as (iii); but keep the sort key along with a pointer in the offset 
table. 

-1nslver the following questions: 

* a) Compare methods (i) and (ii) for the average numbers of disk 110's 
needed to retrieve the record, once the block (or first block in a chain 
with overflow blocks) that could have a record 1~-ith a given sort key is 
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found. Are there any disadvantages to the method with the fewer average 
disk I/O's? 

b) Compare methods (ii) and (iib) for their average numbers of disk 110's per 
record retrival, as a function of b, the total number of blocks in the chain. 
Assume that the offset table takes 10% of the space, and the records take 
the remaining 90%. 

! c) Include methods (iv) and (v) in the comparison from part (b). Assume 
that the sort key is 119 of the record. Note that we do not have to repeat 
the sort key in the record if it is in the offset table. Thus, in effect, the 
offset table uses 20% of the space and the remainders of the records use 
80% of the space. 

Exercise 12.5.2 : Relational database systems have always preferred to use 
fixed-length tuples if possible. Give three reasons for this preference. 

l 2 . 6  Summary of Chapter 12 

+ Fields: Fields are the most primitive data elements. Many, such as in- 
tegers or fixed-length character strings, are simply given an appropriate 
number of bytes in secondary storage. Variable-length character strings 
are stored either in a fixed sequence of bytes containing an endmarker, 
or in an area for varying strings, with a length indicated by an integer at  
the beginning or an endmarker at the end. 

+ Records: Records are composed of several fields plus a record header. The 
header contains information about the record, possibly including such 
matters as a timestamp, schema information, and a record length. 

+ Variable-Length Records: If records contain one or more variable-length 
fields or contain an unknown number of repetitions of a field, then addi- 
tional structure is necessary. A directory of pointers in the record header 
can be used to locate variable-length fields within the record. Alterna- 
tively, we can replace the variable-length or repeating fields by (fised- 
length) pointers to a place outside the record where the field's value is 
kept. 

+ Blocks: Records are generally stored within blocks. A block header. with 
information about that block. consumes some of the space in the block. 
I\-ith the remainder occupied by one or more records. 

+ Spanned Records: Generally, a record exists within one block. However, 
if records are longer than blocks, or we wish to make use of left,over space 
nithin blocks, then we can break records into two or more fragments, one 
on each block. .-! fragment header is then needed to link the fragments of 
a record. 
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+ BLOBS: Very large values, such as images and videos, are called BLOBS 
(binary, large objects). These values must be stored across many blocks. 
Depending on the requirements for access, it may be desirable to keep the 
BLOB on one cylinder, to reduce the access time for the BLOB, or it may 
be necessary to stripe the BLOB across several disks, to allow parallel 
retrieval of its content.% 

+ Offset Tables: To support insertions and deletions of records, as well as 
records that change their length due to modification of varying-length 
fields, we can put in the block header an offset table that has pointers to 
each of the records in the block. 

+ Overflow Blocks: Also to support insertions and growing records, a block 
may have a link to an overflow block or chain of blocks, wherein are kept 
some records that logically belong in the first block. 

+ Database Addresses: Data managed by a DBMS is found among several 
storage devices, typically disks. To locate blocks and records in this stor- 
age system, we can use physical addresses, which are a description of 
the device number, cylinder, track, sector(s), and possibly byte within a 
sector. We can also use logical addresses, which are arbitrary character 
strings that are translated into physical addresses by a map table. 

+ Structured Addresses: We may also locate records by using part of the 
physical address, e.g., the location of the block whereon a record is found, 
plus additional information such as a key for the record or a position in 
the offset table of a block that locates the record. 

+ Pointer Swizzling: When disk blocks are brought to main memory, the 
database addresses need to be translated to memory addresses, if pointers 
are to be followed. The translation is called swizzling, and can either be 
done automatically, when blocks are brought to memory, or on-demand, 
when a pointer is first followed. 

+ Tombstones: When a record is deleted, pointers to it will dangle. A 
tombstone in place of (part of) the deleted record warns the system that 
the record is no longer there. 

+ Pinned Blocks: For various reasons, including the fact that a block may 
contain swizzled pointers, it may be unacceptable to copy a block from 
memory back to its place on disk. Such a block is said to be pinned. If the 
pinning is due to slvizzled pointers. then they must be unswizzled before 
returning the block to disk. 

12.7 References for Chapter 12 

The classic 1968 text on the subject of data structures [2] has been updated 
recently. [.I] has information on structures relevant to this chapter and also 



CHAPTER 12. REPRESENTING DATA ELEMENTS 

Chapter 13. 
Tombstoner as a technique for dealing with deletion is from [3]. [I] covers 

data reoresentation issues, such as addresses and swizzling in the context of -. 

object-oriented DBMS's. 

1. . . G. Cattell, Object Data Management, Addison-Wesley, Reading 
?VIA, 1994. 

2. D. E. Knuth, The Art of Computer Programming, Vol. I, Fundamental 
Algorithms, Third Edition, Addison-Wesley, Reading M.4, 1997. 

3. D. Lomet, "Scheme for invalidating free references," IBM J. Research and 
Development 19:l (1975), pp. 26-35. 

4. G. Wiederhold, File Organization for Database Design, McGraw-Hill, 
New York, 1987. 

Index Structures 

Having seen the options available for representing records, we must now consider 
how whole relations, or the extents of classes, are represented. It is not sufficient 
simply to scatter the records that represent tuples of the relation or objects 
of the extent aniong various blocks. To see mhy, ask how Ive would answer 
even the simplest query, such as SELECT * FROM R. ifre would have to examine 
every block in the storage system and hope there is enough information in block 
headers to identify where in the block records begin and enough information in 
record headers to tell in what relation the record belongs. 

A slightly better organization is to reserve some blocks, perhaps several 
xvhole cylinders, for a given relation. All blocks in those cylinders may be 
assumed to hold records that represent tuples of our relation. Now; at least we 
can find the tuples of the relation without scanning the entire data store. 

However. this organization offers no help should we want to answer the 
next-simplest query, such as SELECT * FROM R WHERE a=10. Section 6.6.6 in- 
troduced us to the importance of creating indexes on a relation, in order to 
speed up the discovery of those tuples of a relation that have a particular value 
for a particular attribute. As suggested in Fig. 13.1. an index is any data struc- 
ture that takes as input a property of records - typically the value of one or 
more fields - and finds the records with that property "quickly." In particu- 
lar, an index lets us find a record without having to look at more than a small 
fraction of all possible records. The field(s) on whose values the index is based 
is called the search key. or just "key" if the index is understood. 

Many different data structures can serve as indexes. In the remainder of 
this chapter n.e consider the follo~\-ing methods: 

1. Simple indexes on sorted files. 

2. Secondary indexes on unsorted files. 

3. B-trees, a commonly used way to build indexes on any file. 

4. Hash tables, another useful and important index structure. 
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value -+ Index ---) records - 
records 

Figure 13.1: An index takes a value for some field(s) and finds records with the 
matching value 

Keys and More Keys 

There are many meanings of the term "key." We used it in Section 7.1.1 
to mean the primary key of a relation. In Section 11.4.4 we learned about Figure 13.2: -4 sequential file 
.'sort keys," the attribute(s) on which a file of records is sorted. Now, 
we shall speak of "search keys," the attribute(s) for which we are given 
values and asked to search, through an index, for tuples with matching In this file, the tuples are sorted by their primary key. IVe imagine that keys 
\ralues. We try to use the appropriate adjective - "primary," "sort," or are integers; n-e show only the key field, and we make the atjpical assumption 
"search" - when the meaning of "key" is unclear. However, notice in that there is room for only two records in one block. For instance, the first 
sections such as 13.1.2 and 13.1.3 that there are many times when the block of the file holds the records with keys 10 and 20. In this and many other 

three kinds of keys arc one and the same. examples, we use integers that are sequential multiples of 10 as keys, although 
there is surely no requirement that keys be multiples of 10 or that records with 
all n~ultiples of 10 appear. 

13.1 Indexes on Sequential Files 13.1.2 Dense Indexes 

We begin our study of index structures by considering what is probably the Sow that Re have our records sorted, we can build on them a dense mda, 
simplest structure: A sorted file, called the data file, is given another file, called which is a sequence of blocks holding only the keys of the records and pointers 
the rndm file. consisting of key-pointer pairs. A search key K in the index file to the records themselves; the pointers are addresses in the sense discussed in 
is associated with a pointer to a data-file record that has search key K. These Section 12.3. The index is called "dense" because every key from the data file 
indexes can be "dense," meaning there is an entry in the index file for every is represented in the index. In comparison, "sparse" indexes, to be discussed in 
record of the data file, or "sparse," meaning that only some of the data records Section 13.1.3. normally keep only one key per data block in the index. 
are represented in the index, often one index entry per block of the data file. The index blocks of the dense indes maintain these keys in the same sorted 

order as in the file itself. Since keys and pointers presumably take much less 

13.1.1 Sequential Files space than complete records. we expect to use many fewer blocks for the index 
than for the file itself. The index is especially advantageous when it. but r~ot 

One of the silllplest index types relies on the file being sorted 011 the attribute(s) the data file. can fit in main memory. Then, by using the index, we can find 
of the index. Such a file is called a sequenteal file. This structure is especially any record given its search key, with only one disk 1/0 per lookup. 
useful when the search key is the primary key of the relation, although it can 
be used for other attributes. Figure 13.2 suggests a relation represented as a Example 13.1 : Figure 13.3 suggests a dense index on a sorted file that begins 
sequential file. as Fig. 13.2. For convenience, we have assumed that the file continues with a 
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key every 10 integers, although in practice we would not expect to find such a 
regular pattern of keys. We have also assumed that index blocks can hold only 
four key-pointer pairs. Again, in practice we would find typically that there 
[yere many more pairs per block, perhaps hundreds. 

1 

Index file Data file 

Figure 13.3: A dense index (left) on a sequential data file (right) 

The first index block contains pointers to the first four records, the second 
block has pointers to the next four, and so on. For reasons that we shall 
discuss in Section 13.1.6, in practice we may not want to fill all the index 
blocks completely. 

The dense index supports queries that ask for records with a given search 
key value. Given key value K ,  we search the index blocks for K ,  and when we 
find it, we follow the associated pointer to the record with key K .  It might 
appear that we need to examine every block of the index, or half the blocks of 
the index, on average, before we find I<. However, there are several factors that 
make the index-based search more efficient than it seems. 

1. The number of index blocks is usually small compared with the 11umber 
of data blocks. 

2. Since keys are sorted, we can use binary search to find I i .  If there are n 
blocks of the index, we only look at logz n of them. 

3. The index may be small enough to be kept permanently in main memory 
buffers. If so, the search for key K involves only main-memory accesses, 
and there are no expensive disk I /07s  to be performed. 
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Locating Index Blocks 

We have assumed that some mechanism exists for locating the index 
blocks, from which the individual tuples (if the index is dense) or blocks of 
the data file (if the index is sparse) can be found. Many ways of locating 
the index can be used. For example, if the index is small, we may store 
it in reserved locations of memory or disk. If the index is larger, we can 
build another layer of index on top of it as \ire discuss in Section 13.1.4 
and keep that in fixed locations. The ultimate extension of this idea is the 
B-tree of Section 13.3, where a-e need to know the location of only a single 
root block. 

1 

Example 13.2 : Imagine a relation of 1,000,000 tuples that fit ten to a 4096- 
byte block. The total space required by the data is over 400 megabytes, proba- 
bly too much to keep in main memory. However, suppose that the key field is 30 
bytes, and pointers are 8 bytes. Then with a reasonable amount of block-header 
space we can keep 100 key-pointer pairs in a 4096-byte block. 

A dense index therefore requires 10,000 blocks, or 40 megabytes. We might 
be able to allocate main-memory buffers for these blocks, depending on what 
else we needed in main memory, and how much main memory there was. Fur- 
ther. log2(10000) is about 13, so we only need to access 13 or 14 blocks in a 
binary search for a key. And since all binary searches 15-ould start out accessing 
only a small subset of the blocks (the block in the middle: those at  the 114 and 
314 points, those at  118, 318; 518, and 718, and so on), even if u-e could not 
afford to keep the tvhole index in memory, we might be able to keep the most 
important blocks in main memory, thus retrieving the record for any key with 
significantly fewer than 14 disk I/O's. 

13.1.3 Sparse Indexes 

If a dense index is too large, tve can use a similar structure, called a sparse index, 
that uses less space at  the expense of somewhat more time to find a record given 
its key. -1 sparse index, as seen in Fig. 13.4, holds only one key-pointer per data 
block. The key is for the first record on the data block. 

Example 13.3 : -1s in Example 13.1, we assume that the data file is sorted, 
and keys are all the integers divisible by 10. up to some large number. \Ye also 
continue to assume that four kex-pointer pairs fit on an index block. Thus, the 
first index block has entries for the first keys on the first four blocks, xvl-hich are 
10, 30, 50. and 70. Continuing the assumed pattern of keys, the second index 
block has the first keys of the fifth through eighth blocks. which we assume are 
90, 110, 130, and 150. We also show a third index block with first keys from 
the hypothetical ninth through twelfth data blocks. 0 
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Figure 13.4: -4 sparse index on a sequential file 

Example 13.4: A sparse index can require many fewer blocks than a dense 
index. Using the more realistic parameters of Example 13.2, where there are 
100.000 data blocks and 100 key-pointer pairs fit on one index block, we need 
only 1000 index blocks if a sparse index is used. Wow the index uses only four 
megabytes, an amount that surely could be allocated in main memory. 

On the other hand, the dense index allows us to answer queries of the form 
"does there exist a record with key value I(?" without having to retrieve the 
block containing the record. The fact that K exists in the dense index is enough 
to guarantee the existence of the record with key I(. On the other hand, the 
same query, using a sparse index, requires a disk 1 /0  to retrieve the block on 
which key I( rnight be found. 

To find the record with key I(, given a sparse index, we search the indes for 
the largest key less than or equal to K. Since the index file is sorted by key, a 
modified binary search will locate this entry. We follon. the associated pointer 
to a data block. Now, ~ v e  must search this block for the record with key Ii. 
Of course the block must have enough format information that the records and 
their contents can be identified. Any of the techniques from Sections 12.2 and 
12.4 can be used. as appropriate. 

13.1.4 Multiple Levels of Index 

An index itself can cover many blocks, as we saw in Exanlples 13.2 and 13.4. 
Even if we use a binary search to find the desired index entry, we still may need 
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to do many disk I/O's to get to the record we want. By putting an index on 
the index, we can make the use of the first level of index more efficient. 

Figure 13.5 extends Fig. 13.4 by adding a second indes level (as before, we 
assume the unusual pattern of keys every 10 integers). The same idea would 
let us place a third-level index on the second level, and so on. However, this 
idea has its limits, and we prefer the B-tree structure described in Section 13.3 
over building many levels of index. 

Figure 13.5: Adding a second level of sparse indes 

In this example. the first-level index is sparse. although 11-e could have chosen 
a dense index for the first level. Howel-er. the second and higher levels must 
be sparse. The reason is that a dense index on an index would have exactly 
as many key-pointer pairs as the first-level indcs. and therefore n-ould take 
exactly as much space as the first-level index. -4 second-level dense index thus 
introduces additional structure for no advantage. 

Example 13.5: Continuing xith a study of the hypothetical relation of Ex- 
ample 13.4, suppose we put a second-lel-el index on the first-level sparse index. 
Since the first-level index occupies 1000 blocks. and we can fit 100 key-pointer 
pairs in a block. xve need 10 blocks for the second-level indes. 

It is very likely that these 10 blocks can remain buffered in memory. If so. 
then to find the record with a given key I(. lve look up in the second-level index 
to find the largest key less than or equal to X. The associated pointer leads to 
a block B of the first-level index that nil1 surely guide us to the desired record. 
iVe read block B into memory if it is not already there: this read is the first 
disk I/O we need to do. ?Ve look in block B for the greatest key less than or 
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equal to K, and that key gives us a data block that will contain the record with 
key I( if such a record exists. That block requires a second disk 110, and we 
are done, having used only two I/O's. 

13.1.5 Indexes With Duplicate Search Keys 
Until this point we have supposed that the search key, upon which the index is 
based, was also a key of the relation, so there could be at most one record with 
any key value. However, indexes are often used for nonkey attributes, so it is 
possible that more than one record has a given key value. If we sort the records 
by the search key, leaving records with equal search key in any order, then we 
can adapt the previous ideas when the search key is not a key of the relation. 

Perhaps the simplest extension of previous ideas is to have a dense index 
with one entry with key K for each record of the data file that has search key 
K. That is, we allow duplicate search keys in the index file. Finding all the 
records with a given search key K is thus simple: Look for the first I< in the 
index file, find all the other K's, which must immediately follow, and pursue 
all the a5sociated pointers to find the records with search key K. 

A slightly more efficient approach is to have only one record in the dense 
index for each search key Ii'. This key is associated with a pointer to the first 
of the records with K. To find the others, move forward in the data file to find 
any additional records with K;  these must follow immediately in the sorted 
order of the data file. Figure 13.6 illustrates this idea. 

Figure 13.6: A dense index when duplicate search keys are allowed 
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Example 13.6 : Suppose we want to find all the records with search key 20 in 
Fig. 13.6. \ire find the 20 entry in the index and follow its pointer to the first 
record with search key 20. We then search forward in the data file. Since we 
are at the last record of the second block of this file, we move forward to the 
third block.' We find the first record of this block has 20, but the second has 
30. Thus, we need search no further; we have found the only two records with 
search key 20. 0 

Figure 13.7 shows a sparse index on the same data file as Fig. 13.6. The 
sparse index is quite conventional; it has key-pointer pairs corresponding to the 
first search key on each block of the data file. 

Figure 13.7: A sparse index indicating the lowest search key in each block 

To find the records with search key K in this data structure, we find the 
last entry of the index, call it El,  that has a key less than or equal to I<. We 
then move towards the front of the index until we either come to the first entry 
or we come to an entry Ez with a key strictly less than K. E2 could be El. All 
the data blocks that might have a record with search key I< are pointed to by 
the index entries from Ez to El.  inclusive. 

Example 13.7: Suppose we  ant to look up key 20 in Fig. 13.7. The third 
entry in the first index block is El;  it is the last entry with a key 5 20. IYhen 
we search backward, we see the previous entry has a key smaller than 20. Thus: 
the second entry of the first index block is EZ The two associated pointers take 

'To find the next block of the data file, chain the blocks in a linked list; i.e.. give each 
block header a pointer to the next block. 
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US to the second and third data blocks, and it is on these two blocks that we 
find records with search key 20. 

For another example, if K = 10, then El is the second entry of the first 
index block, and Ez doesn't exist because we never find a smaller key. Thus. 
we follow the pointers in all index entries up to and including the second. That 
takes us to the first two data blocks, where we find all of the records with search 
key 10. 

Figure 13.8: A sparse index indicating the lowest new search key in each block 

A slightly different scheme is shown in Fig. 13.8. There, the index entry for 
a data block holds the smallest search key that is new; i.e., it did not appear in 
a prerious block. If there is no new search key in a block, then its index entr? 
holds the lone search key found in that block. Under this scheme, we can find 
the records with search key I( by looking in the index for the first entry whose 
key is either 

a) Equal to IC; or 

b) Less than Ii, but the next key is great,er than I<. 

'IVe follow the pointer in this entry, and if we find at least one record with search 
key h' in that block, then \re search forward through additional blocks until we 
find all records with search key I<. 

Example 13.8: Suppose that K = 20 in the structure of Fig. 13.8. The second 
indes entry is selected by the above rule, and its pointer leads us to the first 
block with 20. We rnust search forward, since the following block also has a 20. 
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If K = -30; the rule selects the third entry. Its pointer leads us to the third 
data block. A-here the records with search key 30 begin. Finally, if K = 25, 
then part (b) of the selection rule indicates the second index entry. We are thus 
led to the wcond data block. If there were any records with search key 25, a t  
least one n-ould have to follow the records with 20 on that block, because n-e 
know that rhe first new key in the third data block is 30. Since there are no 
25's, we fail in our search. 

13.1.6 Managing Indexes During Data Modifications 

Until this point, we have sho~vn data files and indexes as if they were sequences 
of blocks. fully packed with records of the appropriate type. Since data evolves 
with time. n-e expect that records will be inserted, deleted, and sometimes 
updated. .Is a result, an organization like a sequential file will evolve so that 
what once fit in one block no longer does. 'IQe can use the techniques discussed 
in Section 12.5 to reorganize the data file. Recall that the three big ideas from 
that section are: 

1. Create overflow blocks if extra space is needed, or delete overflow blocks if 
enough records are deleted that the space is no longer needed. Overflow 
bloch do not have entries in a sparse index. Rather, they should be 
co~idered as extensions of their primary block. 

2. Ins;cad of overflo~v blocks, we may be able to insert new blocks in the 
seqwntial order. If 1-e do, then the new block needs an entry in a sparse 
indtz 1%. should remember that changing an index can create the same 
kirw& of problems on the index file that insertions and deletions to the 
d a ~ a  file c~eate. If we create new index blocks. then these blocks must be 
loci.-ed someho~v. e.g.. with another level of index as in Section 13.1.1. 

3. I\-1:tn there is no room to insert a tuple into a block. we can sometimes 
slit; tuples to adjacent blocks. Conversely. if adjacent blocks grow too 
em?::-. they can be combined. 

Hon-eyer. when changes occur to the data file, we nlust often cliange the 
indes to &apt. The correct approach depends on 15-hether the indes is dense or 
sparse. z d  on which of the three strategies enumerated above is used. However, 
one general principle should be remembered: 

A r  index file is an example of a sequential file; the key-pointer pairs can 
he -rested as records sorted by the value of the search key. Thus. the 
sa:? strategies used to inaintain data files in the face of modifications 
cax be applied to its index file. 

I11 Fig. 13.9. n-e summarize the actions that must be taken on a sparse or 
dense izcjes when seven different actions on the data file are taken. These 
seven a<--ions include creating or deleting empty overflow blocks, creating or 
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deleting empty blocks of the sequential file, inserting, deleting, and moving 
records. Notice that we assume only empty blocks can be created or destroyed. 
In~particular, if we want to delete a block that contains records, we must first 
delete the records or move them to another block. 

Figure 13.9: How actions on the sequential file affect the index file 

.Action 
Create empty overflow block 
Delete empty overflow block 
Create empty sequential block 
Delete empty sequential block 
Insert record 
Delete record 
Slide record 

In this table, we notice the following: 

Creating or destroying an empty overflow block has no effect on either 
type of index. It has no effect on a dense index, because that index refers 
to records. It has no effect on a sparse index, because it is only the 
primary blocks, not the overflow blocks, that have entries in the sparse 
index. 

Dense Index 
none 
none 
none 
none 
insert 
delete 
update 

Creating or destroying blocks of the sequential file has no effect on a dense 
index, again because that index refers to records, not blocks. It does affect 
a sparse index, since we must insert or delete an index entry for the block 
created or destroyed, respectively. 

Sparse Index 
none 
none 
insert 
delete 
update(?) 
update(?) 
update(?) 

Inserting or deleting records results in the same action on a dense indes: 
a key-pointer pair for that record is inserted or deleted. However, there 
is typically no effect on a sparse index. The exception is ~vhen the record 
is the first of its block, in which case the corresponding key value in the 
sparse index must be updated. Thus, \I-e have put a question mark after 
"update" for these actions in the table of Fig. 13.9, indicating that the 
update is possible, but not certain. 

Similarly. sliding a record, ~vhether ivithin a block or between blocks. 
results in an update to the corresponding entry of a dense index, but only 
affects a sparse index if the moved record \\-as or becomes the first of its 
block. 

Ke shall illustrate the family of algorithms implied by these rules in a series 
of examples. These examples involve both sparse and dense indexes and both 
"record sliding" and overflow-block approaches. 

Figure 13.10: Deletion of record ivith search key 30 in a dense index 

First. the record 30 is deleted from the sequential file. \Ve assume that there 
are possible pointers from outside the block to records in the block, so we have 
elected not to slide the remaining record, 10, forn-ard in the block. Rather, we 
suppose that a tombstone has been left in place of the record 30. 

In the indes. n-e deiete the key-pointer pair for 30. nP suppose that there 
cannot be pointers to index records from outside. so there is no need to leave a 
tombstone for the pair. Therefore, 11-e have taken the option to consolidate the 
index block and move follo\ving records of the block forward. 0 

Example 13.10 : Sow, let us consider two deletions from a file with a sparse 
index. \Ye begin with the structure of Fig. 13.1 and again suppose that the 
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Preparing for Evolution of Data 

Since it is common for relations or class extents to grow with time, it is 
often ~ i s e  to distribute extra space among blocks - both data and index 
blocks. If blocks are, say, 75% full to begin with, then we can run for 
some time before having to create overflow blocks or slide records between 
blocks. The ad\-antage to having no o~erflo~v blocks, or few overflow blocks, 
is that the average record access then requires only one disk 110. The more 
overflo~v blocks, the higher will be the average number of blocks we need 
to look at in order to find a given record. 

Example 13.9 : First, let us consider the deletion of a record from a sequential 
file with a dense index. We begin with the file and index of Fig. 13.3. Suppose 
that the record with key 30 is deleted. Figure 13.10 shorn-s the result of the 
deletion. 
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record with key 30 is deleted. We also assume that there is no impediment to 
sliding records around within blocks - either we know there are no pointers 
to records from anywhere, or we are using an offset table as in Fig. 12.16 to 
support such sliding. 

The effect of the deletion of record 30 is shorn in Fig. 13.11. The record 
has been deleted, and the following record, 40, slides forward to consolidate 
the block at  the front. Since 40 is now the first key on the second data block, 
we need to update the index record for that block. We see in Fig. 13.11 that 
the key associated with the pointer to the second data block has been updated 
from 30 to 40. 

Figure 13.11: Deletion of record with search key 30 in a sparse index 

Kow, suppose that record 40 is also deleted. ?\'e see the effect of this action in 
Fig. 13.12. The second data block now has no records at all. If the sequential file 
is stored on arbitrary blocks (rather than, say, consecutive blocks of a cylinder), 
then we may link the unused block to a list of available space. 

We complete the deletion of record 40 by adjusting the index. Since the 
second data block no longer exists, we delete its entry from the index. \Ve also 
show in Fig 13.12 the consolidation of the first index block, by moving forward 
the following pairs. That step is optional. 

Example 13.11: Now. let us consider the effect of an insertion. Begin at 
Fig. 13.11, where rve have just deleted record 30 from the file with a sparse index, 
but the record 40 remains. We now insert a record with key 15. Consulting the 
sparse index, \re filld that this record belongs in the first data block. But that 
block is full; it holds records 10 and 20. 

One thing we can do is look for a nearby block with some extra space, and in 
this case we find it in the second data block. We thus slide records back~ard in 
the file to make room for record 15. The result is shown in Fig. 13.13. Record 
20 has been moved from the first to the second data block, and 15 put in its 
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Figure 13.12: Deletion of record with search key 40 in a sparse index 

place. To fit record 20 on the second block and keep records sorted, we slide 
record 40 back in the second block and put 20 ahead of it. 

Our last step is to modify the index entries of the changed blocks. We might 
have to change the key in the index pair for block 1, but we do not in this case, 
because the inserted record is not the first in its block. \ire do, however, change 
the key in the index entry for the second data block. since the first record of 
that block, which used to be 40. is now 20. 

Example 13.12: The problem with the strategy exhibited in Example 13.11 
is that we were lucky to find an empty space in an adjacent data block. Had 
the record with key 30 not been deleted previously. 11-e would have searched in 
vain for an empty space. In principle. we would have had to slide every record 
from 20 to the end of the file back until Ire got to the end of the file and could 
create an additional block. 

Because of this risk, it is often wiser to allow overflorv blocks to supplement 
the space of a primary block that has too many records. Figure 13.14 sl~o~\-s 
the effect of inserting a record with key 15 into the structure of Fig. 13.11. As 
in Example 13.11, the first data block has too many records. Instead of sliding 
records to the second block, xse create an overflow block for the data block. We 
have s1101rn in Fig. 13.11 a "nub" on each block. representing a place in the 
block header n-here a pointer to an orerfloxv block may be placed. Any number 
of overflow blocks may 11e linked in a chain using these pointer spaces. 

In our example. record 1.5 is inserted in its rightful place, after record 10. 
Record 20 slides to the overflow block to make room. S o  changes to the index 
are necessary, since the first record in data block 1 has not changed. Sotice that 
no index entry is made for the overflow block, which is considered an estension 
of data block 1, not a block of the sequential file on its elm. 
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Figure 13.13: Insertion into a file with a sparse index, using immediate reorga- 
nization 

13.1.7 Exercises for Section 13.1 

* Exercise 13.1.1: Suppose blocks hold either three records, or ten key-pointer 
pairs. As a function of n, the number of records, how many blocks do we need 
to hold a data file and: 

a) A dense index? 

b) -1 sparse index? 

Exercise 13.1.2: Repeat Esercise 13.1.1 if blocks can hold up to 30 records 
or 200 key-pointer pairs, but neither data- nor index-blocks are allowed to be 
more than 80% full. 

! Exercise 13.1.3: Repeat Exercise 13.1.1 if we use as many levels of index as 
is appropriate, until the final level of index has only one block. 

*!! Exercise 13.1.4: Suppose that blocks hold three records or ten key-pointer 
pairs. as in Exercise 13.1.1. but duplicate search keys are possible. To be 
specific, 113 of all search keys in the database appear in one record, 113 appear 
in exactly two records, and 113 appear in exactly three records. Suppose we 
have a dense index, but there is only one key-pointer pair per search-key value. 
to the first of the records that has that key. If no blocks are in memory initially. 
compute the average number of disk I/O's needed to find all the records with 
a given search key I<. You may assume that the location of the index block 
containing key K is known, although it is on disk. 

! Exercise 13.1.5 : Repeat Esercise 13.1.4 for: 

13.1. INDEXES ON SEQUENTIAL FILES 

Figure 13.14: Insertion into a file with a sparse index, using overflow blocks 

a) A dense index with a key-pointer pair for each record, including those 
with duplicated keys. 

b) A sparse index indicating the lowest key on each data block, as in Fig. 13.7. 

c) A sparse index indicating the lowest new key on each data block. as in 
Fig. 13.8. 

! Exercise 13.1.6: If we have a dense index on the primary key attribute of 
a relation, then it is possible to have pointers to tuples (or the records that 
represent those tuples) go to the index entry rather than to the record itself. 
What are the advantages of each approach? 

Exercise 13.1.7: Continue the changes to Fig. 13.13 if we next delete the 
records with kers 60, 70, and 80, then insert records with keys 21, 22, and so 
on. up to 29. Assume that extra space is obtained by: 

* a) Adding ol-erflow blocks to either the data file or index file. 

1)) Sliding records as far back as necessary, adding additional blocks to the 
end of the data file and/or index file if needed. 

c) Inserting new data or index blocks into the middle of these files as neces- 
sary. 
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*! Exercise 13.1.8: Suppose that we handle insertions into a data file of n 
records by creating overflow blocks as needed. Also, suppose that the data 
blocks are currently half full on the average. If we insert new records at  ran- 
dom, how many records do we have to insert before the average number of data 
blocks (including overflow blocks if necessary) that we need to examine to find 
a record with a given key reaches 2? Assume that on a lookup, we search the 
block pointed to by the index first, and only search overflow blocks, in order, 
until we find the record, which is definitely in one of the blocks of the chain. 

13.2 Secondary Indexes 

The data structures described in Section 13.1 are called primary indexes, be- 
cause they determine the location of the indexed records. In Section 13.1, the 
location was determined by the fact that the underlying file was sorted on the 
search key. Section 13.4 will discuss another common example of a primary 
index: a hash table in which the search key determines the "bucket" into which 
the record goes. 

However, frequently we want several indexes on a relation, to facilitate a 
variety of queries. For instance, since name is the primary key of the MovieStar 
relation (see Fig. 12.1), we expect that the DBMS will create a primary index 
structure to support queries that specify the name of the star. However, suppose 
we also want to use our database to acknowledge stars on milestone birthdays. 
We may then run queries like 

SELECT name, address 
FROM MovieStar 
WHERE birthdate  = DATE '1952-01-01'; 

We need a secondary index on birthdate  to help with such queries. In an 
SQL system, we might call for such an index by an explicit command such as 

CREATE INDEX BDIndex ON WovieStar(birthdate); 

1 secondary index serves the purpose of any index: it is a data structure 
that facilitates finding records given a value for one or more fields. However. 
the secondary index is distinguished from the primary index in that a secondary 
index does not determine the placement of records in the data file. Rather the 
secondary index tells us the current locations of records; that location may have 
been decided by a primary index on some other field. An important consequence 
of the distinction between primary and secondary indexes is that: 

It makes no sense to talk of a sparse, secondary index. Since the sec- 
ondary index does not influence location, we could not use it to predict 
the location of any record whose key was not mentioned in the index file 
explicitly. 

Thus, secondary indexes are always dense. 

13.2. SECONDARY IXDEXES 

13.2.1 Design of Secondary Indexes 

A secondary index is a dense index, usually with duplicates. AS before, this 
index consists of key-pointer pairs; the "key" is a search key and need not be 
unique. Pairs in the index file are sorted by key value, to help find the entries 
given a key. If we wish to place a second level of index on this structure, then 
that index would be sparse, for the reasons discussed in Section 13.1.4. 

Example 13.13 : Figure 13.15 shows a typical secondary index. The data file 
is shown with two records per block, as has been our standard for illustration. 
The records have only their search key shown; this attribute is integer valued, 
and as before we have taken the values to be multiples of 10. Notice that, unlike 
the data file in Section 13.1.5, here the data is not sorted by the search key. 

Figure 13.15: A secondary index 

However, the keys in the index file are sorted. The result is that the pointers 
in one index block can go to many different data blocks, instead of one or a few 
consecutire blocks. For esample, to retrieve all the records with search key 20, 
1-e not only have to look at two index blocks, but we are sent by their pointers 
to three different data blocks. Thus, using a secondary irides ma\- result in 
many more disk I/O's than if we get the same number of records via a primary 
index. Hov-ever: there is no help for this problem: we cannot control the order 
of tuples in the data block. because they are presumably ordered according to 
some other attribute(s). 

It would be possible to add a second level of index to Fig. 13.13. This level 
would be sparse, with pairs corresponding to the first key or first new key of 
each index block, as discussed in Section 13.1.4. 
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13.2.2 Applications of Secondary Indexes 

Besides supporting additional indexes on relations (or extents of classes) that 
are organized as sequential files, there are some data structures where secondary 
indexes are needed for even the primary key. One of these is the "heap" struc- 
ture, where the records of the relation are kept in no particular order. 

A sccond common structure needing secondary indexes is the clustered file. 
Suppose there are relations R and S,  with a many-one relationship from the 
tuples of R to tuples of S. It may make sense to store each tuple of R with the 
tuple of S to which it is related, rather than according to the primary key of R. 
An example will illustrate why this organization makes good sense in special 
situations. 

Example 13.14: Consider our standard movie and studio relations: 

Movie(title, year, length,  incolor,  studioName, producerC#) 
Studio(name, address, presC#) 

Suppose further that the most common form of query is: 

SELECT t i t l e ,  year 
FROM Movie, Studio 
WHERE presC# = zzz AND Movie.studioName = Studio.name; 

Here, zzz represents any possible certificate number for a studio president. That 
is, given the president of a studio, we need to find all the movies made by that 
studio. 

If we are convinced that the above query is typical, then instead of ordering 
Movie tuples by the primary key t i t l e  and year, we can create a clustered 
file structure for both relations Studio and Movie, as suggested by Fig. 13.16. 
Following each Studio tuple are all the Movie tuples for all the movies owned 
by that studio. 

movies by movies by movies by movies by 
studio 1 studio 2 studio 3 studio 4 

studio 1 

Figure 13.16: -4 clustered file with each studio clustered with the movies made 
by that studio 

If we create an index for Studio with search key presC#, then whatever the 
value of zzz is, we can quickly find the tuple for the proper studio. Xloreover, 
all the Movie tuples whose value of attribute studioName matches the value 
of name for that studio will follow the studio's tuple in the clustered file. As a 
result, we can find the movies for this studio by making almost as few disk 110's 

u 
studio 2 
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as possible. The reason is that the desired Movie tuples are packed almost as 
densely as possible onto the following blocks. 

studio 3 

13.2.3 Indirection in Secondary Indexes 

studio 4 

There is some wasted space, perhaps a significant amount of wastage, in the 
structure suggested by Fig. 13.15. If a search-key value appears n times in the 
data file, then the value is written n times in the index file. It n-ould be better 
if we could write the key value once for all the pointers to data records with 
that value. 

Index file Buckets Data file 

Figure 13.17: Saving space by using indirection in a secondary irides 

;\ convenient way to avoid repeating values is to use a level of indirection, 
called buckets. between the secondary index file and the data file. As shown in 
Fig. 13.17. there is one pair for each search key K. The pointer of this pair goes 
to a position in a '.bucket file." 1%-hich holds the "bucket" for I<. Follolt-ing this 
position. until the nest position pointed to by the index. are pointers to all the 
records ~vith search-key value K .  

Example 13.15: For instance. let us follow the pointer fro111 search key 50 
in the irides file of Fig. 13.17 to the i~~ternicdiate "bucket" file. This poiliter 
happens to take us to the last pointer of one block of the bucket file. U'e search 
forward. to the first pointer of the nest block. We stop at that point. because 
the nest pointer of the index file, associated with search key 60. points to the 
second pointer of the second block of the bucket file. 
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The scheme of Fig. 13.17 saves space as long as search-key values are larger 
than pointers, and the average key appears a t  least twice. However, even if not, 
there is an important advantage to using indirection with secondary indexes: 
often, we can use the pointers in the buckets to help answer queries without 
ever looking at most of the records in the data file. Specifically, when there are 
several conditions to a query, and each condition has a secondary index to help 
it, we can find the bucket pointers that satisfy all the conditions by intersecting 
sets of pointers in memory, and retrieving only the records pointed to by the 
surviving pointers. We thus save the I/O cost of retrieving records that satisfy 
some, but not all. of the conditions.' 

Example 13.16 : Consider the usual Movie relation: 

Movie(title, year, length, incolor, studioName, producerC#) 

Suppose we have secondary indexes with indirect buckets on both studioName 
and year, and n-e are asked the query 

SELECT title 
FROM Movie 
WHERE studioName = 'Disney' AND year = 1995; 

that is. find all the Disney movies made in 1995. 
Figure 13.18 shows how we can answer this query using the indeses. Csing 

the index on studioName, we find the pointers to all records for Disney movies. 
but we do not yet bring any of those records from disk to memory. Instead. 
using the indes on year, we find the pointers to all the movies of 1995. We then 
intersect the two sets of pointers, getting exactly the movies that were made 
by Disney in 1995. Finally, we retrieve from disk all data blocks holding one or 
more of these movies, thus retrieving the minimum possible number of blocks. 

13.2.4 Document Retrieval and Inverted Indexes 

For many years. the information-retried colnmunity has dealt with the storage 
of documents and the efficient retrieval of docunlents with a given set of key- 
tvords. With the advent of the IZ'orld-Wide Web and the feasibility of keeping 
all documents on-line, the retrieval of documents given keywords has become 
one of the largest database problems. IVhilc there are many kinds of queries 
that one can use to find 1-elevant documents, the simplest and most common 
form can be seen in relational terms as follo~s: 

'\\e could also use this pointer-intersection trick if we got the pointers directly from the 
index. rather than from buckets. Ho\rever, the use of buckets often saves disk I/O's, since 
the pointers use less space than key-pointer pairs. 
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Figure 13.18: Intersecting buckets in main memory 

-1 document may be thought of as a tuple in a relation Doc. This relation 
has very many attributes. one corresponding to each possible word in a 
document. Each attribute is boolean - either the word is present in the 
document: or it is not. Thus, the relation schema may be thought of as 

Doc (hascat, hasDog , . . . ) 

where hascat is true if and only if the document has the word "cat" at 
least once. 

There is a secondary index on each of the attributes of Doc. Hart-ever, 
we sal-e tile trouble of indexing those tuples for which the value of the 
attribute is FALSE: instead. the index only leads us to the documents for 
which the ~vord is present. That is, the index has entries only for the 
search-key value TRUE. 

Instead of creating a separate index for each attribute (i.e., for each word), 
the indeses are conibined into one. called an inverted index, This in- 
dex uses indircct buckets for space efficiency, as was discussed in Sec- 
tion 1.3.2.3. 

Example 13.17: An inverted index is illust,rated in Fig. 13.19. In place of a 
data file of records is a collectioll of documents, each of which may be stored 
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Figure 13.19: An inverted index on documents 

on one or more disk blocks. The inverted index itself consists of a set of word- 
pointer pairs; the words are in effect the search key for the index. The inverted 
index is kept in a sequence of blocks, just like any of the indexes discussed so 
far. However, in some document-retrieval applications, the data may be more 
static than the typical database, so there may be no provision for overflow of 
blocks or changes to the index in general. 

The pointers refer to positions in a "bucket" file. For instance, we have 
show-n in Fig. 13.19 the word "+catn with a pointer to the bucket file. That 
pointer leads us to the beginning of a list of pointers to all the documents that 
contain the word "cat." We have shown some of these in the figure. Similarly, 
the word "dog" is shown leading to a list of pointers to all the documents with 
"dog.?' 

Pointers in the bucket file can be: 

1. Pointers to the document itself. 

2. Pointers to an occurrence of the word. In this case, the pointer might 
be a pair consisting of the first block for the document and an integer 
indicating the number of the word in the document. 

Khen we use "buckets" of pointers to occurrences of each word, lire may 
extend the idea to include in the bucket array some information about each 
occurrence. Now, the bucket file itself becomes a collection of records with 
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More About Information Retrieval 

There are a number of techniques for improving the effectiveness of re- 
trieval of documents given keywords. While a complete treatment is be- 
yond the scope of this book, here are two useful techniques: 

1. Stemming. We remove suffixes to find the "stem'' of each word, be- 
fore entering its occurrence into the index. For example, plural nouns 
can be treated as their singular versions. Thus, in Example 13.17, 
the inverted index evidently uses stemming, since the search for word 
"dog" got us not only documents with "dog," but also a document 
with the word "dogs." 

2. Stop words. The most colnmon words, such as "the" or "and," are 
called stop words and often are excluded from the inverted index. 
The reason is that the several hundred most common words appear in 
too many documents to make them useful as a way to find documents 
about specific subjects. Eliminating stop words also reduces the size 
of the index significantly. 

important structure. Early uses of the idea distinguished occurrences of a word 
in the title of a document, the abstract, and the body of text. With the growth 
of documents on the Web, especially documents using HThIL, XML, or another 
markup language, we can also indicate the markings associated with words. 
For instance, Ke can distinguish \i-ords appearing in titles headers, tables, or 
anchors, as \\-ell as words appearing in different fonts or sizes. 

Example 13.18: Figure 13.20 illustrates a bucket file that has been used to 
indicate occurrences of words in HTML documents. The first column indicates 
the type of occurrence, i.e., its marking. if any. The second and third columns 
are together the pointer to the occurrence. The third column indicates the doc- 
ument, and the second column gives the number of the word in the document. 

We can use this data structure to answer various queries about documents 
without having to examine the documents in detail. For instance, suppose we 
want to find documents about dogs that compare them with cats. Without 
a deep understanding of the meaning of text, we cannot answer this query 
precisely. However. we could get a good hint if we searched for documents that 

a) Mention dogs in the title. and 

b) Mention cats in an anchor - presumably a link to a document about 
cats. 
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Insertion and Deletion From Buckets 

iVe show buckets in figures such as Fig. 13.19 as compacted arrays of 
appropriate size. In practice, they are records with a single field (the 
pointer) and are stored in blocks like any other collection of records. Thus, 
when we insert or delete pointers, we may use any of the techniques seen so 
far, such as leaving extra space in blocks for expansion of the file, overflow 
blocks, and possibly moving records within or among blocks. In the latter 
case, we must be careful to change the pointer from the inverted index to 
the bucket file, as we move the records it points to. 

cat 

dog 

title 

Figure 13.20: Storing more information in the inverted index 

We can answer this query by intersecting pointers. That is, we follow the 
pointer associated with "cat" to find the occurrences of this word. M7e select 
from the bucket file the pointers to documents associated with occurrences of 
"cat" where the type is "anchor." We then find the bucket entries for "dog" 
and select from them the document pointers associated with the type "title..' 
If xi-e intersect these two sets of pointers, we have the documents that meet the 
conditions: they mention "dog" in the title and "cat" in an anchor. 

13.2.5 Exercises for Section 13.2 

* Exercise 13.2.1: As insertions and deletions are made on a data file, a sec- 
ondary index file needs to change as well. Suggest some ways that the secondary 
indes can be kept up to date as the data file changes. 

! Exercise 13.2.2 : Suppose we have blocks that can hoId three records or ten 
key-pointer pairs, as in Exercise 13.1.1. Let these blocks be used for a data file 
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and a secondary index on search key K. For each K-value v present in the file, 
there are either 1: 2, or three records with v in field I<. Exactly 113 of the 
values appear once, 113 appear twice, and 113 appear three times. Suppose 
further that the index blocks and data blocks are all on disk, but there is a 
structure that allo~vs us to take any K-value v and get pointers to all the index 
blocks that have search-key value v in one or more records (perhaps there is a 
second level of index in main memory). Calculate the average number of disk 
I/O's necessary to retrieve all the records with search-key value v. 

*! Exercise 13.2.3: Consider a clustered file organization like Fig. 13.16, and 
suppose that ten records, either studio records or movie records, will fit on 
one block. .41so assume that the number of movies per studio is uniformly 
distributed between 1 and m. As a function of m, what is the averge number 
of disk I/O's needed to retrieve a studio and all its movies? What would the 
number be if movies were randomly distributed over a large number of blocks? 

Exercise 13.2.4 : Suppose that blocks can hold either three records, ten key- 
pointer pairs, or fifty pointers. If we use the indirect-buckets scheme of Fig. 
13.17: 

* a) If the average search-key value appears in 10 records, how many blocks 
do we need to hold 3000 records and its secondary index structure? HOW 
many blocks ~ ~ o u l d  be needed if we did not use buckets? 

! b) If there are no constrairlts on the number of records that can have a given 
search-key value, what are the minimum and masinlum ilunlber of blocks 
needed? 

! Exercise 13.2.5 : 011 the assumptions of Exercise 13.2.4(a), what is the av- 
erage number of disk 110's to find and retrieve the ten records with a given 
search-key value. both with and ~sithout the bucket structure? .%ssume nothing 
is in memory to begin, but it is possible to locate indes or bucket blocks without 
incurring additional I/O's beyond what is needed to retrieve these blocks into 
memory. 

Exercise 13.2.6: Suppose that as in Exercise 13.2.1. a block can hold either 
three records, ten key-pointer pairs, or fifty pointers. Let there be secondary 
indexes on studioName and year of the relation Movie. as in Example 13.16. 
Suppose there are 51 Disney movies. and 101 movies made in 1995. Only one 
of these movies \\-as a Disney movie. Compute the number of disk I/O's needed 
to ansKer the query of Example 13.16 (find thc Disriey movies made in 1995) 
if we: 

* a) Use buckets for both secondary indexes, retrieve the pointers from the 
buckets, i~ltersect them in main memory, and retrieve only the one record 
for the Disney movie of 1995. 
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b) Do not use buckets, use the index on studioName to get the pointers to 
Disney movies, retrieve them, and select those that were made in 1995. 
Assume no two Disney movie records are on the same block. 

c) Proceed as in (b), but starting with the index on year. Assume no two 
movies of 1995 are on the same block. 

Exercise 13.2.7: Suppose n-e have a repository of 1000 documents, and we 
wish to build an inverted index with 10,000 words. A block can hold ten 
word-pointer pairs or 50 pointers to either a document or a position within 
a document. The distribution of words is Zipfian (see the box on "The Zipfian 
Distribution" in Section 16.4.3); the number of occurrences of the ith most 
frequent word is 100000/&, for i = 1,2,. . . ,10000. 

* a) What is the averge number of words per document? 

* b) Suppose our inverted index only records for each-word all the documents 
that have that word. What is the maximum number of blocks we could 
need to hold the inverted index? 

c) Suppose our inverted index holds pointers to each occurrence of each word. 
How many blocks do we need to hold the inverted index? 

d) Repeat (b) if the 400 most common words ("stop" words) are not included 
in the index. 

e) Repeat (c) if the 400 most common words are not included in the index. 

Exercise 13.2.8 : If we use an augmented inverted index, such as in Fig. 13.20, 
we can perform a number of other kinds of searches. Suggest how this index 
could be used to find: 

* a) Documents in which "cat" and "dog" appeared within five positions of 
each other in the same type of element (e.g., title, text, or anchor). 

b) Documents in which "dog" followed "cat" separated by exactly one posi- 
tion. 

c) Documents in which "dog" and "cat" both appear in the title. 

While one or two levels of index are often very helpful in speeding up queries, 
there is a more general structure that is commonly used in commercial systems. 
This family of data structures is called B-trees, and the particular variant that 
is most often used is known as a B+ tree. In essence: 

B-trees automatically maintain as many levels of index as is appropriate 
for the size of the file being indexed. 
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B-trees manage the space on the blocks they use so that every block is 
between half used and completely full. No overflow blocks are needed. 

In the following discussion, we shall talk about "B-trees," but the details will 
all be for the B+ tree variant. Other types of B-tree are discussed in exercises. 

13.3.1 The Structure of B-trees 

As implied by the name, a B-tree organizes its blocks into a tree. The tree is 
balanced, meaning that all paths from the root to a leaf have the same length. 
Typically, there are three layers in a B-tree: the root, an intermediate layer, 
and leaves, but any number of layers is possible. To help visualize B-trees, you 
may wish to look ahead at  Figs. 13.21 and 13.22, which show nodes of a B-tree, 
and Fig. 13.23, which shows a small, complete B-tree. 

There is a parameter n associated with each B-tree index, and this parameter 
determines the layout of all blocks of the B-tree. Each block will have space for 
n search-key values and n + 1 pointers. In a sense, a B-tree block is similar to 
the index blocks introduced in Section 13.1, except that the B-tree block has 
an extra pointer, along with n key-pointer pairs. We pick n to be as large as 
will allow n + 1 pointers and n keys to fit in one block. 

Example 13.19 : Suppose our blocks are 4096 bytes. Also let keys be integers 
of 4 bytes and let pointers be 8 bytes. If there is no header information kept 
on the blocks, then we want to find the largest integer value of n such that 
411 + 8(n + 1) 5 4096. That value is n = 340. 

There are several important rules about what can appear in the blocks of a 
B-tree: 

The keys in leaf nodes axe copies of keys from the data file. These keys 
are distributed among the leaves in sorted order, from left to right. 

At the root, there are at  least two used pointers.3 .A11 pointers point to 
B-tree blocks at  the level below. 

.it a leaf, the last pointer points to the next leaf block to the right, i.e., to 
the block with the next higher keys. Among the other n pointers in a leaf 
block, at least 1 9 1  of these pointers are used and point to data records; 
unused pointers may be thought of as null and do not point anywhere. 
The ith pointer, if it is used, points to a record with the ith key. 

At an interior node, all n + 1 pointers can be used to point to B-tree 
blocks at the next lower level. At least rY1 of them are actually used 

3Technically, there is a possibility that the entire B-tree has only one pointer because it is 
an index into a data file with only one record. In this case, the entire tree is a root block that 
is also a leaf; and this block has only one key and one pointer. \Ire shall ignore this trivial 
case in the descriptions that follow. 
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(but if the node is the root, then we require only that at least 2 be used, 
regardless of how large n is). If j pointers are used, then there will be 
j - 1 keys, say Kl, K2,. . . , Kj-1. The first pointer points to a part of the 
B-tree where some of the records with keys less than K1 will be found. 
The second pointer goes to that part of the tree where all records with 
keys that are at least K1, but less than Kz will be found, and so on. 
Finally, the jth pointer gets us to the part of the B-tree where some of 
the records with keys greater than or equal to K,-l are found. Note 
that some records with keys far below Kl or far above Kj-1 may not be 
reachable from this block at  all, but will be reached via another block at  
the same level. 

To next leaf 
in sequence 

J t 
To record To record To record 
with key with key with key 

57 8 1 95 

Figure 13.21: A typical leaf of a B-tree 

Example 13.20: In this and our running examples of B-trees, we shall use 
n = 3. That is, blocks have room for three keys and four pointers, which are 
atypically small numbers. Keys are integers. Figure 13.21 shows a leaf that is 
completely used. There are three keys, 57, 81, and 95. The first three pointers 
go to records with these keys. The last pointer, as is always the case with leaves, 
points to the next leaf to the right in the order of keys; it would be null if this 
leaf xvere the last in sequence. 

A leaf is not necessarily full, but in our example with n = 3, there must 
be at least t\vo key-pointer pairs. That is, the key 95 in Fig. 13.21 might be 
missing, and with it the third of the pointers, the one labeled "to record with 
key 95." 

Figure 13.22 shows a typical interior node. There are three keys; we have 
picked the same keys as in our leaf example: 57, 81, and 95.4 There are also 
four pointers in this node. The first points to a part of the B-tree from ~vhich 
we can reach only records with keys less than 57 - the first of the keys. The 
second pointer leads to all records with keys between the first and second keys 
of the B-tree block; the third pointer is for those records between the second 
and third keys of the block, and the fourth pointer lets us reach some of the 
records with keys equal to or above the third key of the block. 

4;\lthough the keys are the same, the leaf of Fig. 13.21 and the interior node of Fig. 13.22 
have no relationship. In fact, they could never appear in the same B-tree. 

To keys To keys To keys To keys 
K <57 57<K<81 81cK<95 K >95 - - - 

Figure 13.22: A typical interior node of a B-tree 

As with our example leaf, it is not necessarily the case that all slots for 
keys and pointers are occupied. However, with n = 3, a t  least one key and two 
pointers must be present in an interior node. The most extreme case of missing 
elements would be if the only key were 57, and only the first two pointers were 
used. In that case, the first pointer would be to keys less than 57, and the 
second pointer would be to keys greater than or equal to 57. 

Figure 13.23: A B-tree 

Example 13.21 : Figure 13.23 shows a complete, three-level B-tree, using the 
nodes described in Example 13.20. \Ire have assumed that the data file consists 
of records whose keys are all the primes from 2 to 47. Notice that at  the leaves. 
each of these keys appears once. in order. All leaf blocks have two or three 
key-pointer pairs. plus a pointer to the next leaf in sequence. The keys are in 
sorted order as we look across the leaves from left to right. 

The root has only two pointers, the minimum possible number, although it 
could have up to four. The one key at the root separates those keys reachable 
via the first pointer from those reachable via the second. That is. keys up to 
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12 could be found in the first subtree of the root, and keys 13 and up are in the 
second subtree. 

If we look at the first child of the root, with key 7, we again find t.wo pointers, 
one to keys less than 7 and the other to keys 7 and above. Note that the second 
pointer in this node gets us only to keys 7 and 11, not to all keys 1 7, such as 
13 (although we could reach the larger keys by following the next-block pointers 
in the leaves). 

Finally, the second child of the root has all four pointer slots in use. The 
first gets us to some of the keys less than 23, namely 13, 17, and 19. The second 
pointer gets us to all keys K such that 23 < K < 31; the third pointer lets us 
reach all keys K such that 31 5 I< < 43, and the fourth pointer gets us to some 
of the keys 2 43 (in this case, to all of them). (7 

13.3.2 Applications of B-trees 
The B-tree is a powerful tool for building indexes. The sequence of pointers to 
records a t  the leaves can play the role of any of the pointer sequences coming 
out of an index file that we learned about in Sections 13.1 or 13.2. Here are 
some examples: 

1. The search key of the B-tree is the primary key for the data file, and the 
index is dense. That is, there is one key-pointer pair in a leaf for every 
record of the data file. The data file may or may not be sorted by primary 
key. 

2. The data file is sorted by its primary key, and the B-tree is a sparse indes 
with one key-pointer pair at  a leaf for each block of the data file. 

3. The data file is sorted by an attribute that is not a key, and this attribute 
is the search key for the B-tree. For each key value K that appears in the 
data file there is one key-pointer pair at a leaf. That pointer goes to the 
first of the records that have K as their sort-key value. 

There are additional applications of B-tree variants that allow multiple oc- 
currences of the search key5 at the leaves. Figure 13.24 suggests what such a 
B-tree might look like. The extension is analogous to the indexes with dupli- 
cates that we discussed in Section 13.1.5. 

If we do allow duplicate occurrences of a search key, then we need to change 
slightly the definition of what the keys at interior nodes mean, which n-e dis- 
cussed in Section 13.3.1. Now, suppose there are keys Kl ,  16,. . .: K, at an 
interior node. Then Ki will be the smallest new key that appears in the part of 
the subtree accessible from the (i + 1)st pointer. By "new," we mean that there 
are no occurrences of Ki in the portion of the tree to the left of the (i + 1)st 
subtree, but at  least one occurrence of K, in that subtree. Note that in some 
situations, there will be no such key, in which case Ki can be taken to be null. 

- 

 emem ember that a "search keyn is not necessarily a "keyn in the sense of being unique. 
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Its associated pointer is still necessary, as it points to a significant portion of 
the tree that happens to have only one key value within it. 

Figure 13.24: A B-t,ree with duplicate keys 

Example 13.22: Figure 13.24 shows a B-tree similar to Fig. 13.23, but with 
duplicate values. In particular, key 11 has been replaced by 13, and keys 19, 
29, and 31 have all been replaced by 23. 4 s  a result, the key at the root is 17, 
not 13. The reason is that, although 13 is the lowest key in the second subtree 
of the root, it is not a new key for that subtree, since it also appears in the first 
subtree. 

\Ye also had to make some changes to the second child of the root. The 
second key is changed to 37, since that is the first new key of the third child 
(fifth leaf from the left). Nost interestingly, the first key is now null. The reason 
is that the second child (fourth leaf) has no new keys at  all. Put another way, 
if we were searchina for any key and reached the second child of the root, we - 
would never ~vant to start at  its second child. If we are searching for 23 or 
anything lower. n-e I\-ant to start at  its first child, where we will either find 
what we are looking for (if it is 17), or find the first of what we are looking for 
(if it is 23). Xote that: 

We would not reach the second child of the root searching for 13: we would 
be directed at the root to its first child instead. 

If we are looking for any key bettvec~l 24 and 36, we are directed to the 
third leaf. but n-hen we don't find even one occurrence of what we are 
looking for. n-e know not to search further right. For example, if there 
were a key 21 among the leaves, it would either be on the 4th leaf, in which 
case the null key in the second child of the root would be 24 instead, or 
it would be in the 5th leaf, in which case the key 37 at the second child 
of the root n-ould be 24. 
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13.3.3 Lookup in B-Trees 

We now revert to our original assumption that there are no duplicate keys at 
the leaves. We also suppose that the B-tree is a dense index, so every search-key 
value that appears in the data file will also appear at  a leaf. These assumptions 
make the discussion of B-tree operations simpler, but is not essential for these 
operations. In particular, modifications for sparse indexes are similar to the 
changes we introduced insection 13.1.3 for indexes on sequential files. 

Suppose we have a B-tree index and we want to find a record with search- 
key value K. We search for K recursively, starting at  the root and ending at  a 
leaf. The search procedure is: 

BASIS: If we are at  a leaf, look among the keys there. If the ith key is IC, then 
the ith pointer will take us to the desired record. 

INDUCTION: If we are at  an interior node with keys K1, K2,.  . . , K,, follow 
the rules given in Section 13.3.1 to decide which of the children of this node 
should next be examined. That is, there is only one child that could lead to a 
leaf with key K. If K < K1, then it is the first child, if Icl < K < K2, it is the 
second child, and so on. Recursively apply the search procedure at this child. 

Example 13.23: Suppose we have the B-tree of Fig. 13.23, and we I\-ant to 
find a record with search key 40. We start at  the root, where there is one 
key, 13. Since 13 5 40, we follow the second pointer. which leads us to the 
second-level node with keys 23, 31, and 43. 

At that node, we find 31 5 40 < 43, so we follow the third pointer. We are 
thus led to the leaf with keys 31, 37, and 41. If there had been a record in the 
data file with key 40, we would have found key 40 at  this leaf. Since we do not 
find 40, we conclude that there is no record with key 40 in the underlying data. 

Sote that had we been looking for a record with key 37, we would have 
taken exactly the same decisions, but when we got to the leaf we would find 
key 37. Since it is the second key in the leaf, we follow the second pointer, 
which will lead us to the data record with key 37. 

13.3.4 Range Queries 

B-trees are useful not only for queries in which a single value of the scarch key 
is sought, hut for queiies in which a range of values are asked for. Typically. 
range queries have a term in the WHERE-clause that compares the search kcy 
~vith a value or values, using one of the comparison operators othcr than = or 
<>. Examples of range queries using a search-key attribute k could look like 

SELECT * 
FROM R 
WHERE R.k > 40; 

SELECT * 
FROM R 
WHERE R.k >= 10 AND R.k <= 25; 

If we want to find all keys in the range [a, b] at  the leaves of a B-tree, we do 
a lookup to find the key a. Whether or not it exists, we are led to a leaf where 
a could be, and we search the leaf for keys that are a or greater. Each such 
key we find has an associated pointer to one of the records whose key is in the 
desired range. 

If we do not find a key higher than b, we use the pointer in the current leaf 
to the next leaf, and keep examining keys and following the associated pointers, 
until we either 

1. Find a key higher than b, at which point we stop, or 

2. Reach the end of the leaf, in which case we go to the next leaf and repeat 
the process. 

The above search algorithm also works if b is infinite; i.e., there is only a lower 
bound and no upper bound. In that case, we search all the leaves from the one 
that would hold key a to the end of the chain of leaves. If a is -m (that is, 
there is an upper bound on the range but no lower bound), then the search for 
.'minus infinity" as a search key will always take us to the first child of whatever 
B-tree node 11-e are at; i.e., we eventually find the first leaf. The search then 
proceeds as above. stopping only when lve pass the key b. 

Example 13.24 : Suppose we have the B-tree of Fig. 13.23, and we are given 
the range (10,25) to search for. We look for key 10, ~vhich leads us to the second 
leaf. The first key is less than 10, but the second, 11, is at least 10. We follow 
its associated pointer to get the record with key 11. 

Since there are no more keys in the second leaf, we follow the chain to the 
third leaf, where we find keys 13, 17, and 19. .ill are less than or equal to 25, 
so we follow their associated pointers and retriel-e the records with these keys. 
Finally. we move to the fourth leaf. where we find key 23. But the next key 
of that leaf, 29. exceeds 23, so we are done with our search. Thus, n-e have 
retrieved the five records ~vith keys 11 through 23. 

13.3.5 Insertion Into B-Trees 

nk see some of the advantage of B-trees over the simpler multilevel indexes 
introduced in Section 13.1.1 when we consider how to insert a new key into a 
B-tree. The corresponding record will be inserted into the file being indexed by 
the B-tree, using any of the methods discussed in Section 13.1; here we consider 
hon- the B-tree changes in response. The insertion is, in principle, recursive: 
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I e  try to find a place for the new key in the appropriate leaf, and we put 
it there if there is room. 

If there is no room in the proper leaf, we split the leaf into two and divide 
the keys between the two new nodes, so each is half full or just over half 
full. 

The splitting of nodes at  one level appears to the level above as if a new 
key-pointer pair needs to be inserted a t  that higher level. We may thus 
recursively apply this strategy to insert at the next level: if there is room, 
insert it; if not, split the parent node and continue up the tree. 

As an exception, if we try to insert into the root, and there is no room, 
then we split the root'into two nodes and create a new root a t  the next 
higher level; the new root has the two nodes resulting from the split as 
its children. Recall that no matter how large n (the number of slots for 
keys at  a node) is, it is always perrnissible for the root to have only one 
key and two children. 

When we split a node and insert into its parent, we need to be careful how 
the keys are managed. First, suppose N is a leaf whose capacity is n keys. .illso 
suppose we are trying to insert an (n + 1)st key and its associated pointer. We 
create a new node M, which will be the sibling of N,  immediately to its right. 
The first [q] key-pointer pairs, in sorted order of the keys, remain with N ,  
while the other key-pointer pairs move to M .  Note that both nodes N and A l  
are left with a sufficient number of key-pointer pairs - at  least L y j  pairs. 

Sow, suppose N is an interior node whose capacity is n keys and n + 1 
pointers, and 1V has just been assigned n-t-2 pointers because of a node splitting 
below. We do the following: 

1. Create a new node M, which will he the sibling of AT, immediately to its 
right. 

2. Leave at N the first pointers, in sorted order, and move to 111 the 
remaining 1 9 1  pointers. 

3. The first keys stay with N, while the last keys move to A l .  Xote 
that there is always one key in the middle left over: it goes with neither 
N nor hl. The leftover key K indicates the smallest key reachable via 
the first of M's children. Although this key doesn't appear in N or A l .  
it is associated with A i ;  in the sense that it represents the smallest key 
reachable via dl. Therefore I( will be used by the parent of N and .1f to 
divide searches between those two nodes. 

Example 13.25: Let us insert key 40 into the B-tree of Fig. 13.23. We find 
the proper leaf for the insertion by the lookup procedure of Section 13.3.3. As 
found in Example 13.23, the insertion goes into the fifth leaf. Since n = 3, but 
this leaf now has four key-pointer pairs - 31, 37, 40, and 41 - we need to 

13.3. B-TREES 641 

split the leaf. Our first step is tb create a new node and move the highest two 
keys, 40 and 41, along with their pointers, to that node. Figure 13.25 shows 
this split. 

t t t  t t  t t t  t t  r r  

Figure 13.23: Beginning the insertion of key 40 

.\Totice that although n-e now show the nodes on four ranks, there are still 
only three levels to the tree, and the seven leaves occupy the last two ranks of 
the diagram. They are linked by their last pointers, which still form a chain 
from left to right. 

We must now insert a pointer to the new leaf (the one with keys 40 and 
41) into the node above it (the node with keys 23, 31, and 43). IVe must also 
associate with this pointer the key 40. which is the least key reachable through 
the new leaf. Unfortunately, the parent of the split node is already full; it has 
no room for another key or pointer. Thus, it too must be split. 

We start with pointers to the last five leaves and the list of keys represent- 
ing the least keys of the last four of these leaves. That is, we have pointers 
PI, P2, P3, PA, P5 to the leaves xi-hose least keys are 13, 23, 31, 40. and 43, and 
we have the key sequence 23, 31, 40, 43 to separate these pointers. The first 
three pointers and first t\\-o keys remain with the split interior node. while the 
last tv-o pointers and last key go to the new node. The remaining key. -20. 
represents the least key accessible via the new node. 

Figure 13.26 shotvs the completion of the insert of key 40. The root now 
has three children; the last two are the split interior node. Sotice that the key 
40, which marks the lowest of the keys reachable via the second of the split 
nodes, has been installed in the root to separate the keys of the root's second 
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Figure 13.26: Completing the insertion of key 40 

and third children. 

13.3.6 Deletion From B-Trees 

If we are to  delete a record with a given key K, we must first locate that record 
and its key-pointer pair in a leaf of the B-tree. This part of the deletion process 
is essentially a lookup, as  in Section 13.3.3. lQe then delete the record itself 
from the data  file and we delete the key-pointer pair from the B-tree. 

If the B-tree node from which a deletion occurred still has a t  least the 
miriimum number of keys and pointers, then there is nothing more to  be done.6 
However, i t  is possible that the node was right a t  the minimum occupancy 
before the deletion, so after deletion the constraint on the number of keys is 
violated. l i e  then need t o  do one of two things for a node N whose contents 
are subminimum; one case requires a recursive deletion up the tree: 

1. If one of the adjacent siblings of node lV has more than the minilnum 
number of keys and pointers, then one key-pointer pair can be moved to 
AT, keeping the order of keys intact. Possibly, the keys at  the parent of .l' 
must be adjusted t o  reflect the new situation. For instance, if the right 
sibling of N, say node M ,  provides an estra  key and pointer, then it must 

'If the data record with the least key at aleaf is deleted, then u,e have the option of raising 
the appropriate key at one of the ancestors of that leaf, but there is no requirement that we 
do so; all searches will still go to  the appropriate leaf. 
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be the smallest key that is moved from Jl to  .N. At the parent of M and 
N ,  there is a key that represents the smallest key accessible via M; that  
key must be raised. 

2. The hard case is when neither adjacent sibling can be used to provide 
a n  estra  key for N. However, in that case, we have two adjacent nodes, 
N and one of its siblings AI, one with the minimum number of keys and 
one with less than that. Therefore, together they hare no more keys and 
pointers than are  allolved in a single node (which is why half-full was 
chosen as the minimum allowable occupancy of B-tree nodes). We merge 
these two nodes, effectively deleting one of them. We need t o  adjust the 
keys a t  the parent, and then delete a key and pointer a t  the parent. If the 
parent is still full enough, then we are done. If not, then we recursively 
apply the deletion algorithm a t  the parent. 

E x a m p l e  13.26 : Let us begin with the original B-tree of Fig. 13.23, before the 
insertion of key 40. Suppose we delete key 7. This key is found in the second 
leaf. \Ire delete it. its associated pointer, and the record that  pointer points to. 

Unfortunately. the second leaf now has only one key, and we need a t  least 
two in every leaf. But ~ v e  are saved by the sibling t o  the left, the first leaf, 
because that leaf has an estra  key-pointer pair. We may therefore move the 
highest key. 5. and its associated pointer to  the second leaf. The resulting B- 
tree is shoxvn in Fig. 13.27. Sotice that because the lowest key in the second 
leaf is now 5. the key in the parent of the first t i o  leaves has been changed 
from 7 to 5 .  

Figure 13.27: Deletion of key 7 

Sest .  suppose we delete key 11. This deletion has the same effect on the 
second leaf: it again reduces the number of its keys belo~v the minimum. This 
time, however. ive cannot borrow from the first leaf: because the latter is down 
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to  the minimum number of keys. Additionally, there is no sibling to the right 
from which to b ~ r r o w . ~  "lhs, we need to merge the second leaf with a sibling, 
namely the first leaf. 

The three remaining key-pointer pairs from the first two leaves fit in one 
leaf, so we move 5 to the first leaf and delete the second leaf. The pointers 
and keys in the parent are adjusted to  reflect the new situation a t  its children; 
specifically, the two pointers are replaced by one (to the remaining leaf) and 
the key 5 is no longer relevant and is deleted. The situation is non- as shown in 
Fig. 13.28. 

t t t  t i t  t t  t i  t i  
Figure 13.28: Beginning the deletion of key 11 

Unfortunately, the deletion of a leaf has adversely affected the parent. which 
is the left child of the root. That node, as we see in Fig. 13.28, now has no keys 
and only one pointer. Thus, we try to  obtain an extra key and pointer from an 
adjacent sibling. This time we have the easy case, since the other child of the 
root can afford t o  give up its smallest key and a pointer. 

The change is shown in Fig. 13.29. The pointer t o  the leaf with keys 13. 17. 
and 19 has been moved from the second child of the root t o  the first child. We 
have also changed some keys a t  the interior nodes. The key 13, which used to 
reside a t  the root and represented the smallest key accessible via the pointer 
that was transferred, is now needed at  the first child of the root. On the other 
hand, the key 23, which used to separate the first and second children of the 
second child of the root now represents the smallest key accessible from the 
second child of the root. It  therefore is placed a t  the root itself. 

'Xotice that the leaf to the right, with keys 13, 17, and 19, is not a sibling, because it has 
a different parent. \i7e could "borrow" from that node anyway, but then the algorithm for 
adjusting keys throughout the tree becomes more complex. We leave this enhancement as an 
exercise. 

Figure 13.29: Completing the deletion of key 11 

13.3.7 Efficiency of B-Trees 

B-trees allow lookup, insertion, and deletion of records using very few disk I/O1s 
per file operation. First, we should observe that  if n, the number of keys per 
block is reasonably large. say 10 or more, then it will be a rare event that  calls 
for splitting or merging of blocks. Further, when such an operation is needed, 
it almost always is limited t o  the leaves. so only two leaves and their parent are 
affected. Thus. Tve can essentially neglect the 110 cost of B-tree reorganizations. 

Hon-ever. exery search for the record(s) with a given search key requires us 
to go from the root dolvn t o  a leaf, t o  find a pointer to the record. Since we 
are only reading B-tree blocks. the number of disk 110's will be the number 
of levels the B-tree has, plus the one (for lookup) or two (for insert or delete) 
disk I/O's needed for manipulation of the record itself. We must thus ask: 
how Inany levels does a B-tree have? For the typical sizes of keys, pointers, 
and blocks. three levels are sufficient for all but the largest databases. Thus, 
we shall generally take 3 as  the number of levels of a B-tree. The folloiving 
example illustrates why. 

E x a m p l e  13.27: Recall our analysis in Example 13.19, where we determined 
that 340 key-pointer pairs could fit in one block for our example data. Suppose 
that the average block has an occupancy ~ n i d ~ v a y  betxeen the mininlunl and 
maximum. i.c.. a typical block has 2.53 pointers. \Yith a root. 255 children. 
and 23.5" 65023 leaves. ~ - e  shall have among those leaves 25s3. or about 16.6 
million pointers t o  records. That  is, files with up t o  16.6 million records can be 
acconi~nodated by a 3-level B-tree. 

Holvever, we can use even fewer than three disk I/O's per search through the 
B-tree. The root block of a B-tree is a n  excellent choice t o  keep permanently 
buffered in main memory. If so, then evcry search through a 3-level B-tree 
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Should We Delete From B-Trees? 

There are B-tree implementations that don't fix up deletions at  all. If a 
leaf has too few keys and pointers, it is allowed to remain as it is. The 
rationale is that most files grow on balance, and while there might be an 
occasional deletion that makes a leaf become subminimum, the leaf will 
probably soon grow again and attain the minimum number of key-pointer 
pairs once again. 

Further, if records have pointers from outside the B-tree index, then 
we need to replace the record by a L'tombstone," and we don't want to 
delete its pointer from the B-tree anyway. In certain circumstances, when 
it can be guaranteed that all accesses to the deleted record will go through 
the B-tree, we can even leave the tombstone in place of the pointer to the 
record at  a leaf of the B-tree. Then, space for the record can be reused. 

requires only two disk reads. In fact, under some circumstances it may make 
sense to keep second-level nodes of the B-tree buffered in main memory as well; 
reducing the B-tree search to a single disk I/O, plus whatever is necessary to 
manipulate the blocks of the data file itself. 

13.3.8 Exercises for Section 13.3 

Exercise 13.3.1 : Suppose that blocks can hold either ten records or 99 keys 
and 100 pointers. Also assume that the average B-tree node is 70% full; i.e.. it 
will have 69 keys and 70 pointers. We can use B-trees as part of several different 
structures. For each structure described below, determine (i) the total nuinber 
of blocks needed for a 1,000,000-record file, and (ii) the average number of disk 
110's to retrieve a record given its search key. You may assume nothing is in 
memory initially, and the search key is the primary key for the records. 

* a) The data file is a sequential file, sorted on the search key, with 10 records 
per block. The B-tree is a dense index. 

b) The same as (a), but the data file consists of records in no particular 
order, packed 10 to a block. 

c )  The same as (a), but the B-tree is a sparse index. 

! d) Instead of the B-tree leaves having pointers to data records. the B-tree 
leaves hold the records themselves. A block can hold ten records. but 
on average, a leaf block is 70% full; i.e., there are seven records per leaf 
block. 

* e) The data file is a sequential file, and the B-tree is a sparse index, but each 
primary block of the data file has one overflow block. On average. the 

primary block is full, and the owrflo~v block is half full. However, records 
are in no particular order within a primary block and its overflow block. 

Exercise 13.3.2: Repeat Exercise 13.3.1 in the case that the query is a range 
query that is matched by 1000 records. 

Exercise 13.3.3: Suppose pointers are 4 bytes long, and keys are 12 bytes 
long. How many keys and pointers will a block of 16,384 bytes have? 

Exercise 13.3.4: What are the minimum numbers of keys and pointers in 
B-tree (i) interior nodes and (ii) leaves, when: 

* a) n = 10; i.e., a block holds 10 keys and 11 pointers. 

b) n = 11; i.e., a block holds 11 keys and 12 pointers. 

Exercise 13.3.5: Execute the following operations on Fig. 13.23. Describe 
the changes for operations that modify the tree. 

a) Lookup the record with key 41. 

b) Lookup the record with key 40. 

c) Lookup all records in the range 20 to 30. 

d) Lookup all records with keys less than 30. 

e) Lookup all records with keys greater than 30. 

f) Insert a record with key 1. 

g) Insert records with keys 14 through 16. 

h) Delete the record with key 23. 

i) Delete all the records with keys 23 and higher. 

! Exercise 13.3.6: We mentioned that the leaf of Fig. 13.21 and the interior 
node of Fig. 13.22 could never'appear in the same B-tree. Explain why. 

Exercise 13.3.7 : Khen duplicate keys are allo\vtd in a B-tree. there are sollie 
necessary nlodificatiolls to tllc algorithms for lookup. insertion. and deletion 
that \ve described in this section. Give the changes for: 

* a) Lookup. 

c) Deletion. 
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! Exercise 13.3.8: In Example 13.26 we suggested that it would be possible 
to borrow keys from a nonsibling to the right (or left) if we used a more com- 
plicated algorithm for maintaining keys at interior nodes. Describe a suitable 
algorithm that rebalances by borrowing From adjacent nodes at  a level, regard- 
less of whether they are siblings of the node that has too many or too few 
key-pointer pairs. 

Exercise 13.3.9: If we use the 3-key, hpointer nodes of our examples in this 
section, how many different B-trees are there when the data file'has: 

*! a) 6 records. 

!! b) 10 records. 

!! c) 15 records. 

*! Exercise 13.3.10: Suppose we have B-tree nodes with room for three keys 
and four pointers, as in the examples of this section. Suppose also that when 
we split a leaf, we divide the pointers 2 and 2, while when we split an interior 
node, the first 3 pointers go with the first (left) node, and the last 2 pointers 
go with the second (right) node. We start with a leaf containing pointers to 
records with keys 1, 2, and 3. R e  then add in order, records with keys 4, 5, 6 ,  
and so on. At the insertion of what key will the B-tree first reach four levels? 

!! Exercise 13.3.11 : Consider an index organized as a B-tree. The leaf nodes 
contain pointers to a total of N records, and each block that makes up the 
index has m pointers. We wish to choose the value of m that will minimize 
search times on a particular disk with the following characteristics: 

i. The time to read a giwn block into memory can be approximated by 
70+.05m milliseconds. The 70 milliseconds represent the seek and latency 
components of the read, and the .05m milliseconds is the transfer time. 
That is, as m becomes larger, the block will be larger, and it will take 
more time to read it into memory. 

ii. Once the block is in memory, a binary search is used to find the correct 
pointer. Thus, the time to process a block in main niwnory is a + blog2 m 
milliseconds, for some constants a and b. 

iii. The main memory time constant a is much smaller than the disk seek and 
latency time of 70 milliseconds. 

ic. The index is full, so that the number of blocks that must be examined 
per search is log,, N .  

.\nswer the following: 

a) What value of m minimizes the time to search for a given record? 

b) What happens as the seek and latency constant (70ms) decreases? For 
instance, if this constant is cut in half, how does the optimum m wlue 
change? 

13.4. HASH TABLES 

13.4 Hash Tables 

There are a number of data structures involving a hash table that are useful as 
indexes. We assume the reader has seen the hash table used as a main-memory 
data structure. In such a structure there is a hash function that takes a search 
key (which we may call the hash key) as an argument and computes from it an 
integer in the range 0 to B - 1, where B is the number of buckets. X bucket 
array, which is an array indexed from 0 to B - 1, holds the headers of B linked 
lists, one for each bucket of the array. If a record has search key K ,  then we 
store the record by linking it to the bucket list for the bucket numbered h(K), 
where h is the hash function. 

13.4.1 Secondary-Storage Hash Tables 

.4 hash table that holds a very large number of records, so many that they must 
be kept mainly in secondary storage, differs from the main-memory version in 
small but important ways. First, the bucket array consists of blocks, rather than 
pointers to the headers of lists. Records that are hashed by the hash function h 
to a certain bucket are put in the block for that bucket. If a bucket overflows, 
meaning that it cannot hold all the records that belong in that bucket. then a 
chain of overflow blocks can be added to the bucket to hold more records. 

We shall assume that the location of the first block for any bucket i can be 
found given i. For example, there might be a main-memory array of pointers 
to blocks, indexed by the bucket number. Another possibility is to put the first 
block for each bucket in Lyed, consecutive disk locations. so we can compute 
the location of bucket i from the integer i. 

Figure 13.30: -4 hash table 

Example 13.28: Figure 13.30 shon-s a hash table. To keep our illustratiolls 
manageable, we assume that a block call hold only trvo records, and that B = 4: 
i.e., the hash function h returns values from 0 to 3. We show certain records 
populating the hash table. Keys are letters n through f in Fig. 13.30. lye 
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Choice of Hash Function 

The hash function should "hash" the key so the resulting integer is a 
seemingly random function of the key. Thus, buckets will tend to have 
equal numbers of records, which improves the average time t o  access a 
record, as we shall discuss in Section 13.4.4. Also, the hash function 
should be easy t o  compute, since we shall compute it many times. 

A common choice of hash function when keys are integers is to  com- 
pute the remainder of K l B ,  where I( is the key value and B is 
the number of buckets. Often, B is chosen t o  be a prime, although 
there are reasons to make B a power of 2, as we discuss starting in 
Section 13.4.5. 

For character-string search keys, we may treat each character as an 
integer, sum these integers, and take the remainder when the sum is 
divided by B. 

assume that h ( d )  = 0, h(c) = h(e) = 1, h(b) = 2, and h(a) = h( f )  = 3. Thus. 
the six records are distributed into blocks as shown. 

Sote that  we show each block in Fig. 13.30 with a "nub" a t  the right end. 
This nub represents additional information in the block's header. We shall use 
it to chain overflow blocks together, and starting in Section 13.4.5, we shall use 
it to keep other critical information about the block. 

13.4.2 Insertion Into a Hash Table 

IThen a new record with search key I< must be inserted, we compute h(IC). If 
the bucket nunlbered h ( K )  has space, then we insert the record into the block 
for this bucket, or into one of the overflow blocks on its chain if there is no room 
in the first block. If none of thc blocks of the chain for bucket h(K) has room. 
we add a new overflow block to the chain and store the new record there. 

Example 13.29: Suppose we add to the hash table of Fig. 13.30 a record 
with key g, and h ( g )  = 1. The11 we must add the new record to  the bucket 
nunlbered 1, it-hich is the second bucket from the top. Ho~vever, the block for 
that bucket already has two records. Thus, R-e add a new block and chain it 
to the original block for bucket 1. The record with key g goes in that block, as 
shown in Fig. 13.31. 

Figure 13.31: Adding a n  additional block t o  a hash-table bucket 

13.4.3 Hash-Table Deletion 

Deletion of the record (or records) with search key K follows the same pattern. 
U'e go t o  the bucket numbered h(K) and search for records with that  search 
key. .Any that we find are deleted. If ~ v e  are able t o  move records around among 
blocks, then after deletion we may optionally consolidate the blocks of a chain 
into one fewer block.* 

E x a m p l e  13.30 : Figure 13.32 sho~vs the result of deleting the record with key 
c from the hash table of Fig. 13.31. Recall h(c) = 1, so we go t o  the bucket 
numbered 1 (i.e., the second bucket) and search ail its blocks to find a record 
(or records if the search key Tvere not the primary key) with key c. We find it 
in the first block of the chain for bucket 1. Since there is now roont t o  move 
the record with key g from the second block of the chain t o  the first, we can do 
so and remove the second block. 

Figure 13.32: Result of deletions from a hash table 

risk of consolidating blocks of a chain whenever possible is that an oscillation, where 
xve alternately insert and delete records from a bucket will cause a block to be created or 
destroyed at each step. 
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We also show the deletion of the record with key a. For this key, we found 
our way to bucket 3, deleted it, and "consolidated" the remaining record at the 
beginning of the block. 

13.4.4 Efficiency of Hash Table Indexes 

Ideally, there are enough buckets that most of them fit on one block. If so, 
then the typical lookup takes only one disk 110, and insertion or deletion from 
the file takes only two disk 110's. That number is significantly better than 
straightforward sparse or dense indexes, or B-tree indexes (although hash tables 
do not support range queries as B-trees do; see Section 13.3.4). 

However, if the file grows, then we shall eventually reach a situation where 
there are many blocks in the chain for a typical bucket. If so, then we need to 
search long lists of blocks, taking at least one disk 110 per block. Thus, there 
is a good reason to try to keep the number of blocks per bucket low. 

The hash tables we have examined so far are called static hash tables, because 
B, the number of buckets, never changes. However, there are several kinds of 
dynamic hush tables, where B is allowed to vary so it approximates the number 
of records divided by the number of records that can fit on a block; i.e., there 
is about one block per bucket. We shall discuss two such methods: 

1. Extensible hashing in Section 13.4.5, and 

2. Linear hashing in Section 13.4.7. 

The first grows B by doubling it whenever it is deemed too small, and the 
second grows B by 1 each time statistics of the file suggest some growth is 
needed. 

13.4.5 Extensible Hash Tables 
Our first approach to dynamic hashing is called extenseble hash tables. The 
major additions to the simpler static hash table structure are: 

1. There is a level of indirection introduced for the buckets. That is. an 
array of pointers to blocks represents the buckets, instead of the array 
consisting of the data blocks themselves. 

2. The array of pointers can grow, Its length is always a polver of 2, so in a 
growing step the number of buckets doubles. 

3. However, thcre does not have to be a data block for each bucket; certain 
buckets can share a bIock if the total number of records in those buckets 
can fit in the block. 

1. The hash function h computes for each key a sequence of k bits for some 
large k, say 32. Ho~vever, the bucket numbers will at  all times use some 
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smaller number of bits, say i bits, from the beginning of this sequence. 
That is, the bucket array will have 2i entries when i is the number of bits 
used. 

Example 13.31: Figure 13.33 shows a small extensible hash table. We sup- 
pose, for sinlplicity of the example, that k = 4; i.e., the hash function produces 
a sequence of only four bits. At the moment, only one of these bits is used, 
as indicated by i = 1 in the box above the bucket array. The bucket array 
therefore has only two entries, one for 0 and one for 1. 

Buckets Data blocks 

Figure 13.33: An extensible hash table 

The bucket array entries point to two blocks. The first holds all the current 
records whose search keys hash to a bit sequence that begins with 0, and the 
second holds all those whose search keys hash to a sequence beginning with 
1. For convenience, we show the lceys of records as if they were the entire bit 
sequence that the hash function converts them to. Thus, the first block holds 
a record whose key hashes to 0001, and the second holds records \shose keys 
hash to 1001 and 1100. 0 

R'e should notice the ~iurliber 1 appearing in the "nub" of each of the blocks 
in Fig. 13.33. This number. which ~vould actually appear in the block header, 
indicates how many bits of the hash function's sequence is used to determine 
niembcrship of records in this block. In the situation of Example 13.31, there 
is only one bit considered for all blocks and records, but as we shall see, the 
number of bits considered for various blocks can differ as the hash table grows. 
That is, the bucket array size is determined by the maximum number of bits 
we are now using. but some blocks may use fexser. 

13.4.6 Insertion Into Extensible Hash Tables 

Insertion into an extensible hash table begins like insertion into a static hash 
table. To insert a record with search key K, we compute h(K) ,  take the first 
i bits of this bit sequence, and go to the entry of the bucket array indexed by 
these i bits. Note that we can determine i because it is kept as part of the hash 
data structure. 
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We follow the pointer in this entry of the bucket array and arrive at a 
block B. If there is room to put the new record in block B, we do so and we 
are done. If there is no room, then there are two possibilities, depending on 
the number j ,  which indicates how many bits of the hash value are used to 
determine membership in block B (recall the value of j is found in the "nub" 
of each block in figures). 

1. If j < i, then nothing needs to be done to the bucket array. We: 

(a) Split block B into two. 

(b) Distribute records in B to the two blocks, based on the value of their 
( j  + 1)st bit - records whose key has 0 in that bit stay in B and 
those with 1 there go to the new block. 

(c) Put j + 1 in each block's "nub" to indicate the number of bits used 
to determine membership. 

(d) Adjust the pointers in the bucket array so entries that formerly 
pointed to B now point either to B or the new block, depending 
on their ( j  + 1)st bit. 

Note that splitting block B may not solve the problem, since by chance 
all the records of B may go into one of the two blocks into which it was 
split. If so, we need to repeat the process with the next higher value of j 
and the block that is still overfull. 

2. If j = i, then we must first increment i by 1. We double the length of 
the bucket array, so it now has 2i+1 entries. Suppose w is a sequence 
of i bits indexing one of the entries in the previous bucket array. In the 
new bucket array, the entries indexed by both wO and w1 (i.e., the two 
numbers derived from w by extending it with 0 or 1) each point to the 
same block that the w entry used to point to. That is, the two new entries 
share the block, and the block itself does not change. Membership in the 
block is still determined by whatever number of bits was prel-iously used. 
Finally, we proceed to split block B as in case 1. Since i is now greater 
than j ,  that case applies. 

Example 13.32 : Suppose we insert into the table of Fig. 13.33 a record whose 
key hashes to the sequence 1010. Since the first bit is 1, this record bclongs in 
the second block. However, that block is already full, so it needs to be split. 
11-e find that j = i = 1 in this case, so we first need to double the buckct airay. 
as shown in Fig. 13.34. We have also set i = 2 in this figure. 

Sotice that the two entries beginning m-ith 0 each point to the block for 
records whose hashed keys begin with 0, and that block still has the integer 1 
in its "nub" to indicate that only the first bit determines membership in the 
block. However, the block for records beginning with 1 needs to be split, so we 
partition its records into those beginning 10 and those beginning 11. .I 2 in 
each of these blocks indicates that two bits are used to determine membership. 
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Figure 13.34: Now, two bits of the hash function are used 

Fortunately, the split is successful; since each of the two new blocks gets at  least 
one record, we do not have to split recursively. 

Now suppose we insert records whose keys hash to 0000 and 0111. These 
both go in the first block of Fig. 13.34, ~vliicli then overflows. Since only one bit 
is used to determine membership in this block, while i = 2, Ire do not have to 
adjust the bucket array. \Ve simply split the block, with 0000 and 0001 staying, 
and 0111 going to the new block. The entry for 01 in the bucket array is made 
to point to the new block. Again, we hare been fortunate that the records did 
not all go in one of the new blocks, so we have no need to split recursively. 

Figure 13.35: The hash table now uses three bits of the hash function 

Sow suppose a record whose key hashes to 1000 is inserted. The block for 
10 overfloxs. Since it already uses two bits to determine membership. it is 
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time t o  split the bucket array again and set i = 3. Figure 13.35 shows the 
data structure a t  this point. Notice that  the block for 10 has been split into 
blocks for 100 and 101, while the other blocks continue to  use only tn-o bits to  
determine membership. 

13.4.7 Linear Hash Tables 

Extensible hash tables have some important advantages. Most significant is the 
fact that when looking for a record, we never need to search more than one data 
block. We also have to examine an entry of the bucket array, but if the bucket 
array is small enough to be kept in main memory, then there is no disk I/O 
needed to access the bucket array. However, extensible hash tables also suffer 
froni some defects: 

1. When the bucket array needs to  be  doubled in size, there is a substantial 
amount of work to be  done (when i is large). This work interrupts access 
to  the data  file, or makes certain insertions appear to  take a long time. 

2. When the bucket array is doubled in size, it may no longer fit in main 
memory, or may crowd out other data  that we would like to  hold in main 
memory. As a result; a system that was performing well might suddenly 
start using many more disk 110's per operation and exhibit a noticeably 
degraded performance. 

3. If the number of records per block is small, then there is likely to be 
one block that needs t o  be split well in advance of the logical time t o  
do so. For instance, if there are two records per block as  in our running 
example, there might be one sequence of 20 bits that begins the keys of 
three records, even though the total number of records is much less than 
220. In that case, we would have to use i = 20 and a million-bucket array. 
ex11 though the number of blocks holding records ~vas nnich smaller than 
a million. 

Another strategy, called linear hashing, gram the number of buckets more 
slo~r-ly. The principal neTv *elements we find in linear hashing are: 

The number of buckets n is always chosen so the average number of records 
per bucket is a fixed fraction, say 80%, of the number of records that fill 
one block. 

Since blocks cannot always be split, overflo\r blocks are permitted. al- 
though the average number of overflo~v blocks per bucket will be much 
less than I. 

The number of bits used to number the entrics of the bucket array is 
[logz n], where n is the current number of buckets. These bits are always 
taken from the right (low-order) end of the bit sequence that is produced 
by the hash function. 

Suppose i bits of the hash function are being used t o  number array en- 
tries, and a record with key K is intended for bucket a laz . .  . ai; that  is, 
alaz . . .ai are the last i bits of ~ z ( K ) .  Then let alas ...ai be m, treated 
as  an i-bit binary integer. If m < n, then the bucket numbered m exists, 
and we place the record in that bucket. If n 5 m < 2', then the bucket 
rn does not yet exist, so we place the record in bucket m - 2'-', that  is, 
the bucket we lvould get if we changed a1 (which must be 1) t o  0. 

Example 13.33: Figure 13.36 shows a linear hash table with n = 2. We 
currently are using only one bit of the hash value t o  determine the buckets 
of records. Following the pattern established in Example 13.31, we assume the 
hash function h produces 4 bits, and we represent records by the value produced 
by h when applied to  the search key of the record. 

Figure 13.36: d linear hash table 

We see in Fig. 13.36 the two buckets. each consisting of one block. The 
buckets are numbered 0 and 1. A11 records whose hash value ends in 0 go in 
the first bucket. and those whose hash value ends in 1 go in the second. 

Also part of the structure are the parameters i (the number of bits of the 
hash function that currently are used), n (the current number of buckets), and r 
(the current number of records in the hash table). The ratio r / n  will be limited 
so that the typical bucket mill need about one disk block. We shall adopt the 
policy of choosing n;  the number of buckcts, so that there are no more than 
1.7n records in the file; i.e., r 5 1.7n. Tha t  is, since blocks hold two records, 
the average occupancy of a bucket does not exceed 85% of the capacity of a 
block. 

13.4.8 Insertion Into Linear Hash Tables 

Khen we insert a new record. we determine its bucket by the algoritlnn outlined 
in Section 13.4.7. We compute h(I i ) ,  where Ii is the key of the record, and 
ive use the i bits a t  the end of bit sequence h(K) as the bucket number, m. If 
m < 71,  Ire put the record in bucket in: and if m 2 n. we put the  record in 
bucket rn - 2'-'. If there is no room in the designated bucket, then we create 
an overflo\r- block, add it to  the chain for that bucket, and put the record there. 

Each time we insert, we compare the current number of records r with the 
threshold ratio of r /n ,  and if the ratio is too high, we add the next bucket to 
the table. Sote that the bucket we add bears 110 relationship t o  the bucket 
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into which the insertion occurs! If the binary representation of the number of 
the bucket we add is la2 - . . a,, then we split the bucket numbered Oaz.. .ai,  
putting records into one or  the other bucket, depending on their last i bits. 
Xote that all these records will have hash values that end in az . .  . ai, and only 
the ith bit from the right end will vary. 

The last important detail is what happens when n exceeds 2i. Then, i is 
incremented by 1. Technically, all the bucket numbers get an additional 0 in 
front of their bit sequences, but  there is no need to make any physical change, 
since these bit sequences, interpreted as integers, remain the same. 

Example  13.34: We shall continue with Example 13.33 and consider what 
happens when a record whose key hashes t o  0101 is inserted. Since this bit 
sequence ends in 1, the record goes into the second bucket of Fig. 13.36. There 
is room for the record, so n o  overflow block is created. 

However, since there a re  now 4 records in 2 buckets, we exceed the ratio 
1.7, and we must therefore raise n t o  3. Since [log, 31 = 2, we should begin to  
think of buckets 0 and 1 as 00 and 01, but no change t o  the data structure is 
necessary. 'IYe add to the table the next bucket, which would have number 10. 
Then, we split the bucket 00, that  bucket whose number differs from the added 
bucket only in the first bit. IV11en u7e do the split, the record whose key hashes 
to  0000 stays in 00, since i t  ends with 00, while the record whose key hashes to  
1010 goes to 10 because it ends that  way. The resulting hash table is shown in 
Fig. 13.37. 

Figure 13.37: Adding a third bucket 

Sext, let us suppose we add a record lvhose search key hashes to  0001. 
The last two bits are 01. so  we put it in this bucket, which currently esists. 
Unfortunately. the bucket's block is full, so 1-e add an overflow block. The thiee 
records are distributed among the two blocks of the bucket; TW chose to  keep 
them in numerical ordcr of their hashed keys, but ordcr is not important. Since 
the ratio of records to  buckets for the table as a whole is 513, and this ratio is 
less than 1.7. we d o  not create a new bucket. The result is seen in Fig. 13.38. 

Finally, consider the insertion of a record whose search key hashes t o  0111. 
The last two bits are 11. but bucket 11 does not yet exist. 'IVe therefore redirect 
this record to bucket 01. whose number differs by having a 0 in the first bit. 
The new record fits in the o~erf low block of this bucket. 
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Figure 13.38: Overflow blocks are used if necessary 

Figure 13.39: Adding a fourth bucket 

However, the ratio of the number of records to  buckets has exceeded 1.7, so 
we must create a new bucket. nu~nbered 11. Coincidentally. this bucket is the 
one we wanted for the new record. \Ire split the four records in bucket 01: with 
0001 and 0101 remaining. and 0111 and 1111 going to the new bucket. Since 
bucket 01 now has only two records, we can delete the overflow block. The hash 
table is now as shown in Fig. 13.39. 

Sotice that the next time we insert a record into Fig. 13.39, we shall exceed 
the 1.7 ratio of records to buckets. Then, we shall raise n to  5 and i becomes 
3. 

E x a m p l e  13.35 : Lookup in a linear hash table follolvs the procedure we de- 
scribed for selecting the bucket in which an inserted record belongs. If the 
record we xish to look up is not in that bucket. it cannot be anywhere. For 
illustration. consider the situation of Fig. 13.37. where we have i = 2 and n = 3. 

First. suppose 11-e want to  look up a rccord 15-hose key hashes to  1010. Since 
i = 2, we look at  the last t ~ o  bits. 10. 1%-hich we interpret as  a binary integer. 
namely m = 2. Since m < 71,  the bucket numbered 10 esists. and we look there. 
Sotice that just because we find a rccord with hash ~ a l u e  1010 doesn't mean 
that this record is the one .ive want; we need to examine the complete key of 
that record to  be sure. 

Second, consider the lookup of a record whose key hashes to  1011. Sow, we 
must look in the bucket whose number is 11. Since that  bucket number as a 
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binary integer is m = 3, and m 2 n, the bucket 11 does not exist. We redirect 
to bucket 01 by changing the leading 1 to 0. However, bucket 01 has no record 
whose key has hash value 1011, and therefore surely our desired record is not 
in the hash table. 

13.4.9 Exercises for Section 13.4 

Exercise 13.4.1: Show what happens to the buckets in Fig. 13.30 if the fol- 
lowing insertions and deletions occur: 

i. Records g through j are inserted into buckets 0 through 3, respectively. 

ii. Records a and b are deleted. 

Exercise 13.4.6: Suppose keys are hashed to four-bit sequences, as in our 
examples of extensible and linear hashing in this section. However, also suppose 
that blocks can hold three records, rather than the two-record blocks of our 
examples. If we start with a hash table with two empty blocks (corresponding 
to 0 and I), show the organization after we insert records with keys: 

* a)  0000,0001,. . . ,1111, and the method of hashing is extensible hashing. 

b) 0000,0001,. . . ,1111, and the method of hashing is linear hashing with a 
capacity threshold of 100%. 

iii. Records k through n are inserted into buckets 0 through 3, respectively. . 
iv. Records c and d are deleted. 

I C) 1111,1110,. . . ,0000, and the method of hashing is extensible hashing. 

Exercise 13.4.2: We did not discuss how deletions can be carried out in a 
linear or extensible hash table. The mechanics of locating the record(s) to 
be deleted should be obvious. What method would you suggest for esecuting 
the deletion? In particular, what are the advantages and disadvantages of 
restructuring the table if its smaller size after deletion allows for conlpression 
of certain blocks? 

! Exercise 13.4.3: The material of this section assumes that search keys are 
unique. However: only small modifications are needed to allow the techniques 
to work for search keys with duplicates. Describe the necessary changes to 
insertion, deletion, and lookup algorithms, and suggest the major problems 
that arise when there are duplicates in: 

* a) A simple hash table. 

b) An extensible hash table. 

c) A linear hash table. 

! Exercise 13.4.4: Some hash functions do not work as well as theoretically 
possible. Suppose that we use the hash function on integer keys i defined h>- 
h ( i )  = i2 mod 8. 

* a) What is wrong with this hash function if B = lo? 

b) How good is this hash function if B = 16:' 

c) Are there values of B for which this hash function is useful? 

Exercise 13.4.5 : In an extensible hash table ~vith r~ records per block. what 
is the probability that an overflowing block will have to be handled recursivelj-: 
i.e., ail members of the block will go into the sanle one of the two blocks created 
in the split? 

d) 11 11,1110,. . . : 0000, and the method of hashing is linear hashing with a 
capacity threshold of 75%. 

* Exercise 13.4.7: Suppose we use a linear or extensible hashing scheme, but 
there are pointers to records from outside. These pointers prevent us from mov- 
ing records between blocks, as is sometimes required by these hashing methods. 
Suggest several ways that we could modify the structure to  allow pointers from 
out side. 

!! Exercise 13.4.8: A linear-hashing scheme with blocks that hold li records 
uses a threshold constant c? such that the current number of buckets n and 
the current number of records r are related by r = ckn. For instance, in 
Example 13.33 lve used k = 2 and c = 0.85, so there were 1.7 records per 
bucket; i.e.. r = 1.7n. 

a) Suppose for convenience that each key occurs esactly its espected number 
of times.g As a function of c. C: and n: how many blocks, including 
overflow blocks, are needed for the structure? 

b) Keys will not generally distribute equally, but rather the number of rec- 
ords rvith a given key (or suffix of a key) will be Poisson distributed. That 
is, if X is the espected number of records with a given kc? suffix. then 
the actual number of such records will be i with probabilitj- e - x X ' / i ! .  
Undel this assumption. calculate the espected number of blocks used. as 
a function of c. k .  and n .  

*! Exercise 13.4.9 : Suppose we have a file of 1,000,000 records that we want to 
hash into a table with 1000 buckets. 100 records will fit in a block. and ive wish 
to keep blocks as full as possible, but not allow two buckets to share a block. 
What are the minimum and maximum number of blocks that we could need to 
store this hash table? 

g ~ h i s  assumption does not mean all buckets have the same number of records. because 
some buckets represent twice as many keys as others. 
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13.5 Summary of Chapter 13 

4 Sequential Files: Several simple file organizations begin by sorting the 
data file according to some search key and placing an index on this file. 

4 Dense Indexes: These indexes have a key-pointer pair for every record in 
the data file. The pairs are kept in sorted order of their key values. 

+ Sparse Indexes: These indexes have one key-pointer pair for each block 
of the data file. The key associated with a pointer to a block is the first 
key found on that block. 

+ Multilevel Indexes: It is sometimes useful to put an index on tlie index 
file itself, an index file on that, and so on. Higher levels of index must be 
sparse. 

+ Expanding Files: As a data file and its index file(s) grow, some provision 
for adding additional blocks to the file must be made. Adding overflow 
blocks to the original blocks is one possibility. Inserting additional blocks 
in the sequence for the data or index file niay be possible, unless the file 
itself is required to be in sequential blocks of the disk. 

4 Secondary Indexes: Xn index on a search key K can be created even if 
. the data file is not sorted by K. Such an index must be dense. 

+ Inverted Indexes: The relation between documeilts and the words they 
contain is often represented by an index structure with tvord-pointer pairs. 
The pointer goes to a place in a "bucket" file ~t-here is found a list of 
pointers to places where that word occurs. 

+ B-trees: These structures are essentially multile~el indexes. with graceful 
growth capabilities. Blocks with n keys and n + 1 pointers are organized 
in a tree, with the leaves pointing to records. All blocks are between 
half-full and completely full at  all times. 

+ Range Queries: Queries in which we ask for all records whose search-key 
value lies in a given range are facilitated by indexed sequential files and 
B-tree indexes, although not by hash-table indexes. 

4 Hash Tables: We can create hash tables out of blocks in secondary mein- 
or!: much as we can create inain-memory hasli tables. A has11 f~iiiction 
maps search-key values to buckets, effectively partitioning the records of 
a data file into many small groups (the buckets). Buckets are rcpiesentcd 
by a block and possible 01-erflotv blocks 

+ Dynamic Hashing: Since performance of a hasli table degrades if there are 
too many records in one bucket. tlie number of buckets may need to grow 
as time goes on. Tn-o important methods of allowing graceful growth are 
extensible and linear hashing. Both begin by hashing search-key values 

13.6. REFEREACES FOR CHAPTER 13 UUO 

to long bit-strings and use a varying number of those bits to determine 
the bucket for records. 

+ Extenszble Hashrng: This method allows the number of buckets to double 
whenever any bucket has too many records. It uses an array of pointers 
to blocks that represent the buckets. To avoid having too many blocks, 
several buckets can be represented by the same block. 

+ Linear Hashing: This method grows the number of buckets by 1 each time 
the ratio of records to buckets exceeds a threshold. Since the population 
of a single bucket cannot cause the table to expand, overflow blocks for 
buckets are needed in some situations. 
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Chapter 14 

Multidimensional and 
Bit map Indexes 

A11 the index structures discussed so far are one dimensional; that is, they 
assume a single search key, and they retrieve records that match a given search- 
key value. \% have imagined that the search key ~vas a single attribute or field. 
However, an index whose search key is a combination of fields can still be one- 
dimensional. If we want a one-dimensional index whose search key is the fields 
(Fl,Pl, .  . . , Fk), then we can take the search-key value to be the concatenation 
of values, the first from Fl: the second from F2. and so on. We can separate 
these values by special marker symbols to make the association b e t ~ ~ e e n  search- 
key values and lists of values for the fields Fl. . . . , Fk unambiguous. 

Example 14.1 : If fields F, and F2 are astring and an integer. respectively, and 
# is a character that cannot appear in strings, then the con~bination of values 
Fl = 'abcd' and F2 = 123 can be represented by the string ' abcd#123'. 

In Chapter 13: we took advantage of a one-dimensional key space in several 
ways: 

Indexes on sequential files and B-trees both take advantage of having all 
keys in a single, sorted order. 

Hash tables require that the search key be completely kno\vn for any 
lookup. If a key consists of several fields. and even one is unknown, we 
cannot apply the hash function. but must instead search all the buckets. 

There are a number of applications that require us to view data as existing 
in a 2-dimensional space, or sometimes in higher dimensions. Some of these ap- 
plications can be supported by conventional DBMS's, but there are also some 
specialized systems designed for multidimensional applications. One important 
way in which these specialized systems distinguish themselves is by using data 
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structures that support certain kinds of queries that are not common in SQL 
applications. Section 14.1 introduces us to  the typical queries that benefit from 
an index that is designed to support multidimensional data and multidimen- 
sional queries. Then, in Sections 14.2 and 14.3 \ye discuss the following data  
structures: 

1. Grid files, a multidimensional extension of one-dimensional hash-tables. 

2. Partitioned hash functions, another way that brings hash-table ideas to  
multidilnensional data. 

3. Multiple-key indexes, in which the index on one attribute A leads to  in- 
dexes on another attribute B for each possible value of A. 

4. kd-trees, an approach t o  generalizing B-trees t o  sets of points. 

5 .  Quad trees, which are multiway trees in which each child of a node rep- 
resents a quadrant of a larger space. 

6. R-trees, a B-tree generalization suitable for collections of regions. 

Finally, Section 14.4 discusses an index structure called bitmap indexes. 
These indexes are succinct codes for the location of records with a given value 
in a given field. They are beginning to appear in the major commercial DBlIS's. 
and they sometimes are a n  excellent choice for a one-dimensional index. How- 
ever. they also can be a powerful tool for answering certain kinds of multidi- 
mensional queries. 

14.1 Applications Needing Multiple Dimensions 

K e  shall consider two general classes of multidimensional applications. One is 
geographic in nature, where the data  is elements in a two-dimensional ~vorld. 
or sometimes a three-dimensional world. The second involves more abstract 
notions of dimensions. Roughly, every attribute of a relation can be thought of 
as a dimension, and all tuples are points in a space defined by those din~ensions. 

Also in this section is an analysis of how conventional indexes, such as B- 
trees. could be used t o  support multidimensional queries. IVhile in some cases 
they are adequate, there are also examples where they are clearly do~ninated 
by more specialized structures. 

14.1.1 Geographic Information Systems 

-4 geographic information system stores objects in a (typically) two-dimensional 
space. The objects may be points or shapes. Often, these databases are maps, 
where the stored objects could represent houses. roads, bridges, pipelines. and 
man?- other physical objects. rl suggestion of such a map is in Fig. 14.1. 

school 

house 1 ' &  

Figure 14.1: Some objects in 2-dimensional space 

However, there are many other uses as well. For instance, a n  integrated- 
circuit design is a trvo-dimensional map of regions, often rectangles, composed 
of specific materials, called "layers." Likewise, we can think of the windows 
and icons on a screen as a collection of objects in two-dimensional space. 

The queries asked of geographic information systems are not typical of SQTi 
queries, although many can be expressed in SQL with some effort. Examples 
of these types of queries are: 

1. Partial match queries. We specify values for one or more dimensions and 
look for all points matching those values in those dimensions. 

2. Range queries. n'e give ranges for one or more of the dimensions, and we 
ask for the set of points within those ranges. If shapes are represented. 
then we may ask for the shapes that are partially or wholly within the 
range. These queries generalize the one-dimensional range queries that 
we considered in Section 13.3.4. 

3. Nearest-neighbor queries, We ask for the closest point to a given point. 
For instance. if points represent cities, x e  might want to find the city of 
over 100.000 populatio~l closest t o  a given small tit!-. 

1. Where-am-I queries. \Ve are given a point and we want to  know in 11-hich 
shape, if any, the point is located. X familiar example is what happens 
when you click your mouse, and the system determines which of the dis- 
played elements you rrere clicking. 
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14.1.2 Data Cubes 
A recent development is a family of DBllIS's, sometimes called data cube sys- 
tems, that see data as existing in a high-dimensional space. These are discussed 
in more detail in Section 20.5, but the follo~ving example suggests the main idea. 
?\lultidimensional data is gathered by many corporations for decision-support 
applications, where they analyze information such as sales to better understand 
company operations. For example, a chain store may record each sale made, 
including: 

1. The day and time. 

2. The store at which the sale was made. 

3. The item purchased. 

4. The color of the item. 

5. The size of the item. 

and perhaps other properties of the sale. 
It is common to view the data as a relation with an attribute for each 

property. These attributes can be seen as dimensions of a multidimensional 
space. the "data cube." Each tuple is a point in the space. Analysts then 
ask queries that typically group the data along some of the dimensions and 
summarize the groups by an aggregation. .A typical example would be "give 
the sales of pink shirts for each store and each month of 1998." 

14.1.3 Multidimensional Queries in SQL 

It is possible to set up each of the applications suggested above as a conventional, 
relational database and to issue the suggested queries in SQL. Here are some 
esamplcs. 

Example 14.2: Suppose we wish to answer nearest-neighbor queries about 
a set of points in two-dimensional space. We may represent tlle points as a 
relation consisting of a pair of reals: 

That is. there are two attributes. x and y. representing the .T- and y-coordinates 
of the point. Other. unseen. attributes of relation Points nlay represent prop- 
erties of the point. 

Suppose we want the nearest point to the point (10.0: 20.0). The query 
of Fig. 14.2 finds the nearest point, or points if there is a tie. It asks, for 
each point p, whether there exists another point q that is closer to (10.0,20.0). 
Comparison of distances is carried out by computing the sum of the squares of 
the differences in the x- and y-coordinates between tlle point (10.0.20.0) and 

the points in question. Notice that we do not have to take the square roots of 
the sums to get the actual distances; comparing the squares of the distances is 
the same as comparing the distances themselves. 

SELECT * 
FROM POINTS p 
WHERE NOT EXISTS( 

SELECT * 
FROM POINTS q 
WHERE (q.x-lO.O)*(q.x-lO.O) + (q.y-20-0)*(q-~-20.0) < 

(p .x - l~ .o )* (p .x - lo .o~  + (p.y-20.0)*(~.y-20.0) 
) ; 

Figure 14.2: Finding the points with no point nearer to (10.0,20.0) 

Example 14.3 : Rectangles are a common form of shape used in geographic 
systems. IIre can represent a rectangle in several ways; a popular one is to give 
the coordinates of the lower-left and upper-right corners. IVe then represent a 
collection of rectangles by a relation Rectangles with attributes for a rectangle- 
ID. the four coordinates that describe the rectangle, and any other properties 
of the rectangle that we wished to record. Il'e shall use the relation: 

Rectangles(id, x l l ,  y l l ,  xur, yur) 

in this example. The attributes are the rectangle's ID. the x-coordinate of its 
lower-left corner, the y-coordinate of that corner, and the txo coordinates of 
the upper-light corner. respectisel!: 

Figure 14.3 is a query that asks for the rectangle(s) enclosing the point 
(10.0.20.0). The  here-clause condition is straightforlvard. For the rectangle 
to enclose (10.0.20.0), the lower-left corner must have its x-coordinate at  or to 
the left of 10.0. and its y-coordinate at or below 20.0. Also. the upper right 
corner must be at  or to the right of z = 10.0 and at  or above y = 20.0. 

SELECT i d  
FROM Rectangles 
WHERE x l l  <= 10.0 AND y l l  <= 20.0 AND 

xur >= 10.0 AND yur >= 20.0; 

Figure 14.3: Finding the rectangles that contain a given point 
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Example 14.4 : Data suitable for a data-cube system is typically organized 
into a fact table, which gives the basic elements being recorded (e.g., each sale), 
and dimension tables, which give properties of the values along each dimension. 
For instance, if the store at  which a sale was made is a dimension, the dimension 
table for stores might give the address, phone, and name of the store's manager. 

In this example, we shall deal only with the fact table, which we assume 
has the dimensions suggested in Section 14.1.2. That is, the fact table is the 
relation: 

Sales(day, s to re ,  item, color,  s i z e )  

The query "summarize the sales of pink shirts by day and store" is shown 
in Fig. 14.4. It uses grouping to organize sales by the dimensions day and 
store, while summarizing the other dimensions through the COUNT aggregation 
operator. We focus on only those points of the data cube that we. care about 
by using the WHERE-clause to select only the tuples for pink shirts. 

SELECT day, s to re ,  COUNT(*) AS t o t a l s a l e s  
FROM Sales 
WHERE item = ' s h i r t '  AND color = 'pink' 
GROUP BY day, s tore ;  

Figure 14.4: Summarizing the sales of pink shirts 

14.1.4 Executing Range Queries Using Conventional 
Indexes 

Son-. let us consider to what extent the indexes described in Chapter 13 would 
help in answering range queries. Suppose for simplicity that there are two 
dimensions. \Ve could put a secondary index on eadi of the dimensions, a: and 
y. Csing a B-tree for each would make it especially easy to get a range of values 
for each dimension. 

Given ranges in both dimensions, we could begin by using the B-tree for 2 
to get pointers to all of the records in the range for x. Next, we use the B-tree 
for y to get pointers to the records for all points whose y-coordinate is in the 
range for y. Then, we intersect these pointers, using the idea of Section 13.2.3. 
If the pointers fit in main memory, then the total number of disk 110's is the 
number of leaf nodes of each B-tree that need to be examined, plus a few I/O's 
for finding our way down the B-trees (see Section 13.3.7). To this amount tve 
must add the disk 110's needed to retrieve all the matching records, however 
many they may be. 
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Example 14.5: Let us consider a hypothetical set of 1,000,000 pqints dis- 
tributed randomly in a space in ~crhich both the x- and y-coordinates range 
from 0 to 1000. Suppose that 100 point records fit on a block, and an average 
B-tree leaf has about 200 key-pointer pairs (recall that not all slots of a B-tree 
block are necessarily occupied, at any given time). \\'e shall assume there are 
B-tree indexes on both z and y. 

Imagine we are given the range query asking for points in the square of 
side 100 surrounding the center of the space, that is, 450 < x 5 550 and 
450 < y < 550. Using the B-tree for z, we can find pointers to all the records 
with a: in the range; there should be about 100,000 pointers, and this number of 
pointers should fit in main memory. Similarly, we use the B-tree for y to get the 
pointers to all the records with y in the desired range; again there are about 
100,000 of them. Approximately 10,000 pointers will be in the intersection 
of these two sets, and it is the records reached by the 10,000 pointers in the 
intersection that form our answer. 

Sow, let us estimate the number of disk 110's needed to answer the range 
query. First, as we pointed out in Section 13.3.7, it is generally feasible to keep 
the root of any B-tree in main memory. Since we are looking for a range of 
search-key values in each B-tree, and the pointers at the leaves are sorted by this 
search key, all we have to do to access the 100,000 pointers in either dimension is 
examine one intermediate-level node and all the leaves that contain the desired 
pointers. Since we assumed leaves have about 200 key-pointer pairs each, we 
shall have to look at about 500 leaf blocks in each of the B-trees. When we add 
in one intermediate node per B-tree, we have a total of 1002 disk 110's. 

Finally. we have to retrieve the blocks containing the 10.000 desired records. 
If they are stored randomly, we must expect that they will be on almost 10,000 
different blocks. Since the entire file of a niillion records is assumed stored over 
10.000 blocks, packed 100 to a block, we essentially have to look at eLery block 
of the data file anyway. Thus, in this esample at least. conventional indexes 
have been little if any help in answering the range query. Of course, if the range 
were smaller, then constructing the intersection of the two pointer sets would 
allow us to limit the search to a fraction of the blocks in the data file. 

14.1.5 Executing Nearest-Neighbor Queries Using 
Conventional Indexes 

Almost any data structure we use will allow us to anster a nearest-neighbor 
query by picking a range in each dimension, asking tlie range query. and select- 
ing the point closest to the target within that range. Unfortunately, there are 
two things that could go wrong: 

1. There is no point within the selected range. 

2. The closest point within the range might not be tlie closest point overall. 

Let us consider each of these problems in the context of the nearest-neighbor 
query of Example 14.2. using the hypothetical indexes on dimensions x and y 
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introduced in Example 14.5. If we had reason to believe that a point within 
distance d of (10.0,20.0) existed, we could use the B-tree for x to get pointers 
to all the records for points whose x-coordinate is between 10 - d and 10 + d. 
We could then use the B-tree for y to get pointers to all the records whose 
y-coordinate is between 20 - d and 20 + d. 

If we have one or more points in the intersection, and we have recorded with 
each pointer its X- or y-coordinate (whichever is the search key for the index), 
then we have the coordinates of all the points in the intersection. We can thus 
determine which of these points is closest to (10.0,20.0) and retrieve only its 
record. Unfortunately, we cannot be certain that there are any points within 
distance d of the given point, so we may have to repeat the entire process with 
a higher value of d. 

However, even if there is a point in the range we have searched, there are 
some circumstances where the closest point in the range is further than distance 
d from the target point, e.g., (10.0,20.0) in our example. The situation is 
suggested by Fig. 14.5. If that is the case, then we must expand our range and 
search again, to make sure that no closer point exists. If the distance from the 
target to the closest point found so far is d', and d' > d, then we must repeat 
the search with d' in place of d. 

\ Possible 
closer point 

Figure 14.5: The point is in the range, but there could be a closer point outside 
the range 

Example 14.6 : Let us con side^ the same data and indexes as in Example 14.5. 
If we want the nearest neighbor to target point P = (10.0.20.0), we n~igl~t pick 
d = 1. Then, there  ill be one point per unit of area on the average. and 
n-ith d = 1 n-e find every point within a square of side 2.0 around the point P. 
wherein the expected number of points is 4. 

If we examine the B-tree for the x-coordinate with the range query 9.0 < 
x 5 11.0, then we shall find about 2,000 points, so we need to tral-erse at least 
10 leaves, and most likely 11 (since the points with x = 9.0 are unlikely to 
start just at the beginning of a leaf). As in Example 14.5, we can probably 
keep the roots of the B-trees in main memory, so nre only need one disk 1 /0  for 
an intermediate node and 11 disk 110's for the leaves. Another 12 disk I/O.s 
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search the B-tree index on the y-coordinate for the points whose y-coordinate 
is between 19.0 and 21.0. 

If we intersect the approximately 4000 pointers in main memory, we shall 
find about four records that are candidates for the nearest neighbor of point 
(10.0,20.0). .Assuming there is at least one, xve can determine from the associ- 
ated x- and y-coordinates of the pointers rhich is the nearest neighbor. One 
more disk 1/0 to retrieve the desired record, for a total of 25 disk I/O1s, com- 
pletes the query. However, if there is no point in the square with d = 1, or the 
closest point is more than distance 1 from the target, then we have to repeat 
the search with a larger value of d. 

The conclusion to draw froni Exa~ilple 14.6 is that conventional indexes 
might not be terrible for a nearest-neighbor query, but they use significantly 
more disk I/O's than ~vould be used, say, to find a record given its key and a 
B-tree index on that key (which would probably take only two or three disk 
I/O's). The methods suggested i11 this chapter will generally provide better 
performance and are used in specialized DBMS's that support multidimensional 
data. 

14.1.6 Other Limitations of Conventional Indexes 

The previously mentioned structures fare no better for range queries than for 
nearest-neighbor queries. In fact; our approach to solving a nearest-neighbor 
query in Example 14.6 was really to convert it to a range-query with a small 
range in each dimension and hope the range n-as sufficient to include a t  least 
one point. Thus. if \ye Aere to tackle a range query ~ i t h  larger ranges, and the 
data structure were indexes in each dimension. then the number of disk I/03s 
necessary to retrieve the pointers to candidate records in each dimension xvould 
be even greater than nhat n-e found in Example 11.6. 

The niultidinlensio~lal aggregation of the query in Fig. 11.4 is likewise not 
[\-ell supported. If we have indexes on itern and color, xve can find all the records 
representing sales of pink shirts and intersect them. as we did in Example 14.6. 
Ho~vever, queries in which other a t t r ib~~trs  besides item and color were specified 
I!-ould require indexes on those attributcs instead. 

Worse, while we can keep the data file sorted on one of the five attributes. 
\ve cannot keep it sorted on two attributes, let alone five. Thus. most queries of 
the form suggested by Fig. 14.4 would require that records from all or almost 
all of the blocks of the data file be retrieved. These queries of this type xvould 
be extremely expensi\-e to execute if data was in secondary memory. 

14.1.7 Overview of Multidimensional Index Structures 

1Iost data structures for supporting qu~ries 011 multidimensional data fall into 
one of two categories: 

1. Hash-table-like approaches. 
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2. Tree-like approaches. 

For each of these structures, we give up something that m-e have in the one- 
dimensional structures of Chapter 13. 

With the hash-bashed schemes -grid files and partitioned hash functions 
in Section 14.2 - we no longer have the advantage that the answer to 
our query is in exactly one bucket. However, each of these schemes limit 
our search to a subset of the buckets. 

With the tree-based schemes, we give up at least one of these important 
properties of B-trees: 

1. The balance of the tree, where all leaves are at  the same level. 

2. The correspondence between tree nodes and disk blocks. 

3. The speed with which modifications to the data may be performed. 

As we shall see in Section 14.3. trees often will be deeper in some parts 
than in others; often the deep parts correspond to regions that have many 
points. We shall also see that it is common that the information corre- 
sponding to a tree node is considerably smaller than what fits in one block. 
It is thus necessary to group nodes into blocks in some useful way. 

14.1.8 Exercises for Section 14.1 

Exercise 14.1.1 : Write SQL queries using the relation 

~ e c t a n g l e s ( i d ,  x l l ,  y l l ,  xur,  yur) 

from Example 14.3 to answer the following questions: 

* a) Find the set of rectangles that intersect the rectangle whose lo\\-er-left 
corner is at  (10.0,20.0) and whose upper-right corner is at (-10.0,30.0). 

b) Find the pairs of rectangles that intersect. 

c) Find the rectangles that completely contain the rectangle mentioned in 
(a). 

d) Find the rectangles that are conlpletely contained within the rectangle 
mentioned in (a). 

! e) Find the "rectangles" in the relation Rectangles that are not really rect- - 

angles; i.e., they cannot exist physically. 

For each of these queries, tell what indexes, if any, would help retrieve the 
desired tuples. 

Exercise 14.1.2 : Using the relation 

Sales(day, s t o r e ,  item, color,  s ize)  

from Example 14.4, write the follon-ing queries in SQL: 

* a)  List all colors of shirts and their total sales, provided there are more than 
1000 sales for that color. 

b) List sales of shirts by store and color. 

c) List sales of all items by store and color. 

! d) List for each item and color the store with the largest sales and the amount 
of those sales. 

For each of these queries, tell what indexes, if any, 1i70uld help retrieve the 
desired tuples. 

Exercise 14.1.3: Redo Example 14.5 under the assumption that the range 
query asks for a square in the middle that is n x n for some 1% between 1 and 
1000. How many disk I/O's are needed? For which values of n do indexes help? 

1 * Exercise 14.1.4: Repeat Exercise 14.1.3 if the file of records is sorted on x. 

, !! Exercise 14.1.5: Suppose that we have points distributed randomly in a 
square, as in Esample 14.6, and we want to perform a nearest neighbor query. 
\Ye choose a distance d and find all points in the square of side 2d with the 
center at  the target point. Our search is successful if we find xsithin this square 
at  least one point whose distance from the target point is d or less. 

I * a) If there is on ayerage one point per unit of area, give as a function of d 
the probability that we will be successful. 

b) If we are unsucces~ful, ~ve  must repeat the scarch \\-it11 a larger d. As- 
sume for sinlplicity that each time we are unsuccessful. \\-e double d and 
pay twice as much as tve did for the previous search. .$gain assuming 
that there is one point per unit area, what initial value of d gives us the 
minimum expected seaicli cost? 

14.2 Hash-Like Structures for Multidimensional 
Data 

In this scction we shall consider two data structures that generalize hash tables 
built using a single key. In rach case. the bucket for a point is a function of 
all the attributes or dimensions. One scheme. called the "grid file." usually 
doesn't -.hash.' values along the dimc~lsions, but rather partitions the dimen- 
sions by sorting the values along that dimension. The other. called "partitioned 
hashing ... does "hash'. the various dimensions, with each dimension contribut- 
ing to the buckct number. 



676 CHAPTER 14. JIC'LTIDlhlENSIOOIVIV4L AND BITMAP INDEXES 

14.2.1 Grid Files 
One of the simplest data structures that often outperforms single-dimension 
indexes for queries involving nlultidimensional data is the grid file. Think of 
the space of points partitioned in a grid. In each dimension, grid lines partition 
the space into stripes. Points that fall on a grid line will be considered to belong 
to the stripe for which that grid line is the lower boundary. The number of grid 
lines in different dimensions may vary, and there may be different spacings 
between adjacent grid lines, even between lines in the same dimension. 

Example 14.7: Let us introduce a running example for this chapter: the 
question "who buys gold jewelry?" We shall imagine a database of customers 
for gold jewelry that tells us many things about each customer - their name, 
address, and so on. However, t o  make things simpler, we assume that the only 
relevant attributes are the customer's age and salary. Our example database 
has twelve customers, which n-e can represent by the following age-salary pairs: 

(25,60) (45,60) (50,75) (50,100) 
(50,120) (70,110) (85,140) (30,260) 
(25,400) (45,350) (50,275) (60,260) 

In Fig. 14.6 we see these twelve points located in a 2-dimensional space. Mre 
have also selected some grid lines in each dimension. For this simple example, n-e 
have chosen two lines in each dimension, dividing the space into nine rectangular 
regions, but there is no reason why the same number of lines must be used in 
each dimension. \Ye have a!so allowed the spacing between the lines to vary. 
For instance, in the age dimension, the three regions into which the two vertical 
lines divide the space have I\-idth 40, 15, and 45. 

In this example, no points are exactly on a grid line. But in general. a 
rectangle includes points on its lower and left boundaries, but not on its upper 
and right boundaries. For instance, the central rectangle in Fig. 14.6 represents 
points with 40 < age < 55 and 90 2 salary < 225. 

14.2.2 Lookup in a Grid File 

Each of the regions into which a space is partitioned can be thought of as a 
bucket of a hash table, and each of the points in that region has its record 
placed in a block belonging to that bucket. If needed, overflow blocks ran be 
used to increase the size of a bucket. 

Instead of a one-dimensional array of buckets, as is found in co~~m~itional  
hash tables, the grid file uses an array whose number of dimensions is the same 
as for the data file. To locate the proper bucket for a point, we need to knojv. 
for earl: dimension. the list of values at  which the grid lines occur. Hashing a 
point is thus somewhat different from applying a hash function to the values of 
its components. Rather, we look at  each component of the point and determine 
the position of the point in the grid for that dimension. The positions of the 
point in each of the dimensions together determine the bucket. 
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Figure 14.6: X grid file 

Example  14.8: Figure 14.7 shows the data of Fig. 14.6 placed in buckets. 
Since the grids in both dimensions divide the space into three regions, the 
bucket array is a 3 x 3 matrix. Two of the buckets: 

1. Salary between $90I< and $225K and age between 0 and -10, and 

2. Salary below $90I< and age above 55 

are empty. and we do not sho\v a block for that bucket. The other buckets are 
shon-11. with the artificially low niaximum of two data points per block. In this 
simple example. no bucket has more than two members. so no overflow blocks 
are needed. 

14.2.3 Insertion Into Grid Files 
we insert a record into a grid file, ~ v e  follo~v the procedure for lookup 

of the record. and Tve place the new record in that bucket. If there is room in 
the block for the bucket then there is nothing more to do. The problem occurs 
when there is no roon: in the bucket. There are two general approaches: 

1. .ldd overflow blocks to the huckcts. as needed. This approach works xvcll 
as long as the chains of blocks for a bucket do not get too long. If they do. 
then the nurlihcr of disk 110's needed for lookup. insertion, or deletion 
eventually grows unacceptably large. 

2. Reorganize the structure by adding or mo\-ing the grid lines. This ap- 
proach is similar to the dynamic hashing techniques discussed in Sec- 
tion 13.4. but there are additional problems because the contents of buck- 
ets are linked across a dimension. That is, adding a grid line splits all the 
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Figure 14'7: A grid file representing the points of Fig. 14.6 

buckets along that line. As a result, it may not be possible to select a new 
grid line that does the best for all buckets. For instance, if one bucket is 
too big, we might not be able to choose either a dimension along which 
to split or a point at which to split, without making many empty buckets 
or leaving several very full ones. 

Example 14.9 : Suppose someone 32 years old with an income of $200I< buys 
gold jewelry. This customer belongs in the central rectangle of Fig. 14.6. How- 
ever. there are now three records in that bucket. We could simply add an 
overflow block. If we want to split the bucket, then we need to choose either 
the age or salary dimension, and we need to choose a new grid line to create 
the division. There are only three ways to introduce a grid line that $11 split 
the central bucket so two points are on one side and one on the other. &ich is 
the most even possible split in this case. 

1. -1 vertical line, such as age = 51. that separates the tn-o 30's from the 
52. This line does nothing to split the buckets above or belolv. since both 
points of each of the other buckets for age 40-55 are to the left of the line 
age = 51. 

2. A horizontal line that separates the point with salary = 200 from the 
other two points in the central bucket. We may as wcll choose a number 
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Accessing Buckets of a Grid File 

While finding the proper coordinates for a point in a three-by-three grid 
like Fig. 14.7 is easy, n-e should remember that the grid file may have a 
very large number of stripes in each dimension. If so, then we must create 
an index for each dimension. The search key for an index is the set of 
partition values in that dimension. 

Given a value v in some coordinate, we search for the greatest key 
value w less than or equal to v. Associated with w in that index will be 
the row or column of the matrix into which v falls. Given values in each 
dimension, lve can find where in the matrix the pointer to the bucket falls. 
We may then retrieve the block with that pointer directly. 

In extreme cases, the matrix is so big, that most of the buckets are 
empty and lve cannot afford to store all the empty buckets. Then, we 
must treat the matrix as a relation whose attributes are the corners of 
the nonempty buckets and a final attribute representing the pointer to the 
bucket. Lookup in this relation is itself a multidimensional search, but its 
size is smaller than the size of the data file itself. 

like 130, ~vhich also splits the bucket to the right (that for age 55-100 and 
salary 90-223). 

3. d horizontal line that separates the point with salary = 100 from the 
other two points. Again, we lvould be advised to pick a nunlber like 115 
that also splits the bucket to the right. 

Choice (1) is probably not atlviscd. since it does~l't split any other bucket: 
we are left xvith Illore empty buckets and haye not reduced the size of any 
occupied buckets. except for the one 11-e had to split. Choices (2) and (3) are 
equally good. although we might pick (2) because it puts the horizontal grid 
line at salary = 130, iyllich is closer to midway betn-een the upper and lower 
lirnits of 90 and 223 than n-e get with choice (3). The resulti~~g partition into 
buckets is ~11011-11 iri Fig. 14.8. 13 

14.2.4 Performance of Grid. Files 

Let us consider how marly disk I/O.s a grid file requires on various types of 
queries. lye have been focusing on the tv-o-dimensional version of grid files. 
although they can be used for an\- number of dimensions. One ~llajor problcm 
in the high-dime~1sio~~:3l rase is that the ~iumber of buckets grows esponcntially 
lvith the dimension. If large portions of a space are empty. then there n-ill be 
lllally empty buckets. \Ye can envision the problem even in rn-o dimensions. 
Suppose that there were a high correlation betlveen age and salary, so all points 
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Figure 14.8: Insertion of the point (52,200) followed by splitting of buckets 

in Fig. 14.6 lay along the diagonal. Then no matter where we placed the grid 
lines, the buckets off the diagonal would have to be empty. 
. However, if the data is well distributed, and the data file itself is not too 

large, then we can choose grid lines so that: 

1. There are sufficiently few buckets that we can keep the bucket matris in 
main memory, thus not incurring disk I/O to consult it, or to add ro~i-s 
or columns to the matrix when we introduce a new grid line. 

2. We can also keep in memory indexes on the values of the grid lines in 
each dimension (as per the box "Accessing Buckets of a Grid File"), or 
we can avoid the indexes altogether and use main-memory binary seasch 
of the values defining the grid lines in each dimension. 

3. The typical bucket does not have more than a few overflow blocks, so we 
do not incur too many disk 1 / 0 3  when we search through a bucket. 

Under those assumptions, here is how the grid file behaves on somc important 
classes of queries. 

Lookup of Specific Points 

We are directed to the proper bucket, so the only disk I/O is what is necessary 
to read the bucket. If we are inserting or deleting, then an additional disk 
write is needed. Inserts that rcquire the creation of an overflow block cause an 
additional write. 
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Partial-Match Queries 

Examples of this query ~vould include "find all customers aged 50," or "find all 
customers with a salary of S200K." Sow, ive need to look at all the buckets in 
a row or column of the bucket matrix. The number of disk 110's can be quite 
high if there are many buckets in a row or column, but only a small fraction of 
all the buckets will be accessed. 

Range Queries 

A range query defines a rectangular region of the grid, and all points found 
in the buckets that cover that region will be answers to the query, with the 
exception of some of the points in buckets on the border of the search region. 
For example, if we want to find all customers aged 35-45 with a salary of 50-100, 
then we need to look in the four buckets in the lower left of Fig. 14.6. In this 
case, all buckets are on the border, so we may look a t  a good number of points 
that are not answers to the query. However, if the search region involves a large 
number of buckets, then most of them must be interior, and all their points are 
answers. For range queries, the number of disk I /07s  may be large, as we may 
be required to examine many buckets. Ho~vever, since range queries tend to 
produce large answer sets, we typically will examine not too many more blocks 
than the minimum number of blocks on which the answer could be placed by 
any organization ~vhatsoever. 

Nearest-Neighbor Queries 

Given a point P, xve start by searching the bucket in which that point belongs. 
If we find at  least one point there. we have a candidate Q for the nearest 
neighbor. However. it is possible that there are points in adjacent buckets that 
are closer to P than Q is: the situation is like that suggested in Fig. 14.3. We 
have to consider n-hether the distance between P and a border of its bucket is 
less than the distance from P to Q. If there arc such horders, then the adjacent 
buckets on the other side of each such border must be searched also. In fact, 
if buckets are severely rectangular - much longer in one dimension than the 
other - then it may be necessary to search even buckets that are not adjacent 
to the one containing point P: 

Example 14.10: Suppose \ve are looking in Fig. 14.6 for the point nearest 
P = (43,200). We find that (50.120) is the closest point in the bucket, at  
a distance of 80.2. S o  point in the lolver three buckets can be this close to 
(4.3.200). because their salary component is at lnost 90; so I{-e can omit searching 
them. However. the other five buckets must be searched, and lve find that there 
are actually two equally close points: (30.260) and (60,260): a t  a distance of 
61.8 from P. Generally, the search for a nearest neighbor can be limited to a 
few buckets, and thus a few disk I/07s. Horn-ever, since the buckets nearest the 
point P may be empty, n-e cannot easily put an upper bound on how costly the 
search is. 
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14.2.5 Partitioned Hash Functions 

Hash functions can take a list of attribute values as an argument, although 
typically they hash values from only one attribute. For instance, if a is an 
integer-valued attribute and b is a character-string-valued attribute, then we 
could add the value of a to the value of the ASCII code for each character of b, 
divide by the number of buckets, and take the remainder. The result could be 
used as the bucket number of a hash table suitable as an index on the pair of 
attributes (a. b). . * ,  

However, such a hash table could only be used in queries that specified 
values for both a and b. A preferable option is to design the hash function 
so it produces some number of bits, say Ic. These k bits are divided among n 
attributes, so that we produce ki bits of the hash value from the ith attribute, 
and C:='=, ki = k. More precisely, the hash function h is actually a list of hash 
functions (hl, h2,. . . , hn), such that hi applies to a value for the ith attribute 
and produces a sequence of ki bits. The bucket in which to place a tuple with 
values (ul, v2, . . . , v,) for the n attributes is computed by concatenating the bit 
sequences: hl (vl)h2(vz) . . . hn(vn). 

Example 14.11 : If we have a hash table with 10-bit bucket numbers (1024 
buckets), we could devote four bits to attribute a and the remaining six bits to 
attribute b. Suppose we have a tuple with a-value A and b-value B, perhaps 
with other attributes that are not involved in the hash. We hash A using a 
hash function ha associated with attribute n to get four bits, say 0101. n7e 
then hash B, using a hash function hb, perhaps receiving the six bits 111000. 
The bucket number for this tuple is thus 0101111000, the concatenation of the 
two bit sequences. 

By partitioning the hash function this way, we get some advantage from 
knowing values for any one or more of the attributes that contribute to the 
hash function. For instance, if we are given a value A for attribute a, and we 
find that h,(A) = 0101, then we know that the only tuples with a-value d 
are in the 64 buckets whose numbers are of the form 0101.. . , where the . . - 
represents any six bits. Similarly, if we axe given the b-value B of a tuple. we 
can isolate the possible buckets of the tuple to the 16 buckets whose number 
ends in the six bits hb(B). 

Example 14.12: Suppose we have the "gold je~velry" data of Example 14.7. 
which n-e want to store in a partitioned hash table with eight buckets (i.e.. three 
bits for bucket numbers). We assume as before that two records are all that can 
fit in one block. \Ye shall devote one bit to the age attribute and the remainii~g 
two bits to the salary attribute. 

For the hash function on age, we shall take the age modulo 2; that is. a 
record with an even age will hash into a bucket whose number is of the form 
Oxy for some bits x and y. A record a-ith an odd age hashes to one of the buckets 
with a number of the form lxy. The hash function for salary will be the salary 
(in thousands) modulo 4. For example, a salary that leaves a remainder of 1 
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Figure 14.9: .4 partitioned hash table 

when divided by 4, such as 57K, will be in a bucket whose number is 201 for 
some bit z. 

In Fig. 11.9 we see the data from Example 14.7 placed in this hash table. 
Sotice that. because we hase used rnostly ages and salaries divisible by 10, the 
hash function does not distribute the points too well. Two of the eight buckets 
have four records each and need overflow blocks, while three other buckets are 
empty. 

14.2.6 Comparison of Grid Files and Partitioned Hashing 

The performance of the ti%-o data structures discussed in this section are quite 
different. Here are the major points of comparison. 

Partitioned hash tables are actually quite useless for nearest-neighbor 
queries oirange queries. The is that physical distance between 
points is not reflected by the closeness of bucket numbers. Of course we 
could design the hash function on some attribute a so the snlallest values 
were assigned the first bit string (all O's), the nest values were assigned the 
nest hit string (00.. .D l ) .  and so on. If we do so, then we have reinvented 
the grid file. 

A well chosen hash function will randomize the buckets into which points 
fall, and thus buckets will tend to be equally occupied. However, grid 
files. especially when the number of dimensions is large, will tend to leave 
many buckets empty or nearly so. The intuitive reason is that when there 
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are many attributes, there is likely to be some correlation among at  least 
some of them, so large regions of the space are left empty. For instance, 
we mentioned in Section 14.2.4 that a correlation betwen age and salary 
would cause most points of Fig. 14.6 to lie near the diagonal, with most of 
the rectangle empty. As a consequence, we can use fewer buckets, and/or 
have fewer overflow blocks in a partitioned hash table than in a grid file. 

Thus, if we are only required to support partial match queries, where we 
specify some attributes' values and leave the other attributes completely un- 
specified, then the partitioned hash function is likely to outperform the grid 
file. Conversely, if we need to do nearest-neighbor queries or range queries 
frequently, then we would prefer to use a grid file. 

14.2.7 Exercises for Section 14.2 

model 

1001 
1002 
1003 
1004 
1005 
1006 
1007 
1008 
1009 
1010 
1011 
1013 

Figure 14.10: Some PC's and their characteristics 

Exercise 14.2.1: In Fig. 14.10 are specifications for twelve of the thirteen 
PC's introduced in Fig. 5.11. Suppose we wish to design an index on speed and . 
hard-disk size only. 

* a) Choose five grid lines (total for the two dimensions), so that there are no 
more than two points in any bucket. 

! b) Can you separate the points with at most two per bucket if you use only 
four grid lines? Either show how or argue that it is not possible. 

! c) Suggest a partitioned hash function that will partition these points into 
four buckets with at  most four points per bucket. 

. Handling Tiny Buckets 

We generally think of buckets as containing about one block's worth of 
data. However. there are reasons why we might need to create so many 
buckets that tlie average bucket has only a small fraction of the number 
of records that will fit in a block. For example, high-dimensional data 
d l  require many buckets if we are to partiti011 significantly along each 
dimension. Thus. in the structures of this section and also for the tree- 
based schemes of Section 14.3, rye might choose to pack several buckets 
(or nodes of trees) into one block. If we do so, there arc some i~nportant 
points to remember: 

The block header must contain information about where each record 
is, and to which bucket it belongs. 

If we insert a record into a bucket, we [nay not have room in the 
block containing that bucket. If so, we need to split the block in 
some way. \Ye must decide which buckets go with each block, find 
the records of each bucket and put them in the proper block, and 
adjust the bucket table to point to the proper block. 

! Exercise 14.2.2 : Suppose we wish to place the data of Fig. 14.10 in a three- 
dimensional grid file. based on the speed, ram, and hard-disk attributes. Sug- 
gest a partition in each dimension that will divide the data well. 

Exercise 14.2.3: Choose a hash function with one bit for each of 

the three attributes speed. ram, and hard-disk that divides the data of Fig. 14.10 
1i-eIl. 

Exercise 14.2.4: Suppose Ive place the data of Fig. 14.10 in a grid file with 
dimensions for speed and ram only. The partitions are at  speeds of 720. 950, 
1130. and 1350. and ram of 100 and 200. Suppose also that only two points can 
fit in one bucket. Suggest good splits if ~ v e  insert points at: 

* a) Speed = 1000 and ram = 192. 

b) Speed = 800. ram = 128: and thcn speed = 833, ram = 96. 

Exercise 14.2.5 : Suppose I Y ~  store a relati011 R ( x .  y) in a grid file. Both 
attributes have a range of values from 0 to 1000. The partitions of this grid file 
happen to be unifurmly spaced: for x there are partitions every 20 units, at 20, 
10. GO, and so on. while for y the partitions are every 50 units; at 30. 100, 150, 
and so on. 
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a) How many buckets do we have to examine to answer the range query 

SELECT * 
FROM R 
WHERE 310 < x AND x < 400 AND 520 < y AND y < 730; 

*! b) We wish to perform a nearest-neighbor query for the point (110,205). 
We begin by searching the bucket with lower-left corner at (100,200) and 
upper-right corner at (120,250), and we find that the closest point in this 
bucket is (115,220). What other buckets must be searched to verify that 
this point is the closest? 

! Exercise 14.2.6: Suppose we have a grid file with three lines (i.e., four stripes) 
in each dimension. However, the points (x, y) happen to have a special property. 
Tell the largest possible number of nonernpty buckets if: 

* a) The points are on a line; i.e., there is are constants a and b such that 
y = ax + b for every point (x, y). 

b) The points are related quadratically; i.e., there are constants a, b, and c 
such that y = ax2 + bx + c for every point (x, y). 

Exercise 14.2.7: Suppose we store a relation R(x, y, z )  in a partitioned hash 
table with 1024 buckets (i.e., 10-bit bucket addresses). Queries about R each 
specify exactly one of the attributes, and each of the three attributes is equally 
likely to be specified. If the hash function produces 5 bits based only on .r. 3 
bits based only on y, and 2 bits based only on z, what is the average nuulilber 
of buckets that need to be searched to answer a query? 

!! Exercise 14.2.8: Suppose we have a hash table whose buckets are numbered 
0 to 2" - 1; i.e., bucket addresses are n bits long. We wish to store in the table 
a relation with two attributes x and y. -1 query will either specify a value for 
x or y, but never both. IVith probability p, it is x whose value is specified. 

a) Suppose we partition the hash function so that m bits are devoted to x 
and the remaining n - m bits to y. As a function of m, n, and p, what 
is the expected number of buckets that must be examined to answer a 
random query? 

b) For I\-hat value of m (as a function of n and p) is the expected number of 
buckets minimized? Do not worry that this m is unlikely to be an integer. 

*! Exercise 14.2.9: Suppose we have a relation R(x, y) with 1,000,000 points 
randomly distributed. The range of both z and y is 0 to 1000. We can fit 100 
tuples of R in a block. We decide to use a grid file with uniformly spaced grid 
lines in each dimension, with m as the width of the stripes. we wish to select rn 
in order to minimize the number of disk 110's needed to read all the necessary 
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buckets to ask a range query that is a square 50 units on each side. You may 
assume that the sides of this square never align with the grid lines. If we pick 
m too large, we shall have a lot of overflonl blocks in each bucket, and many of 
the points in a bucket will be outside the range of the query. If we pick m too 
small, then there will be too many buckets, and blocks will tend not to be full 
of data. What is the best 1-alue of m? 

14.3 Tree-Like Structures for Multidimensional 
Data 

We shall now consider four more structures that are useful for range queries or 
nearest-neighbor queries on multidimensional data. In order, 15-e shall consider: 

1. Multiple-key indexes. 

2. kd-trees. 

3. Quad trees. 

The first three are intended for sets of points. The R-tree is comnlonly used to 
represent sets of regions: it is also useful for points. 

14.3.1 Multiple-Key Indexes 

Suppose we have se~era l  attributes representing din~ensio~ls of our data points, 
and we want to support range queries or nearest-neighbor queries on these 
points. -1 simple tree-like scheme for accessing these points is an index of 
indexes, or more generally a tree in which the nodes at each level are indexes 
for one attribute. 

The idea is suggested in Fig. 14.11 for the case of txvo attributes. The 
..root of the tree" is an indes for the first of the tw\-o attributes. This index 
could be any type of conventional index, such as a B-tree or a hash table. The 
index associates with each of its search-key values - i.e., values for the first 
attribute - a pointer to another index. If I' is a value of the first attribute, 
then the indes we reach bv follov.-ing key I' and its pointer is an index into the 
set of uoints that hare 1.' for their 1-alue in the first attribute and any value for 
the second attribute. 

Example 14.13: Figure 14.12 shows a multiple-key indes for our running 
..gold jewelry" esample, where the first attribute is age, and the second attribute 
is salary. The root indes. on age, is suggested at the left of Fig. 14.12. We have 
not indicated how the index works. For example, the key-pointer pairs forming 
the seven rows of that index might be spread among the leaves of a B-tree. 
However, what is important is that the only keys present are the ages for which 
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/k 

Index on 
first attribute . 

Indexes on 
second attribute 

Figure 14.11: Using nested indexes on different keys 

there is one or more data point, and the index makes it easy to find the pointer 
associated with a given key value. 

At the right of Fig. 14.12 are seven indexes that provide access to the points 
themselves. For example, if we follow the pointer associated with age 50 in the 
root index, we get to a smaller index where salary is the key, and the four key 
values in the index are the four salaries associated with points that have age 50. 
Again, we have not indicated in the figure how the index is implemented, just 
the key-pointer associations it makes. When we follow the pointers associated 
with each of these values (75, 100, 120, and 275): we get to the record for the 
individual represented. For instance, following the pointer associated with 100, 
we find the person whose age is 50 and whose salary is $loOK. 

In a multiple-key index, some of the second or higher rank indexes may be 
very small. For example, Fig 14.12 has four second-rank indexes with but a 
single pair. Thus, it may be appropriate to implement these indexes as simple 
tables that are packed several to a block, in the manner suggested by the box 
"Handling Tiny Buckets" in Section 14.2.5. 

14.3.2 Performance of Multiple-Key Indexes 

Let us consider how a multiplr key index performs on various kinds of multidi- 
mensional queries. \I:e shall concentrate on the case of two attributcs, altliough 
the generalization to more than two attributes is unsurprising. 

Partial-Match Queries 

If the first attribute is specified. then the access is quite efficient. UTe use the 
root index to find the one subindex that leads to the points n-e want. For 
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\= 
Figure 14.12: LIultiple-key indexes for age/salary data 

example. if the root is a B-tree index, then we shall do two or three disk I/O7s 
to get to the proper subindex, and then use whatever I/O's are needed to access 
all of that index and the points of the data file itself. On the other hand, if 
the first attribute does not have a specified value; then we must search every 
subindex. a potentially time-consuming process. 

Range Queries 

The multiple-key index works quite well for a range query, prop-ided the indi- 
vidual indexes themselves support range queries on their attribute - B-trees 
or indexed sequential files, for instance. To answer a range query. we use the 
root index and the range of the first attribute to find all of the subindexes that 
might contain answer points. \\e then search each of these subindexes. using 
the range specified for the second attribute. 

Example 14.14 : Suppose we have the multiple-key indes of Fig. 14.12 and 
i-e are asked the range query 35 5 age < 55 and 100 5 salary 5 200. IYhen 
ive examine the root indes, 11.c find that the keys 4.5 and 50 are in the range 
for age. \Ve follow the associated pointers to two subindexes on salar~: The 
index for age 45 has no salary in the range 100 to 200: while the index for age 
30 has tivo such salaries: 100 and 120. Thus, the only two points in the range 
are (50.100) and (50.120). 0 
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Nearest-Neighbor Queries 

The answering of a nearest-neighbor query with a multiple-key index uses the 
same strategy as for almost all the data structures of this chapter. To find the 
nearest neighbor of point (xo, yo), we find a distance d such that we can expect 
to find several points within distance d of (so ,  yo). We then ask the range query 
xo - d 5 2: 5 20 +d and yo - d 5 y 5 yo +d. If there turn out to be no points in 
this range, or if there is a point, but distance from (so, yo) of the closest point 
is greater than d (and therefore there could be a closer point outside the range, 
as was discussed in Section 14.1.5), then we must increase the range and search 
again. However, we can order the search so the closest places are searched first. 

A kd-tree (k-dimensional search tree) is a main-memory data structure gener- 
alizing the binary search tree to multidimensional data. We shall present the 
idea and then discuss how the idea has been adapted to the block model of 
storage. A kd-tree is a binary tree in which interior nodes have an associated 
attribute a and a value V that splits the data points into two parts: those with 
a-value less than V and those with a-value equal to or greater than V. The 
attributes at different levels of the tree are different, with levels rotating among 
the attributes of all dimensions. 

In the classical kd-tree, the data points are placed at  the nodes, just as in 
a binary search tree. However, we shall make two modifications in our initial 
presentation of the idea to take some limited advantage of the block model of 
storage. 

1. Interior nodes will have only an attribute, a dividing value for that at- 
tribute, and pointers to left and right children. 

2. Leaves will be blocks, with space for as many records as a block can hold. 

Example 14.15: In Fig. 14.13 is a kd-tree for the twelve points of om running 
gold-jewelry example. \&re use blocks that hold only two records for simplicity; 
these blocks and their contents are shorn-n as square leaves. The interior nodes 
are ovals with an attribute - either age or salary - and a value. For instance, 
the root splits by salary, with all records in the left subtree having a salary less 
than $150K, and all records in the right subtree having a salary at  least $150I<. 

.It the second level, the split is by age. The left child of the root splits at 
age 60, so everything in its left subtree 11-ill have age less than 60 and salary 
less than $l5OK. Its right subtree will haye age at least 60 and salary less than 
Sl5OK. Figure 14.14 suggests how the various interior nodes split the space 
of points into leaf blocks. For example. the horizontal line at salary = 1.50 
represents the split at the root. The space below that line is split vertically at  
age 60, while the space above is split at age 47, corresponding to the decision 
at the right child of the root. 0 
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Age 38 x 
Figure 14.13: d kd-tree 

14.3.4 Operations on kd-Trees 

I lookup of a tuple given values for all dimensions proceeds as in a binary 
search tree. \Ye make a decision which way to go at each interior node and are 
directed to a single leaf, whose block we search. 

To perform an insertion. we proceed as for a lookup. \f7e are eventually 
directed to a leaf, and if its block has room we put the new data point there. 
If there is no room, we split the block into two. and we divide its contents 
according to whatever attribute is appropriate at the level of the leaf being 
split. We create a new interior node whose children are the two nen- blocks, 
and we install at  that interior node a splitting value that is appropriate for the 
split we have just made.' 

Example 14.16 : Suppose someone 35 years old n-ith a salary of S.50011; buys 
gold jewelry. Starting at the root, since the salary is at least $150# we go to 
the right. There. we colnpare the age 35 with the age 47 at the node. which 
directs us to the left. .It the third level. we compare salaries again. and our 
salary is greater than the splitting value. $300I<. \Ye are thus directed to a leaf 
containing the points (25.400) and (45.350). along with the new point (35.500). 

There isn't room for three records in this block, so n-e must split it. The 
fourth level splits on age. so 11-e havc to pick some age that divides the records 
as evenly as possible. The median value. 3.5. is a good choice, so we replace the 
leaf by an interior node that splits on agc = 35. To the left of this interior node 
is a leaf block with orrly the rccortl (2.5. -100). while to the right is a leaf block 
with the other t~vo records. as shov-11 in Fig. 14.13. 

'One problem that might arise is a situation where there are so many points \vith the same 
value in a given dimension that tlre hucket has only one value in that dimension and cannot 
be split. \Ye can try splitting along another tlirnension. or we can use an a\-erflorv block. 
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500K 

Salary 

Figure 14.14: The partitions implied by the tree of Fig. 14.13 

The more complex queries discussed in this chapter are also supported by a 
kd-tree. Here are the key ideas and synopses of the algorithms: 

Partial-Match Queries 

If lye are given values for some of the attributes, then we can go one way when 
we are at  a level belonging to an attribute whose value we know. When we don't 
know the value of the attribute at a node, we must explore both of its children. 
For example, if we ask for all points with age = 50 in the tree of Fig. 14.13, we 
must look at  both children of the root, since the root splits on salary. However. 
at the left child of the root: we need go only to the left, and at  the right child 
of the root we need only explore its right subtree. Suppose, for instance, that 
the tree were perfectly balanced, had a large number of levels, and had two 
dimensions, of which one was specified in the search. Then we would h a ~ e  to 
explore both ways at  every other level, ultimately reaching about the square 
root of the total number of leaves. 

Range Queries 

Sometimes. a range will allow us to 111uve to only one child of a node, but if 
the range straddles the splitting value at  the node then n-e must explore both 
children. For example. given thc range of ages 35 to 55 and the range of salaries 
from SlOOK to $200K, we would explore the tree of Fig. 14.13 as follo~vs. The 
salary range straddles the $15OK at the root, so we must explore both children. 
At the left child, the range is entirely to the left, so we move to the node with 
salary %OK. Now, the range is entirely to the right, so we reach the leaf with 
records (50,100) and (50.120), both of which meet the range query. Returning 
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Figure 14.15: Tree after insertion of (35,500) 

to the right child of the root, the splitting value age = 47 tells us to look at both 
subtrees. At the node with salary $300K, we can go only to the left, finding 
the point (30,260), which is actually outside the range. At the right child of 
the node for age = 47, we find two other points, both of which are outside the 
range. 

Nearest-Neighbor Queries 

Use the same approach as !.as discussed in Section 14.3.2. Treat the problem 
as a range query with the appropriate range and repeat with a larger range if 
necessary. 

14.3.5 Adapting kd-Trees to Secondary Storage 

Suppose we store a file in a kd-tree with n leaves. Then the average length 
of a path from the root to a leaf will be about log, n, as for any binary tree. 
If we store each node in a block. then as we traverse a path we must do one 
disk I/O per node. For example, if n = 1000, then we shall need about 10 disk 
I/O1s, much more than the 2 or 3 disk I/O's that would be typical for a B-tree, 
even on a much larger file. In addition. since interior nodes of a kd-tree have 
relatively little information, most of the block would be \i,asted space. 

We cannot solve the twin problems of long paths and unused space com- 
pletely. Hou-ever. here are two approaches that will make some improvement in 
performance. 

Multiway Branches at Interior Nodes 

Interior nodes of a kd-tree could look more like B-tree nodes, with many key- 
pointer pairs. If we had n keys at a node, s-e could split values of an attribute a 
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Nothing Lasts Forever 

Each of the data structures discussed in this chapter allow insertions and 
deletions that make local decisions about how to reorganize the structure. 
After many database updates, the effects of these local decisions may make 
the structure unbalanced in some way. For instance, a grid file may have 
too many empty buckets, or a kd-tree may be greatly unbalanced. 

I t  is quite usual for any database to be restructured after a while. By 
reloading the database, we have the opportunity to create index structures 
that, at  least for the moment, are as balanced and efficient as is possible 
for that type of index. The cost of such restructuring can be amortized 
over the large number of updates that led to the imbalance, so the cost 
per update is small. However, we do need to be able to "take the database 
down"; i.e., make it unavailable for the time it is being reloaded. That 
situation may or may not be a problem, depending on the application. 
For instance, many databases are taken down overnight, when no one is 
accessing them. 

into n + 1 ranges. If there were n + 1 pointers, we could follow the appropriate 
one to a subtree that contained only points with attribute a in that range. 
Problems enter when we try to reorganize nodes, in order to keep distribution 
and balance as we do for a B-tree. For example, suppose a node splits on age, 
and we need to merge two of its children, each of which splits on salary. We 
cannot simply make one node with all the salary ranges of the two children, 
because these ranges will typically overlap. Notice how much easier it ~vould be 
if (as in a B-tree) the two children both further refined the range of ages. 

Group Interior Nodes Into Blocks 

We may. instead, retain the idea that tree nodes have only two children. We 
could pack many interior nodes into a single block. In order to minimize the 
number of blocks that we must read from disk while traveling down one path, 
we are best off including in one block a node and all its descendants for some 
number of lerels. That way, once we retrieve the block with this node, we are 
sure to use some additional nodes on the same block, saving disk 110's. For 
instance. suppose tve can pack three interior nodes into one block. Then in the 
tree of Fig. 14.13. n-e ~vould pack the root and its two children into one block. 
\Ye could then pack the node for salary = 80 and its left child into another 
block, and we are left m-ith the node salary = 300. which belongs on a separate 
block; perhaps it could share a block with the latter two nodes, although sharing 
requires us to do considerable work when the tree grows or shrinks. Thus, if 
we wanted to look up the record (25,60), we n-ould need to traverse only two 
blocks, even though we travel through four interior nodes. 
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14.3.6 Quad Trees 

In a quad tree, each interior node corresponds to a square region in two di- 
mensions, or to a k-dimensional cube in k dimensions. As with the other data 
structures in this chapter, we shall consider primarily the two-dimensional case. 
If the number of points in a square is no larger than what will fit in a block, 
then we can think of this square as a leaf of the tree, and it is represented by 
the block that holds its points. If there are too many points to fit in one block, 
then we treat the square as an interior node, with children corresponding to its 
four quadrants. 

Salary 

Figure 14.16: Data organized in a quad tree 

Example 14.17: Figure 14.16 shows the gold-jewelry data points organized 
into regions that correspond to nodes of a quad tree. For ease of calculation, we 
have restricted the usual space so salary ranges between 0 and $400K, rather 
than up to $5OOK as in other examples of this chapter. We continue to make 
the assumption that only two records can fit in a block. 

Figure 14.17 shows the tree explicitly. We use the compass designations for 
the quadrants and for the children of a node (e.g., S\V stands for the southm-est 
quadrant - the points to the left and below the center). 'The order of children 
is always as indicated at the root. Each interior node indicates the coordinates 
of the center of its region. 

Since the entire space has 12 points, and only two will fit in one block. 
we must split the space into quadrants, which we show by the dashed line in 
Fig. 14.16. Two of the resulting quadrants - the southwest and northeast - 
have only two points. They can be represented by leaves and need not be split 
further. 

The remaining two quadrants each have more than two points. Both are split 
into subquadrants, as suggested by the dotted lines in Fig. 14.16. Each of the 
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Figure 14.17: A quad tree 

resulting quadrants has two or fewer points, so no more splitting is necessary. 
0 

Since interior nodes of a quad tree in k dimensions have 2%hildren, there 
is a range of k where nodes fit conveniently into blocks. For instance, if 128, or 
27, pointers can fit in a block, then k = 7 is a convenient number of dimensions. 
However, for the 2-dimensional case, the situation is not much better than for 
kd-trees; an interior node has four children. Xforeo~-er, while we can choose the 
splitting point for a kd-tree node, we are constrained to pick the center of a 
quad-tree region, which may or may not divide the points in that region evenly. 
Especially when the number of dimensions is large, we expect to find many null 
pointers (corresponding to empty quadrants) in interior nodes. Of course we 
can be somewhat clever about how high-dimension nodes are represented, and 
keep only the non-null pointers and a designation of which quadrant the pointer 
represents, thus saving considerable space. 

We shall not go into detail regarding the standard operations that we dis- 
cussed in Section 14.3.4 for kd-trees. The algorithms for quad trees resenlble 
those for kd-trees. 

An R-tree (region tree) is a data structure that captures some of the spirit of 
a B-tree for multidimensional data. Recall that a B-tree node has a set of keys 
that divide a line into segments. Points along that line belong to only one 
segment. as suggested by Fig. 14.18. The B-tree thus makes it easy for us to 
find points; if we think the point is somewhere along the line represented by 
a B-tree node, we can dcterinine a unique child of that node where the point 
could be found. - 
Figure 14.18: -1 B-tree node divides keys along a line into disjoint segments 

14.3. TREELIKE STRUCTURES FOR JlULTIDZ.lIE!VSIO-NAL DAT.4 697 

An R-tree, on the other hand, represents data that consists of 2-dimensional, 
or higher-dimensional regions, which we call data regzons. An interior node of 
an R-tree corresponds to some interior region, or just "region," which is not 
normally a data region. In principle, the region can be of any shape, although 
in practice it is usually a rectangle or other simple shape. The R-tree node 
has, in place of keys, subregions that represent the contents of its children. 
Figure 14.19 suggests a node of an R-tree that is associated with the large solid 
rectangle. The dotted rectangles represent the subregions associated with four 
of its children. Notice that the subregions do not cover the entire region, which 
is satisfactory as long as all the data regions that lie within the large region are 
wholly contained within one of the small regions. Further, the subregions are 
allowed to overlap, although it is desirable to keep the overlap small. 

Figure 14.19: The region of an R-tree node and subregions of its children 

14.3.8 Operations on R-trees 

A typical query for tvhich an R-tree is useful is a "~vhere-am-Z" query, \vhich 
specifies a point P and asks for the data region or regions in which the point lies. 
i 7 e  start at  the root, with which the entire region is associated. We examine 
the subregions at the root and determine which children of the root correspond 
to interior regions that contain point P. Note that there may be zero, one, or 
several such regions. 

If there are zero regions, then we are done; P is not in any data region. If 
there is at  least one interior region that contains P, then 11-e must recursively 
search for P at  the child corresponding to each such region. IVhen we reach 
one or more leaves, XI-e shall find the actual data regions, along with either the 
complete record for each data region or a pointer to that record. 

When we insert a neK region R into an R-tree. we start at the root and try 
to find a subregion into n-hich R fits. If there is more than one such region. then 
we pick one: go to its corresponding child, and repeat the process there. If there 
is no subregion that contains R, then we have to expand one of the subregions. " 
Ii'hich one to pick may be a difficult decision. Intuitively. we want to espand 
regions as little as possible. so we might ask which of the children's subregions 
would have their area increased as little as possible, change the boundary of 
that region to include R. and recursively insert R at  the corresponding child. 
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Eventually. we reach a leaf, where we insert the region R. However, if there 
is no room for R at  that leaf, then me must split the leaf. How we split the 
leaf is subject to some choice. We generally want the two subregions to be as 
small as possible, yet they must, between them, cover all the data regions of 
the original leaf. Having split the leaf, we replace the region and pointer for the 
original leaf at  the node above by a pair of regions and pointers corresponding 
to the two new leaves. If there is room at  the parent, we are done. Otherwise, 
as in a B-tree, we recursively split nodes going up the tree. 

Figure 14.20: Splitting the set of objects 

Example 14.18: Let us consider the addition of a new region to the map of 
Fig. 14.1. Suppose that leaves have room for six regions. Further suppose that 
the six regions of Fig. 14.1 are together on one leaf, whose region is represented 
by the outer (solid) rectangle in Fig. 11.20. 

Kow, suppose the local cellular phone company adds a POP (point of pres- 
ence) at the position shown in Fig. 14.20. Since the seven data regions do not fit 
on one leaf, we shall split the leaf. with four in one leaf and three in the other. 
Our options are man)-: n-e have picked in Fig. 14.20 the division (indicated by 
the inner, dashed rectangles) that minimizes the overlap, ~vl~ile splitting the 
leaves as evenly as possible. 

\Ye show in Fig. 14.21 hotv the tn-o new leaves fit into the R-tree. The parent 
of these nodes has pointers to both leaves, and associated with the pointers are 
the lo&er-left and upper-right corners of the rectangular regions covered by each 
leaf. 0 

Example 14.19 : Suppose we inserted another house below house2, with lower- 
left coordinates (70,s) and upper-right coordinates (80,15). Since this house is 
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Figure 14.21: An R-tree 
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Figure 14.22: Extending a region to accommodate new data 

not wholly contained mithin either of the leaves' regions, we must choose which 
region to espand. If we expand the lo~ver subregion, corresponding to the first 
leaf in Fig. 14.21, then we add 1000 square units to the region, since we extend 
it 20 units to the right. If we extend the other subregion by lowering its bottom 
by 15 units, then we add 1200 square units. We prefer the first, and the new 
regions are changed in Fig. 14.22. \Ye also must change the description of the 
region 0 in the top node of Fig. 14.21 from ((0,O). (60,50)) to ((O,O), (@,so)). 

14.3.9 Exercises for Section 14.3 

Exercise 14.3.1: Shov; a multiple-key index for the data of Fig. 14.10 if the 
indexes are on: 
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a) Speed, then ram. 

b) Ram then hard-disk. 

c) Speed, then ram, then hard-disk. 

Exercise 14.3.2 : Place the data of Fig. 14.10 in a kd-tree. Assume two records 
can fit in one block. At each level, pick a separating value that divides the data 
as evenly as possible. For an order of the splitting attributes choose: 

a) Speed, then ram, alternating. 

b) Speed, then ram, then hard-disk, alternating. 

c) Whatever attribute produces the most even split at each node. 

Exercise 14.3.3: Suppose we have a relation R(x ,y ,  z),  where the pair of 
attributes x and y together form the key. Attribute x ranges from 1 to 100, 
and y ranges from 1 to 1000. For each x there are records with 100 different 
values of y, and for each y there are records with 10 different values of x. Xote 
that there are thus 10,000 records in R.  We wish to use a multiple-key index 
that will help us to answer queries of the form 

SELECT z 
FROM R 
WHERE x = C AND y = D; 

where C and D are constants. Assume that blocks can hold ten key-pointer 
pairs, and we wish to create dense indexes at each level, perhaps with sparse 
higher-level indexes above them, so that each index starts from a single block. 
Also assume that initially all index and data blocks are on disk. 

* a) How many disk I/O's are necessary to answer a query of the above form 
if the first index is on x? 

b) How many disk 1/03 are necessary to answer a query of the above form 
if the first index is on y? 

! c) Suppose you were allowed to buffer 11 blocks in memory at all times. 
Which blocks would you choose, and would you make x or y the first 
index, if you wanted to minimize the number of additional disk I/O's 
needed? 

Exercise 14.3.4: For the structure of Exercise 11.3.3(a), how many disk I/O's 
are required to answer the range query in which 20 5 x 5 35 and 200 5 y 5 350. 
.issume data is distributed uniformly; i.e., the expected number of points will 
be found within any given range. 

Exercise 14.3.5 : In the tree of Fig. 14.13, what new points would be directed 
to: 
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* a) The block with point (30,260)? 

b) The block with points (50,100) and (50,120)? 

Exercise 14.3.6: Show a possible evolution of the tree of Fig. 14.15 if we 
insert the points (20,110) and then (40,400). 

! Exercise 14.3.7: We mentioned that if a kd-tree were perfectly balanced, and 
we execute a partial-match query in which one of two attributes has a value 
specified, then vie wind up looking at  about fi out of the n leaves. 

a) Explain why. 

b) If the tree split alternately in d dimensions, and we specified values for m 
of those dimensions, what fraction of the leaves we expect to have 
to search? 

c) How does the performance of (b) compare with a partitioned hash table? 

Exercise 14.3.8 : Place the data of Fig. 14.10 in a quad tree with dimensions 
speed and ram. Assume the range for speed is 100 to 300, and for ram it is 0 
to 256. 

Exercise 14.3.9: Repeat Exercise 14.3.8 with the addition of a third dimen- 
sion, hard-disk, that ranges from 0 to 32. 

*! Exercise 14.3.10 : If 1-e are allos-ed to put the central point in a quadrant of a 
quad tree wherever I\-e nant, can .se always divide a quadrant into subquadrants 
with an equal number of points (or as equal as possible, if the number of points 
in the quadrant is not divisible by 4)? Justify your answer. 

! Exercise 14.3.11: Suppose 1-e h a ~ e  a database of 1.000,000 regions, which 
may overlap. Xodes (blocks) of an R-tree can hold 100 regions and pointers. 
The region represented by any node has 100 subregions. and the o~erlap among 
these regions is such that the total area of the 100 subregions is 130% of the 
area of the region. If we perform a .'I\-here-am-I" query for a giren point. how 
many blocks do we expect to retrieve? 

! Exercise 14.3.12 : In the R-tree represented by Fig. 1-1.22, a ne\v region might 
go into the subregion containing the school or the subregion containing housed. 
Describe the rectangular regions for which we ~sould prefer to place the new 
region in the subregion with the school (i.e., that choice minimizes the increase 
in the subregion size). 
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14.4 Bitmap Indexes 

Let us now turn to a type of index that is rather different from the kinds seen 
so far. M'e begin by imagining that records of a file have permanent numbers, 
1,2, . . . , n. hloreover, there is some data structure for the file that lets us find 
the ith record easily for any i. 

A bitmap index for a field F is a collection of bit-vectors of length n, one 
for each possible value that may appear in the field F. The vector for iralue u 
has 1 in position i if the ith record has v in field F, and it ha5 0 there if not. 

Example 14.20 : Suppose a file consists of records with two fields, F and G, of 
type integer and string, respectively. The current file has six records, numbered 
1 through 6 ,  with the following values in order: (30, f oo), (30, bar), (40, baz), 
(50, f oo), (40, bar), (30, baz). 

A bitmap index for the first field, F, would have three bit-vectors, each of 
length 6.  The first, for value 30, is 110001, because the first, second, and sixth 
records have F = 30. The other two, for 40 and 50, respectively, are 001010 
and 000100. 

A bitmap index for G would also have three bit-vectors, because there are 
three different strings appearing there. The three bit-vectors are: 

Value I Vector 
foo I 100100 

In each case, the 1's indicate in which records the corresponding string appears. 
0 

14.4.1 Motivation for Bitmap Indexes 

It might at first appear that bitmap indexes require much too much space, 
especially when there are many different values for a field, since the total number 
of bits is the product of the number of records and the number of values. For 
example, if the field is a key, and there are n records, then n2 bits are used 
among all the bit-vectors for that field. However, compression can be used to 
make the number of bits closer to n, independent of the number of different 
~alues, as we shall see in Section 14.4.2. 

You might also suspect that there are problems managing the bitmap in- 
dexes. For example, they depend on the number of a record remaining the same 
throughout time. How do we find the ith record as the file adds and deletes 
records? Similarly, values for a field may appear or disappear. How do we find 
the bitmap for a value efficiently? These and related questions are discussed in 
Section 14.4.4. 

The compensating advantage of bitmap indexes is that they allow us to 
answer partial-match queries very efficiently in many situations. In a sense they 

offer the advantages of buckets that we discussed in Example 13.16, where \ve 
found the Movie tuples with specified values in several attributes without first 
retrieving all the records that matched in each of the attributes. An example 
will illustrate the point. 

Example 14.21 : Recall Example 13.16, where we queried the Movie relation 
with the query 

SELECT t i t l e  
FROM Movie 
WHERE studioName = 'Disney' AND year = 1995; 

Suppose there are bitmap indexes on both attributes studioName and year. 
Then we can intersect the vectors for year = 1995 and studioName = 'Disney'; 
that is, we take the bitwise AND of these vectors, which will give us a vector 
with a 1 in position i if and only if the ith Movie tuple is for a movie made by 
Disney in 1995. 

If we can retrieve tuples of Movie given their numbers, then I\-e Aeed to 
read only those blocks containing one or more of these tuples, just as n*e did in 
Example 13.16. To intersect the bit vectors, we must read them into memory, 
which requires a disk I/O for each block occupied by one of the two vectors. As 
mentioned, we shall later address both matters: accessing records given their 
numbers in Section 14.4.4 and making sure the bit-vectors do not occupy too 
much space in Section 14.4.2. 

Bitmap indexes can also help answer range queries. We shall consider an 
example next that both illustrates their use for range queries and shorn-s in detail 
with short bit-vectors how the bitwise A S D  and OR of bit-vectors can be used 
to discover the answer to a query without looking at  any records but the ones 
me want. 

Example 14.22: Consider the gold jelvelry data first introduced in Exam- 
ple 14.7. Suppose that the twelve points of that example are records numbered 
from 1 to 12 as follo~us: 

For the first component, age, there are seven different values: so the bitmap 
index for age consists of the follo\ving seven vectors: 

25: 100000001000 30: 000000010000 45: 010000000100 
50: 0011 1OOOOOlO 60: 000000000001 TO: 000001000000 
85: 000000100000 

For the salary component, there are ten different values, so the salary bitmap 
index has the following ten bit-vectors: 



704 C H A P T E R  14. ~ ~ U L T I D I ~ V ~ E N S I O N A L  AhTD BITAJAP INDEXES 

GO: 110000000000 75: 001000000000 100: 000100000000 
110: 000001000000 120: 000010000000 140: 000000100000 
260: 000000010001 275: 000000000010 350: 000000000100 
400: 000000001000 

Suppose we want to find the jewelry buyers with an age in the range 45-55 
and a salary in the range 100-200. We first find the bit-vectors for the age 
values in this range; in this example there are only two: 010000000100 and 
001110000010, for 45 and 50, respectively. If we take their bitwise OR, we have 
a new bit-vector with 1 in position i if and only if the ith record has an age in 
the desired range. This bit-vector is 011110000110. 

Next, we find the bit-vectors for the salaries between 100 and 200 thousand. 
There are four, corresponding to salaries 100, 110, 120, and 140; their bitwise 
OR is 000111100000. 

The last step is to take the bitwise AND of the two bit-vectors we calculated 
by OR. That is: 

011110000110 AND 000111100000 = 000110000000 

\Ve thus find that only the fourth and fifth records, which are (50,100) and 
(50,120), are in the desired range. 

14.4.2 Compressed Bitmaps 

Suppose we have a bitmap index on field F of a file with n records, and there 
are m different values for field F that appear in the file. Then the number of 
bits in all the bit-vectors for this index is mn. If, say, blocks are 4096 bytes 
long, then we can fit 32,768 bits in one block, so the number of blocks needed 
is mn/32768. That number can be small compared to the number of blocks 
needed to hold the file itself, but the larger m is, the more space the bitmap 
index takes. 

But if m is large, then 1's in a bit-vector will be very rare; precisely, the 
probability that any bit is 1 is l lm .  If 1's are rare, then we have an opportunity 
to encode bit-vectors so that they take much fewer than n bits on the average. 
-4 comrnon approach is called run-length encoding. where ~ve represent a run, 
that is, a sequence of i 0's followed by a 1, by some suitable binary encoding 
of the integer i.  \Ve concatenate the codes for each run together, and that 
sequence of bits is the encoding of the entire bit-vector. 

\Ye might imagine that we could just represent integer i by expressing i 
as a binary number. However, that simple a scheme will not do, because it 
is not possible to break a sequence of codes apart to determine uniquely the 
lengths of the runs involved (see the box on "Binary Numbers Won't Serve as a 
Run-Length Encoding"). Thus, the encoding of i~~tegers i that represent a run 
length must be more complex than a simple binary representation. 

We shall study one of many possible schemes for encoding. There are some 
better, more complex schemes that can improve on the amount of compression 

Binary Numbers Won't Serve as a Run-Length 
Encoding 

Suppose we represented a run of i 0's followed by a 1 with the integer i in 
binary. Then the bit-vector 000101 consists of two runs, of lengths 3 and 1, 
respectively. The binary representations of these integers are 11 and 1, so 
the run-length encoding of 000101 is 111. However, a similar calculation 
shows that the bit-vector 010001 is also encoded by 111; bit-vector 010101 
is a third vector encoded by 111. Thus, 111 cannot be decoded uniquely 
into one bit-vector. 

achieved here, by almost a factor of 2, but only when typical runs are very long. 
In our scheme, we first determine how many bits the binary representation of 
i has. This number j, which is approximately log, i , is represented in "unary," 
by j - 1 1's and a single 0. Then, we can follow with i in binary.* 

Example 14.23: If i = 13, then j = 4; that is, we need 4 bits in the binary 
representation of i. Thus. the encoding for i begins with 1110. We follow with 
i in binary, or 1101. Thus, the encoding for 13 is 11101101. 

The encoding for i = 1 is 01; and the encoding for i = 0 is 00. In each 
case, j = 1, so we begin with a single 0 and follow that 0 with the one bit that 
represents i. 

If we concatenate a sequence of integer codes, \ye can al~vaq-s recover the 
sequence of run lengths and therefore recover the original bit-vector. Suppose 
we have scanned some of the encoded bits, and we are now at the beginning 
of a sequence of bits that encodes some integer i. We scan forward to the first 
0, to determine the value of j. That is, j equals the number of bits we must 
scan until we get to the first 0 (including that 0 in the count of bits). Once we 
know j .  we look at the next j bits; i is the integer represented there in binary. 
lloreover, once 13-e have scanned the bits representing i. we know ~vhere the 
next code for an integer begins. so 1-e can repeat the process. 

Example 14.24: Let us decode thc sequence 11101101001011. Starting at the 
beginning. tve find the first 0 at the 4th bit. so j = 4. The next 1 bits are 1101. 
so we determine that the first integer is 13. \Ye are no\\- left wit11 001011 to 
decode. 

Since the first bit is 0: we know thc nest bit represents the next integer by 
itself: this integer is 0. Thus, we have decoded the sequence 13, 0, and must 
decode the remaining sequence 1011. 

2Actually. except for the case that j = 1 (i.e.. i = 0 or i = I), we can be sure that the 
binary representation of i begins with 1. Thus, \re can save about one bit per number if we 
omit this 1 and use only the remaining j - 1 bits. 
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\Ve find the first 0 in the second position, whereupon we conclude that the 
final two bits represent the last integer, 3. Our entire sequence of run-lengths 
is thus 13, 0, 3. From these numbers, we can reconstruct the actual bit-vector, 
00000000000001 10001. 

Technically, every bit-vector so decoded will end in a 1, and any trailing 0's 
will not be recovered. Since we presumably know the number of records in the 
file, the additional 0's can be added. However, since 0 in a bit-vector indicates 
the corresponding record is not in the described set, we don't even have to know 
the total number of records, and can ignore the trailing 0's. 

Example 14.25: Let us convert some of the bit-vectors from Example 14.23 
to our run-length code. The vectors for the first three ages, 25, 30, and 45, 
are 100000001000,000000010000, and 010000000100, respectively. The first of 
these has the run-length sequence (0,7). The code for 0 is 00, and the code for 
'7 is 110111. Thus, the bit-vector for age 25 becomes 00110111. 

Similarly, the bit-vector for age 30 has only one run, with seven 0's. Thus, 
its code is 110111. The bit-vector for age 45 has two runs, (1,7). Since 1 has 
the code 01, and we determined that 7 has the code 110111, the code for the 
third bit-vector is 01110111. U 

The compression in Example 14.25 is not great. However, we cannot see the 
true benefits when n, the number of records, is small. To appreciate the value 
of the encoding, suppose that m = n, i.e., each ~a lue  for the field on which the 
bitmap index is constructed, has a unique value. Xotice that the code for a run 
of length i has about 210ga i bits. If each bit-vector has a single 1, then it has 
a single run, and the length of that run cannot be longer than n. Thus, 2 log, n 
bits is an upper bound on the length of a bit-vector's code in this case. 

Since there are n bit-vectors in the index (because m = n), the total number 
of hits to represent the index is a t  most 2nlog2 la.  Notice that without the 
encoding, nQits would be required. .4s long as n > 4, we have 211 loga n < n'. 
and as YZ grows, 271. log2 n becomes arbitrarily sinaller than na. 

14.4.3 Operating on Run-Length-Encoded Bit-Vectors 

\\-hen we need to perform bitwise AND or OR on encoded bit-vectors, ive 
h a ~ e  little choice but to decode them and operate on the original bit-vectors. 
However, we do not have to do the decoding all a t  once. The compression 
scheme 1-e have described lets us decode one run at a time, and \ve can thus 
determine wl~ere the nest I is in each operand bit-vector. If we are taking the 
OR. we can produce a 1 at that position of the output, and if we arc taking the 
--i?;D we produce a 1 if and only if both operands have their next 1 at the sanlc 
position. The algorithms involved are comples. but an example ma>- ~nakc the 
idea adequately clear. 

Example 14.26 : Consider the encoded bit-vectors we obtained in Exam- 
ple 14.25 for ages 25 and 30: 00110111 and 110111, respectively. We can decode 
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their first runs easily; we find they are 0 and 7, respectixrely. That is, the first 
1 of the bit-vector for 25 occurs in position 1, while the first 1 in the bit-vector 
for 30 occurs at  position 8. We therefore generate 1 in position 1. 

Next, we must decode the next run for age 25, since that bit-vector may 
produce another 1 before age 30's bit-vector produces a 1 at  position 8. How- 
ever, the next run for age 25 is 7, which says that this bit-vector next produces 
a 1 at position 9. ?\'e therefore generate six 0's and the 1 at  position 8 that 
comes from the bit-vector for age 30. Xow, that bit-vector contributes no more 
1's to the output. The 1 at  position 9 from age 25's bit-vector is produced, and 
that bit-vector too produces no subsequent 1's. 

\Ve conclude that the OR of these bit-vectors is 100000011. Referring to 
the original bit-vectors of length 12, we see that is almost right; there are three 
trailing 0's omitted. If we know that the number of records in the file is 12, we 
can append those 0's. However, it doesn't matter whether or not we append 
the O's, since only a 1 can cause a record to be retrieved. In this example, we 
shall not retrieve any of records 10 through 12 anyway. 0 

14.4.4 Managing Bitmap Indexes 

We have described operations on bitmap indexes without addressing three im- 
portant issues: 

1. When we want to find the bit-vector for a given value, or the bit-vectors 
corresponding to values in a given range, how do we find these efficiently? 

2. When we have selected a set of records that answer our query, how do rvc 
retrieve those records efficiently? 

3. TVhen the data file changes by insertion or deletion of records. how do we 
adjust the bitmap index on a given field? 

Finding Bit-Vectors 

The first question can be answered based on techniques we have already learned. 
Think of each bit-rector as a record whose key is the value corresponding to this 
bit-vector (although the value itself does not appear in this "record"). Then 
any secondary index technique will take us efficiently from values to their bit- 
vectors. For exanlple, we could use a B-tree, whose leaves contain key-pointer 
pairs; the pointer leads to the bit-vector for the key value. The B-tree is often 
a good choice, because it supports range queries easily, but hash tables or 
indexed-sequential files are other options. 

We also need to store the bit-vectors somewhere. It is best to think of 
them as variable-length records. since they  ill generally grow as more records 
are added to the data file. If the bit-vectors, perhaps in compressed form. 
are typically shorter than blocks. then n-e can consider packing several to a 
block and moving them around as needed. If bit-vectors are typically longer 
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than blocks, we should consider using a chain of blocks to hold each one. The 
techniques of Section 12.4 are useful. 

Finding Records 

Sow let us consider the second question: once we have determined that we need 
record k of the data file, how do we find it. Again, techniques we have seen 
already may be adapted. Think of the kth record as having search-key value 
k (although this key does not actually appear in the record). We may then 
create a secondary index on the data file, whose search key is the number of 
the record. 

If there is no reason to organize the file any other way, we can even use 
the record number as the search key for a primary index, as discussed in Sec- 
tion 13.1. Then, the file organization is particularly simple, since record num- 
bers never change (even as records are deleted), and we only have to add new 
records to the end of the data file. It is thus possible to pack blocks of the data 
file completely full, instead of leaving extra space for insertions into the middle 
of the file as we found necessary for the general case of an indexed-sequential 
file in Section 13.1.6. 

Handling Modifications to t h e  D a t a  File 

There are two aspects to the problem of reflecting data-file modifications in a 
bitmap index. 

1. Record numbers must remain fised once assigned. 

2. Changes to the data file require the bitmap index to change as well. 

The consequence of point (1 )  is that \\.hen we delete record i ,  it is easiest 
to "retire" its number. Its space is replaced by a "tombstone" in the data file. 
The bitmap index must also be changed, since the bit-vector that had a 1 in 
position i must have that 1 changed to 0 .  Sate that we can find the appropriate 
bit-vector, since we know what value record i had before deletion. 

Next consider insertion of a new record. We keep track of the next available 
record number and assign it to the new record. Then, for each bitmap index. 
KT must determine the value the new record has in the corresponding field and 
modify the bit-rector for that value by appendine a 1 at the end. Technicallv, " 
all the other bit-vectors in this indes get a new 0 at  the end, but if \re arc using 
a con~pression technique such as that of Section 14.1.2. then no change to the 
comprrssed values is ncedcd. 

hs  a special case, the new record may hare a value for thc indexed field 
that has not been seen before. In that case, we need a new bit-vector for 
this value, and this bit-vector and its corresponding value need to be inserted 
into the secondary-index structure that is used to find a bit-vector given its 
corresponding value. 
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Last, let us consider a modification to a record i of the data file that changes 
the value of a field that has a bitmap index, say from value v to vdue w. We 
must find the bit-vector for v and change the 1 in position i to 0. If there is a 
bit-vector for value w,  then n-e change its 0 in position i to 1. If there is not 
yet a bit-vector for w ,  then we create it as discussed in the paragraph above for 
the case when an insertion introduces a new value. 

14.4.5 Exercises for Section 14.4 

Exercise 14.4.1 : For the data of Fig. 14.10 show the bitmap indexes for the 
attributes: 

* a) Speed, 

b) Ram, and 

both in ( i )  uncompressed form, and (ii) compressed form using the scheme of 
Section 14.4.2. 

Exercise 14.4.2 : Using the bitmaps of Example 14.22, find the jewelry buyers 
with an age in the range 20-40 and a salary in the range 0-100. 

Exercise 14.4.3 : Consider a file of 1,000,000 records, with a field F that has 
m different values. 

a) As a function of m. h o l ~  many bytes does the bitnlap index for F have? 

! b) Suppose that the records numbered from 1 to 1,000,000 are given values 
for the field F in a round-robin fashion, so each value appears cvery in 
records. How many bytes would be consumed by a compressed index? 

!! Exercise 14.4.4 : \Ve suggested in Section 14.4.2 that it was possible to reduce 
the number of bits taken to encode number i from the 2 log, i that we used in 
that section until it is close to logz i. Show how to approach that limit as closely 
as  you like, as long as i is large. Hint: We used a unary encoding of the length 
of the binary encoding that we used for i. Can you encode the length of the 
code in binary? 

Exercise 14.4.5: Encode, using the scheme of Section 14.4.2. the follo\ving 
bitn~aps: 
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*! Exercise 14.4.6: Itre pointed out that compressed bitmap indexes consume 
about 2n log, n bits for a file of n records. HOW does this number of bits compare 
with the number of bits consumed by a B-tree index? Remember that the B- 
tree index's size depends on the size of keys and pointers, as well as (to a small 
extent) on the size of blocks. However, make some reasonable estimates of these 
parameters in your calculations. Why might we prefer a B-tree, even if it takes 
more space than compressed bitmaps? 

14.5 Summary of Chapter 14 

+ Multidimensional Data: Many applications, such as geographic databases 
or sales and inventory data, can be thought of as points in a space of two 
or more dimensions. 

+ Queries Needing Multidimensional Indexes: The sorts of queries that 
need to be supported on multidimensional data include partial-match (all 
points with specified values in a subset of the dimensions), range queries 
(all points within a range in each dimension), nearest-neighbor (closest 
point to a given point), and where-am-i (region or regions containing a 
given point). 

+ Executing Nearest-Neighbor Queries: .\iany data structures allow nearest- 
neighbor queries to be executed by performing a range query around the 
target point, and expanding the range if there is no point in that range. 
\Ire must be careful, because finding a point within a rectangular range 
may not rule out the possibility of a closer point outside that rectangle. 

+ Grid Files: The grid file slices the space of points in each of the dimen- 
sions. The grid lines can be spaced differently, and there can be different 
numbers of lines for each dimension. Grid files support range queries, 
partial-match queries, and nearest-neighbor queries \%-ell, as long as data 
is fairly uniform in distribution.' 

+ Partitioned Hash Tables: .4 partitioned hash function constructs some 
bits of the bucket number from each dimension. They support partial- 
match queries well, and are not dependent on thc data being uniformly 
distributed. 

+ Multiple-Key Indexes: .A simple ~tiultidimensional structure has a root 
that is an index on one attribute. leading to a collection of indescs on a 
second attribute, which can lead to indexes on a third attribute, and so 
on. They are useful for range and nearest-neighbor queries. 

+ kd-Trees: These trees are like binary search trees: but t,hey branch on 
different attributes at  different lerels. They support partial-~natch, range, 
and nearest-neighbor queries well. Some careful packing of tree nodes into 
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blocks must be done to make the structure suitable for secondary-storage 
operations. 

+ Quad Pees: The quad tree divides a multidimensional cube into quad- 
rants, and recursively divides the quadrants the same way if they have too 
many points. They support partial-match, range, and nearest-neighbor 
queries. 

+ R-Bees: This form of tree normally represents a collection of regions by 
grouping them into a hierarchy of larger regions. It helps with where-am- 
i queries and, if the atomic regions are actually points, will support the 
other types of queries studied in this chapter, as well. 

+ Bitmap Indexes: Multidimensional queries are supported by a form of 
index that orders the points or records and represents the positions of the 
records with a given value in an attribute by a bit vector. These indexes 
support range, nearest-neighbor, and partial-match queries. 

+ Compressed Bitmaps: In order to save space, the bitmap indexes, which 
tend to consist of vectors with very few l's, are compressed by using a 
run-length encoding. 

14.6 References for Chapter 14 
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Previous chapters gave us data structures that allow efficient execution of basic 
database operations such as finding tuples given a search key. We are now ready 
to use these structures to support efficient algorithms for answering queries. The 
broad topic of query processing will be covered in this chapter and Chapter 16. 
The query processor is the group of components of a DBMS that turns user 
queries and data-modification commands into a sequence of database operations 
and executes those operations. Since SQL lets us express queries at a very high 
level, the query processor must supply a lot of detail regarding how the query 
is to be executed. Moreover, a naive execution strategy for a query may lead to 
an algorithm for executing the query that takes far more time than necessary. 

Figure 15.1 suggests the division of topics between Chapters 15 and 16. 
In this chapter, we concentrate on query execution, that is, the algorithms 
that manipulate the data of the database. We focus on the operations of the 
extended relational algebra, described in Section 5.4. Because SQL uses a bag 
model. Tve also assume that relations are bags, and thus use the bag versions of 
the operators from Section 5.3. 

lye shall cover the principal methods for execution of the operations of rela- 
tional algebra. These methods differ in their basic strategy; scanning, hashing, 
sorting, and indexing are the major approaches. The methods also differ on 
their assumption as to the amount of available main memory. Some algorithms 
assunle that enough main memory is available to hold at least one of the re- 
lations involved in an operation. Others assume that the arguments of the 
operation are too big to fit in memory. and these algorithms have significantly 
different costs and structures. 

Preview of Query Compilation 

Query compilation is divided into the three major steps shown in Fig. 15.2. 

a) Parsing, in which a parse tree: representing the query and its structure, 
is constructed. 
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Figure 15.1: The major parts of the query processor 

b)  Q u e y  rewrite, in which the parse tree is converted to an initial query plan, 
which is usually an algebraic representation of the query. This initial plan 
is then transformed into an equivalent plan that is expected to require less 
time to execute. 

c) Physical plan generation, where the abstract query plan from (b); often 
called a logical query plan, is turned into a physical query plan by selecting 
algorithms to implement each of the operators of the logical plan. and by 
selecting an order of execution for these operators. The physical plan, like 
the result of parsing and the logical plan, is represented by an expression 
tree. The physical plan also includes details such as how the queried 
relations are accessed, and when and if a relation should be sorted. 

Parts (b) and (c) are often called the query optimizer, and these are the 
hard parts of query compilation. Chapter 16 is devoted to query optimization: 
we shall learn there how to select a "query plan" that takes as little time as 
possible. To select the best query plan we need to decide: 

1. Which of the algebraically equivalent forms of a query leads to the most 
efficient algorithm for answering the query? 

2. For each operation of the selected form, what algorithm sliould n-e use to 
implemc~nt that operation? 

3. HOW should the operations pass data from one to the other, e.g., in a 
pipelined fashion. in main-memory buffers, or via the disk? 

Each of these choices depends on the metadata about the database. Typical 
metadata that is available to the query optimizer includes: the size of each 
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Figure 15.2: Outline of query compilation 

relation; statistics such as the approximate number and frequency of different 
values for an attribute; the existence of certain indexes; and the layout of data 
on disk. 

15.1 Introduction to Physical-Query-Plan 
Operators 

Physical query plans are built from operators, each of which implements one 
step of the plan. Often, the physical operators are particular implementations 
for one of the operators of relational algebra. However, we also need phyaical 
operators for other tasks that do not involve an operator of relational algebra. 
For example, we often need to "scan" a table, that is, bring into main memory 
each tuple of some relation that is an operand of a relational-algebra expression. 
In this section, we shall introduce the basic building blocks of physical query 
plans. Later sections cover the more complex algorithms that implement op- 
erators of relational algebra efficiently; these algorithms also form an essential 
part of physical query plans. We also introduce here the "iterator" concept. 
which is an important method by which the operators comprising a physical 
query plan can pass requests for tuples and answers among themselves. 
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15.1.1 Scanning Tables 

Perhaps the most basic thing we can do in a physical query plan is to read the 
entire contents of a relation R. This step is necessary when, for example, n-e 
take the union or join of R with another relation. -4 variation of this operator 
involves a simple predicate, where we read only those tuples of the relation R 
that satisfy the predicate. There are two basic approaches to locating the tuples 
of a relation R. 

1. In many cases, the relation R is stored in an area of secondary memorv: 
wit~h its tuples arranged in blocks. The blocks containing the tuples of R 
are known to the system, and it is possible to get the blocks one by one. 
This operation is called table-scan. 

2. If there is an index on any attribute of R, we may be able to use this index 
to get all the tuples of R. For example, a sparse index on R, as discussed 
in Section 13.1.3, can be used to lead us to all the blocks holding R, even if 
we don't know otherwise which blocks these are. This operation is called 
index-scan. 

We shall take up index-scan again in Section 15.6.2, when we talk about 
implementation of the a operator. However, the important observation for now 
is that we can use the index not only to get all the tuples of the relation it 
indexes, but to get only those tuples that have a particular value (or sometimes 
a particular range of values) in the attribute or attributes that form the search 
key for the index. 

15.1.2 Sorting While Scanning Tables 

There are a number of reasons why me might want to sort a relation as we 
read its tuples. For one, the query could include an ORDER BY clause. requiring 
that a relation be sorted. For another, various algorithms for relational-algebra 
operations require one or both of their arguments to be sorted relations. These 
algorithms appear in Section 15.4 and elsewhere. 

The physical-query-plan operator sort-scan takes a relation R and a speci- 
fication of the attributes on which the sort is to be made, and produces R in 
that sorted order. There are several ways that sort-scan can be implemented: 

a) If we are to produce a relation R sorted by attribute a, and there is a 
B-tree index on a: or R is stored as an indexed-sequential file ordered by 
a, then a scan of the index allows us to produce R in the desired order. 

b) If the relation R that we nish to retrieve in sorted order is small enough 
to fit in main memory, then we can retrieve its tuples using a table scan 
or index scan, and then use one of many possible efficient, main-memory 
sorting algorithms. 
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C) If R is too large to fit in main memory, then the multiway merging ap- 
proach covered in Section 11.4.3 is a good choice. However, instead of 
storing the final sorted R back on disk, we produce one block of the 
sorted R at a time, as its tuples are needed. 

15.1.3 The Model of Computation for Physical Operators 

A query generally consists of several operations of relational algebra, and the 
corresponding physical query plan is composed of several physical operators. 
Often, a physical operator is an implementation of a relational-algebra operator, 
but as we saw in Section 15.1.1, other physical plan operators correspond to 
operations like scanning that may be invisible in relational algebra. 

Since choosing physical plan operators wisely is an essential of a good query 
processor, we must be able to estimate the "cost" of each operator we use. 
We shall use the number of disk 110's as our measure of cost for an operation. 
This measure is consistent with our view (see Section 11.4.1) that it takes longer 
to get data from disk than to do anything useful with it once the data is in 
main memory. The one major exception is when answering a query involves 
communicating data across a network. We discuss costs for distributed query 
processing in Sections 15.9 and 19.4.4. 

When comparing algorithms for the same operations, we shall make an 
assumption that may be surprising at first: 

We assume that the arguments of any operator are found on disk, but the 
result of the operator is left in main memory. 

If the operator produces the final answer to a query, and that result is indeed 
written to disk, then the cost of doing so depends only on the size of the answer, 
and not on how the answer was computed. We can simply add the final write- 
back cost to the total cost of the query. Hex-ever, in many applications, the 
answer is not stored on disk at all, but printed or passed to some formatting 
program. Then, the disk I/O cost of the output either is zero or depends upon 
what some unknown application program does with the data. 

Similarly, the result of an operator that forms part of a query (rather than 
the whole query) often is not written to disk. In Section 13.1.6 we shall discuss 
.'iterators," where the result of one operator is construc.ted in main memory, 
perhaps a small piece at a time, and passed as an argument to another operator. 
In this situation, we never have to write the result to disk. and moreover, Ive 
save the cost of reading from disk this argument of the operator that uses the 
result. This saving is an excellent opportunity for the query optimizer. 

15.1.4 Parameters for Measuring Costs 

Sow, let us introduce the parameters (sometimes called statistics) that we use to 
express the cost of an operator. Estimates of cost are essential if the optimizer 
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is to determine which of the many query plans is likely to execute fastest. 
Section 16.5 introduces the exploitation of these cost estimates. 

We need a parameter to represent the portion of main memory that the 
operator uses, and we require other parameters to measure the size of its argu- 
ment(~). .Assume that main memory is divided into buffers, whose size is the 
same as the size of disk blocks. Then 111 will denote the number of main-memory 
buffers available to an execution of a particular operator. When evaluating the 
cost of an operator, we shall not count the cost - either memory used or disk 
110's - of producing the output; thus M includes only the space used to hold 
the input and any intermediate results of the operator. 

Sometimes, we can think of hl as the entire main memory, or most of 
the main memory, as we did in Section 11.4.4. However, we shall also see 
situations where several operations share the main memory, so M could be 
much smaller than the total main memory. In fact, as we shall discuss in 
Section 15.7, the number of buffers available to an operation may not be a 
predictable constant, but may be decided during execution, based on what 
other processes are executing a t  the same time. If so, M is really an estimate 
of the number of buffers available to the operation. If the estimate is wrong, 
then the actual execution time will differ from the predicted time used by the 
optimizer. \Ye could even find that the chosen physical query plan would have 
been different, had the query optimizer known what the true buffer availability 
n-ould be during execution. 

Next, let us consider the parameters that measure the cost of accessing 
argument relations. These parameters, measuring size and distribution of data 
in a relation. are often computed periodically to help the query optimizer choose 
physical operators. 

We shall make the simplifying assumption that data is accessed one block 
at a time from disk. In practice, one of the techniques discussed in Section 11.5 
might be able to speed up the algorithm if we are able to read maly blocks of 
the relation at once, and they can be read from consecuti\~e blocks on a track. 
There are three parameter families, B, T ,  and V: 

When describing the size of a relation R, we most often are concerned with 
the number of blocks that are needed to hold all the tuples of R. This 
number of blocks will be denoted B(R), or just B if we know that relation 
R is meant. Usually, we assume that R is clustered; that is, it i s  stored in 
B blocks or in approximately B blocks. As discussed in Section 13.1.6, tve 
may in fact wish to keep a small fraction of each block holding R empty 
for future insertions into R. Nevertheless, B will often be a good-enough 
approximation to the number of blocks that we must read from disk to 
see all of R, and we shall use B as that estimate uniformly. 

Sometimes, we also need to know the number of tuples in R. and we 
denote this quantity by T(R) ,  or just T if R is understood. If \ye need the 
number of tuples of R that can fit in one block, we can use the ratio TIB. 
Further, there are some instances where a relation is stored distributed 

INTRODUCTION TO PHYSICAL-QUERY-PLAN OPERATORS 719 

among blocks that are also occupied by tuples of other relations. If so, 
then a simplifying assumption is that each tuple of R requires a separate 
disk read, and we shall use T as an estimate of the disk I/O's needed to 
read R in this situation. 

Finally, we shall sometimes want to refer to the number of distinct values 
that appear in a column of a relation. If R is a relation, and one of its 
attributes is a ,  then V(R,  a) is the number of distinct values of the column 
for a in R. More generally, if [al,az,. . . ,an] is a list of attributes, then 
V(R, [al, az, . . . , a,]) is the number of distinct n-tuples in the columns of 
R for attributes al, a*, . . . , an .  Put formally, it is the number of tuples in 
d(na l , a z  ,.... a, ( R ) ) .  

15.1.5 1 / 0  Cost for Scan Operators 

As a simple application of the parameters that were introduced, we can rep- 
resent the number of disk 110's needed for each of the table-scan operators 
discussed so far. If relation R is clustered, then the number of disk I/O's for 
the table-scan operator is approximately B. Likewise, if R fits in main-memory, 
then we can implement sort-scan by reading R into memory and performing an 
in-memory sort, again requiring only B disk 110's. 

If R is clustered but requires a two-phase multiway merge sort, then, as 
discussed in Section 11.4.4, we require about 3B disk I/O's, divided equally 
among the operations of reading R in sublists, writing out the sublists, and 
rereading the sublists. Remember that we do not charge for the final writing 
of the result. Neither do we charge ineinory space for accumulated output. 
Rather, we assume each output block is immediately consumed by some other 
operation: possibly it is simply written to disk. 

However, if R is not clustered, then the number of required disk 110's is 
generally much higher. If R is distributed among tuples of other relations, then 
a table-scan for R may require reading as many blocks as there are tuples of R; 
that is, the 110 cost is T. Similarly, if me want to sort R. but R fits in memory, 
then T disk 110's are what we need to get all of R into memory. Finally, if 
R is not clustered and requires a two-phase sort, then it takes T disk 110's to 
read the subgroups initially. Hoxever, vie may store and reread the sublists in 
clustered form, so these steps requjre only 2B disk I/O's. The total cost for 
performing sort-scan on a large, unclustered relation is thus T + 2B. 

Finally. let us consider the cost of an index-scan. Generally, an index on 
a relation R occupies many fewer than B(R) blocks. Therefore. a scan of the 
entire R. ~vllich takes at least B disk 110's. \rill require significantly more I/O's 
than does examining the entire index. Thus. even though index-scan requires 
examining both the relation and its index, 

K e  continue to use B or T as an estimate of the cost of accessing a 
clustered or unclustered relation in its entirety, using an index. 
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Why Iterators? 

We shall see in Section 16.7 how iterators support efficient execution when 
they are composed within query plans. They contrast with a material- 
ization strategy, where the result of each operator is produced in its en- 
tirety - and either stored on disk or allowed to take up space in main 
memory, When iterators are used, many operations are active at once. Tu- 
ples pass between operators as needed, thus reducing the need for storage. 
Of course, as we shall see, not all physical operators support the iteration 
approach, or "pipelining," in a useful way. In some cases, almost all the 
work would need to be done by the Open function, which is tantamount 
to materialization. 

However, if we only want part of R, we often are able to avoid looking at the 
entire index and the entire R. We shall defer analysis of these uses of indexes 
to Section 15.6.2. 

15.1.6 Iterators for Implementation of Physical Operators 

Many physical operators can be implemented as an iterator, which is a group 
of three functions that allows a consumer of the result of the physical operator 
to get the result one tuple at a time. The three functions forming the iterator 
for an operation are: 

1. Open. This function starts the process of getting tuples, but does not get 
a tuple. It initializes any data structures needed to perform the operation 
and calls Open for any arguments of the operation. 

2. GetNext. This function returns the next tuple in the result and adjusts 
data structures as necessary to allow subsequent tuples to be obtained. In 
getting the next tuple of its result, it typically calls GetNext one or more 
times on its argument(s). If there are no more tuples to return, GetNext 
returns a special value NotFound, which Ire assume cannot be mistaken 
for a tuple. 

3. Close. This function ends the iteration after all tuples, or all tuples that 
the consumer wanted, have been obtained. Typically, it calls Close on 
any arguments of the operator. 

When describing iterators and their functions, we shall assume that there 
is a "class' for each type of iterator (i.e., for each type of physical operator 
implemented as an iterator), and the class supports Open, GetNext, and Close 
methods on instances of the class. 
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Example 15.1 : Perhaps the simplest iterator is the one that implements the 
table-scan operator. The iterator is implemented by a class Tablescan, and a 
table-scan operator in a query plan is an instance of this class parameterized by 
the relation R n-e wish to scan. Let us assume that R is a relation clustered in 
some list of blocks, which we can access in a convenient way; that is, the notion 
of "get the next block of R is implen~ented by the storage system and need 
not be described in detail. Further, we assume that within a block there is a 
directory of records (tuples) so that it is easy to get the next tuple of a block 
or tell that the last tuple has been reached. 

Open0 I 
b := t h e  first  block of R ;  
t := t h e  first tuple  of block b ;  

3 

GetNextO { 
I F  ( t  is past  t he  l a s t  tuple  on block b) C 

increment b t o  the  next block; 
I F  ( there  is no next block) 

RETURN NotFound; 
ELSE /* b is a new block */ 

t :- f i r s t  t up le  on block b;  
3 /* now we a re  ready t o  re turn  t and increment */ 
o l d t  := t ;  
increment t t o  the  next tuple  of b ;  
RETURN o ld t ;  

Figure 15.3: Iterator functions for the table-scan operator over relation R 

Figure 15.3 sketches the three functions for this iterator. \Ye imagine a 
block pointer b and a tuple pointer t that points to a tuple within block b. We 
assume that both pointers can point "beyond the last block or last tuple of 
a block. respectively. and that it is possible to identify when these conditions 
occur. Xotice that Close in this esample does nothing. In practice. a Close 
function for an iterator might clean up the inteiiial structure of the DBMS in 
various n-ays. It might infor111 the buffer nianager that certain buffers are no 
longer needed, or inform the concurrency manager that the read of a relation 
has completed. 0 

Example 15.2 : Sow, let us consider an example where the iterator does most 
of the n-ork in its Open function. The operator is sort-scan, where n-e read the 
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tuples of a relation R but return them in sorted order. Further, let us suppose 
that R is so large that we need to use a two-phase, multiway merge-sort, as in 
Section 11.4.4. 

We cannot return even the first tuple until we have examined each tuple of 
R. Thus, Open must do at  least the following: 

1. Read all the tuples of R in main-memory-sized chunks, sort them, and 
store them on disk. 

2. Initialize the data structure for the second (merge) phase, and load the 
first block of each sublist into the main-memory structure. 

Then, GetNext can run a competition for the first remaining tuple at the heads 
of all the sublists. If the block from the winning sublist is exhausted, GetNext 
reloads its buffer. 

Example 15.3: Finally, let us consider a simple example of how iterators 
can be combined by calling other iterators. It is not a good example of how 
many iterators can be active simultaneously, but that will have to wait until we 
have considered algorithms for physical operators like selection and join, which 
exploit this capability of iterators better. 

Our operation is the bag union R U S ,  in which we produce first all the 
tuples of R and then all the tuples of S ,  without regard for the existence of 
duplicates. Let R and S denote the iterators that produce relations R and S. 
and thus are the "children" of the union operator in a query plan for R U S. 
Iterators R and S could be table scans applied to stored relations R and S, or 
they could be iterators that call a network of other iterators to con~pute R and 
S. Regardless, all that is important is that n-e have available functions R. Open, 
R.GetNext, and R.Close, and analogous functions for iterator S. Tlie iterator 
functions for the union are sketched in Fig. 15.4. One subtle point is that the 
functions use a shared variable CurRel that is either R or S, depending on 
~ h i c h  relation is being read from currently. 

15.2 One-Pass Algorithms for Database 
Operations 

\Ye shall now begin our study of a very important topic in query optimization: 
ho~v should we execute each of the individual steps - for example. a join or 
selection - of a logical query plan? The choice of an algorithm for each operator 
is an essential part of the process of transforming a logical query plan into a 
physical query plan. While many algorithms for operators have been proposed, 
they largely fall into three classes: 

1. Sorting-based methods. These are covered primarily in Section 15.4. 
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Open0 I 
R.  Open0 ; 
CurRel := R; 

3 

GetNexto C 
IF (CurRel = R) C 

t := R.GetNext() ; 
I F  ( t  o NotFound) /* R is not exhausted */ 

RETURN t ; 
ELSE /* R is exhausted */ 4 

S. Open0 ; 
CurRel := S; 

3 
1 
/* here ,  we must read from S */ 
RETURN S . GetNext 0 ; 
/* no t i ce  t h a t  i f  S is exhausted, S.GetNext0 

w i l l  r e tu rn  NotFound, which i s  t h e  correct  
ac t ion  f o r  our GetNext a s  well */ 

, I  

Figure 15.-1: Building a union iterator from iterators R and S 

2. Hash-based methods. These are mentioned in Section 15..5 and Section 
15.9, aniong other places. 

3. Index-based methods. These are emphasized in Section 15.6. 

In addition. n-e can divide algorithms for operators into three "degrees" of 
difficulty and cost: 

a )  Some methods involve reading the data only once from disk. These are 
the one-pass algorithms. and they are the topic of this section. Lsually. 
they work only ~vherl at least one of the arguments of the operation fits in 
main memory: although there are exceptions, especially for selection and 
projection as discussed in Section 15.2.1. 

b) Some methods work for data that is too large to fit in available main 
memory but not for the largest imaginable data sets. .In esample of such 
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an algorithm is the two-phase, multiway merge sort of Section 11.4.4. 
These two-pass algorithms are characterized by reading data a first time 
from disk, processing it in some way, writing all, or almost all of it to 
disk, and then reading it a second time for further processing during the 
second pass. We meet these algorithms in Sections 15.4 and 15.5. 

c) Some methods work without a limit on the size of the data. These meth- 
ods use three or more passes to do their jobs, and are natural, recursive 
generalizations of the two-pass algorithms; we shall study multipass meth- 
ods in Section 15.8. 

In this section, we shall concentrate on the one-pass methods. However, 
both in this section and subsequently, we shall classify operators into three 
broad groups: 

1. Tuple-at-a-time, unary operations. These operations - selection and pro- 
jection - do not require an entire relation, or even a large part of it, in * 

memory at once. Thus, we can read a block at  a time, use one main- 
memory buffer, and produce our output. 

2. fill-relation, unary  operations. These one-argument operations require 
seeing all or most of the tuples in memory a t  once, so one-pass algorithms 
are limited to relations that are approximately of size hl (the number 
of main-memory buffers available) or less. The operations of this class 
that we consider here are y (the grouping operator) and S (the duplicate- 
elimination operator). 

3. Full-relation, binary operations. .4ll other operations are in this class: 
set and bag versions of union: intersection, difference, joins, and prod- 
ucts. Except for bag union, each of these operations requires at least one 
argument to be limited to size M ,  if we are to use a one-pass algorithm. 

15.2.1 One-Pass Algorithms for Tuple-at-a-Time 
Operations 

The tuple-at-a-time operations a(R) and w(R) have obvious algorithms, regard- 
less of ~ h e t h e r  the relation fits in main memory. We read the blocks of R one 
at a time into an input buffer, perform the operation on each tuple. and move 
the selected tuples or the projected tuples to the output buffer, as suggested 
by Fig. 15.5. Since the output buffer may be an input buffer of some other 
operator. or may be sending data to a user or application, we do not count the 
output buffer as needed space. Thus, we require only that Al 2 1 for the input 
buffer. regardless of B. 

The disk I/O requirement for this process depends only on how the argument 
relation R is provided. If R is initially on disk, then the cost is whatever it 
takes to perform a table-scan or index-scan of R. The cost was discussed in 
Section 15.1.5; typically it is B if R is clustered and T if it is not clustered. 

ONE-PASS ALGORITHMS FOR DrlTAB-4SE OPERATIOlVS 

Output 
buffer buffer 

relation 

Extra Buffers Can Speed Up Operations 

Although tuple-at-a-time operations can get by with only one input buffer 
and one output buffer, as suggested by Fig. 15.5, we can often speed up 
processing if Ke allocate more input buffers. The idea appeared first in 
Section 11.5.1. If R is stored on consecutive blocks within cylinders, then 
we can read an entire cylinder into buffers, while paying for the seek time 
and rotational latency for only one block per cylinder. Similarly, if the 
output of the operation can be stored on full cylinders, we n-aste almost 
no time writing. 

C 

However, we should remind the reader again of the important exception when 
the operation being performed is a selection, and the condition compares a 
constant to an attribute that has an index. In that case, we can use the index 
to retrieve only a subset of the blocks holding R, thus ilnproving performance, 
often markedly. 

15.2.2 One-Pass Algorithms for Unary, fill-Relation 
Operations 

Sow. let us consider the unary operations that apply to relations as a whole, 
rather than to one tuple at  a time: duplicate elimination (6) and grouping (Y). 

Duplicate Elimination 

To eliminate duplicates, we can read each block of R one at  a time, but for each 
tuple we need to make a decision as to whether: 

1. It is the first time we have seen this tuple, in which case we copy it to the 
output, or 
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2. We have seen the tuple before, in which case we must not output this 
tuple. 

To support this decision, we need to keep in memory one copy of every tuple 
we have seen, as suggested in Fig. 15.6. One memory buffer holds one block of 
R's tuples, and the remaining M - 1 buffers can be used to hold a single copy 
of every tuple seen so far. 

Input 
buffer 

M- 1 buffers Output 
buffer 

Figure 15.6: Managing memory for a one-pass duplicate-elimination 

When storing the already-seen tuples, we must be careful about the main- 
memory data structure we use. Naively, we might just list the tuples xve have 
seen. When a new tuple from R is considered, we compare it with all tuples 
seen so far, and if it is not equal to any of these tuples we both copy it to the 
output and add it to the in-memory list of tuples we have seen. 

However, if there are n tuples in main memory, each new tuple takes pro- 
cessor time proportional to n, so the complete operation takes processor time 
proportional to n2. Since n could be very large, this amount of time calls into 
serious question our assumption that only the disk 110 time is significant. Thus, 
it-e need a main-memory structure that allows each of the operations: 

1. Add a new tuple, and 

2. Tell whether a given tuple is already there 

to be done in time that is close to a constant, independent of the number of 
tuples n that we currently have in memory. There are many such structures 
known. For example, we could use a hash table with a large number of buckets. 
or some form of balanced binary search tree.' Each of these structures has some 

'See Aha, A.  V., J. E. Hopcroft, and J. D. Ullman Data Structures and Algorithms, 
.\ddison-IVesley, 1984 for discussions of suitable main-memory structures. In particular, 
hashing takes on average O(n)  time to process n items, and balanced trees take O(n log n) 
time; either is sufficiently close to linear for our purposes. 
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space overhead in addition to the space needed to store the tuples; for instance, 
a main-memory hash table needs a bucket array and space for pointers to link 
the tuples in a bucket. However, the overhead tends to be small compared 
with the space needed to store the tuples. We shall thus make the simplifying 
assumption of no overhead space and concentrate on what is required to store 
the tuples in main memory. 

On this assumption, we may store in the A1 - 1 available buffers of main 
memory as many tuples as mill fit in A l  - 1 blocks of R. If we want one copy 
of each distinct tuple of R to fit in main memory, then B ( ~ ( R ) )  must be no 
larger than ili - 1. Since r e  expect Ji to be much larger than 1, a simpler 
approximation to this rule, and the one we shall generally use, is: 

Note that xe cannot in general compute the size of d(R) without computing 
6(R) itself. Should we underestimate that size, so B(6(R)) is actually larger 
than 41, we shall pay a significant penalty due to thrashing, as the blocks 
holding the distinct tuples of R must be hrougllt into and out of main memory 
frequently. 

Grouping 

A grouping operation yL gives us zero or more grouping attributes and presum- 
ably one or more aggregated attributes. If we create in main memory one entry 
for each g ~ o u p  - that is. for each value of the grouping attributes - then we 
can scan the tuples of R. one block at a time. The entry for a group consists of 
values for the grouping attributes and an accumulated value or values for each 
aggregation. The accumulated value is. except in one case, obvious: 

For a MIN(a) or MAX(a) aggregate, record the minimum or maximum 
value. respectively. of attribute a seen for any tuple in the group so far. 
Change this minimum or maximum, if appropriate. each time a tuple of 
the group is seen. 

For any COUNT aggregation, add one for each tuple of the group that is 
seen. 

For SUM(a). add the value of attribute a to the accumulated sum for its 
group. 

AVG(a)  is the hard case. We must maintain two accumulations: the cou~lt 
of the number of tuples in the group and the sum of the a-values of these 
tuples. Each is conlputed as we ~vould for a COUNT and SUM aggregation. 
respectively. After all tuples of R are seen, we take the quotient of the 
sum and count to obtain the average. 
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When all tuples of R have been read into the input buffer and contributed 
to the aggregation(s) for their group, we can produce the output by writing the 
tuple for each group. Note that until the last tuple is seen, we cannot begin to 
create output for a y operation. Thus, this algorithm does not fit the iterator 
framework very well; the entire grouping has to be done by the Open function 
before the first tuple can be retrieved by GetNext. 

In order that the in-memory processing of each tuple be efficient, Ke need 
to use a main-memory data structure that lets us find the entry for each group. 
given values for the grouping attributes. As discussed above for the 6 operation, 
common main-memory data structures such as hash tables or balanced trees 
will serve well. We should remember, however, that the search key for this 
structure is the grouping attributes only. 

The number of disk I/O7s needed for this one-pass algorithm is B, as must 
be the case for any one-pass algorithm for a unary operator. The number of 
required memory buffers III is not related to B in any simple way, although 
typically IM will be less than B. The problem is that the entries for the groups 
could be longer or shorter than tuples of R, and the number of groups could 
be anything equal to or less than the number of tuples of R. Ho~vever, in most 
cases, group entries will be no longer than R's tuples, and there {\-ill be many 
fewer groups than tuples. 

15.2.3 One-Pass Algorithms for Binary Operations 

Let us now take up the binary operations: union, intersection: difference. prod- 
uct, and join. Since in some cases \\-e must distinguish the set- and bag-versions 
of these operators, we shall subscript them with B or S for "bag" arid "set." 
respectively; e.g., U B  for bag union or -s for set difference. To simplify the 
discussion of joins, ~ v e  shall consider only the natural join. An equijoin can 
be implemented the same way, after attributes are renamed appropriate15 and 
theta-joins can be thought of as a product or equijoin followed by a selection 
for those conditions that cannot be expressed in an equijoin. 

Bag union can be computed by a very simple one-pass algorithm. To coni- 
pute R UB S ,  we copy each tuple of R to the output and then copy every tuple 
of S ,  as we did in Example 15.3. The number of disk 110's is B(R) + B(S) .  as 
it must be for a one-pass algorithm on operands R and S ,  while -11 = 1 suffices 
regardless of how large R and S are. 

Other binary operatiorls require reading the smaller of the operands R and S 
into inain memory and building a suitable data structure so tuples can be both 
inserted quickly and found quickly. as discussed in Section 15.2.2. -1s before. 
a hash table or balanced tree suffices. The structure requires a small amount 
of space (in addition to the space for the tuples themselves), ~vhich tve shall 
neglect. Thus, the approximate requirement for a binary operation on relations 
R and S to be performed in one pass is: 
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Operations on Nonclustered Data 

Remember that all our calculations regarding the number of disk I /07s  r e  
quired for an operation are predicated on the assumption that the operand 
relations are clustered. In the (typically rare) event that an operand R is 
not clustered, then it may take us T(R)  disk I/07s, rather than B(R) disk 
I/O's to read all the tuples of R. Note, however, that any relation that is 
the result of an operator may always be assumed clustered, since we have 
no reason to store a temporary relation in a nonclustered fashion. 

This rule assumes that one buffer will be used to read the blocks of the larger 
relation, while approximately M buffers are needed to house the entire smaller 
relation and its main-memory data structure. 

?Ve shall now give the details of the various operations. In each case, we 
assume R is the larger of the relations, and we house S in main memory. 

Set  Union 

We read S into ill - 1 buffers of main memory and build a search structure 
where the search key is the entire tuple. All these tuples are also copied to the 
output. Ifre then read each block of R into the A4th buffer. one at a time. For 
each tuple t of R. we see if t is in S, and if not, we copy t to the output. If t is 
also in S, we skip t. 

Set Intersection 

Read S into d I  - 1 buffers and build a search structure with full tuples as the 
search key. Read each block of R, and for each tuple t of R, see if t is also in 
S. If so. copy t to the output, and if not, ignore t .  

Set Difference 

Since difference is not commutative. we must distinguish between R -s S and 
S -s R, continuing to assume that R is the larger relation. In each case, read 
S into ,\I - 1 buffers and build a search structure with full tuples as the search 
key. 

To compute R -s S. n-c read each block of R and examine each tuple t on 
that block. If t is in S, then ignore t ;  if it is not in S then copy t to the output. 

To conlpute S -s R. n-e again read the blocks of R and esamine each tuple 
t in turn. If t is in S: then we delete t from the copy of S in main memory, 
while if t is not in S we do nothing. After considering each tuple of R, we copy 
to the output those tuples of S that remain. 
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Bag Intersection 

t i e  read S into M - 1 buffers, but we associate with each distinct tuple a count, 
which initially measures the number of times this tuple occurs in S. llultiple 
copies of a tuple t are not stored individually. Rather we store one copy of t 
and associate with it a count equal to the number of times t occurs. 

This structure could take slightly more space than B(S )  blocks if there were 
few duplicates, although frequently the result is that S is compacted. Thus, we 
shall continue to assume that B(S )  5 A t  is sufficient for a one-pass algorithm 
to work, although the condition is only an approximation. 

Next, we read each block of R, and for each tuple t of R we see whether t 
occurs in S. If not we ignore t ;  it cannot appear in the intersection. However, if 
t appears in S ,  and the count associated with t is still positive, then n-e output 
t and decrement the count by 1. If t appears in S ,  but its count has reached 0, 
then we do not output t; we have already produced as many copies o f t  in the 
output as there were copies in S. 

Bag Difference 

To compute S --B R, we read the tuples of S into main memory, and count the 
number of occurrences of each distinct tuple, as rve did for bag intersection. 
When .cr-e read R, for each tuple t we see whether t occurs in S ,  and if so. we 
decrement its associated count. At the end, we copy to the output each tuple 
in main memory whose count is positive, and the number of times we copy it 
equals that count. 

To compute R - B  S ,  we also read the tuples of S into main memory and 
count the number of occurrences of distinct tuples. We may think of a tuple t 
with a count of c as c reasons not to copy t to the output as we read tuples of 
R. That is, when rye read a tuple t of R, we see if t occurs in S. If not. then we 
copy t to the output. If t does occur in S, then we look at  the current count c 
associated with t. If c = 0, then copy t to the output. If c > 0, do not copy t 
to the output, but decrement c by 1. 

Product 

Read S into Ai - 1 buffers of main memory; no special data structure is needed. 
Then read each block of R, and for each tuple t of R concatenate t with each 
tuple of S in maill memory. Outp~it each concatenated tuple as it is formed. 

This algorithm may take a considerable amount of processor time per tuple 
of R, because each such tuple must be matched with 111 - 1 blocks full of tuples. 
However, the output size is also large. and the time per output tuple is small. 

Natural Join 

In this and other join algorithms. let us take the convention that R(-Y. 1') is 
being joined with S(Y, Z), where Y represents all the attributes that R and S 
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What if i14 is not Known? 

While we present algorithms as if X i ,  the number of available memory 
blocks, were fixed and known in advance, remember that the available M 
is often unknown, except within some obvious limits like the total memory 
of the machine. Thus, a query optimizer, when choosing between a one- 
pass and a two-pass algorithm, might estimate M and make the choice 
based on this estimate. If the optimizer is wrong, the penalty is either 
thrashing of buffers betn-een disk and memory (if the guess of M was too 
high), or unnecessary passes if 111 was underestimated. 

There are also some algorithms that degrade gracefully when there 
is less memory than expected. For example, we can behave like a one- 
pass algorithm, unless we run out of space, and then start behaving like 
a two-pass algorithm. Sections 15.5.6 and 15.7.3 discuss some of these 
approaches. 

- pp - 

have in common, X is all attributes of R that are not in the schema of S ,  and 
Z is all attributes of S that are not in the schema of R. We continue to assume 
that S is the smaller relation. To compute the natural join, do the following: 

1. Read all the tuples of S and form them into a main-memory search struc- 
ture 11-ith the attributes of I; as the search key. As usual, a hash table or 
balanced tree are good examples of such structures. Cse ,I1 - 1 blocks of 
memory for this purpose. 

2. Read each block of R into the one remaining main-memory buffer. For 
each tuple t of R,  find the tuples of S that agree with t on all attributes 
of 1.. using the search structure. For each matching tuple of S,  form a 
tuple by joining it with t ,  and move the resulting tuple to the output. 

Like all the one-pass, binary algorithms, this one takes B(R) + B(S)  disk 1 / 0 3  , 

to read the operands. It works as long as B(S) 5 ,\I - 1, or approximately, 
B(S) 5 21. Also as for the other algorithms lye have studied. the space required 
by the main-memory search structure is not counted but may lead to a small. 
additional memory requircn~e~lt . 

\ le  shall not discuss joins other than the natural join. Remember that an 
equijoin is executed in essentially the same way as a natural join, but 1-e must 
account for the fact that "equal" attributes from the two relations may have 
different names. X theta-join that is not an equijoin can be replaced by an 
equijoin or product follot\-ed by a selection. 
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15.2.4 Exercises for Section 15.2 

Exercise 15.2.1 : For each of the operations below, write an iterator that uses 
the algorithm described in this section. 

* a) Projection. 

* b) Distinct (6). 

c) Grouping ( - f L ) .  

* d) Set union. 

e) Set intersection. 

f) Set difference. 

g) Bag intersection. 

h) Bag difference. 

i) Product. 

j) Natural join. 

Exercise 15.2.2 : For each of the operators in Exercise 15.2.1, tell whether the 
operator is blocking, by which we mean that the first output cannot be produced 
until all the input has been read. Put another way, a blocking operator is one 
whose only possible iterators have all the important work done by Open. 

Exercise 15.2.3 : Figure 15.9 summarizes the memory and disk-1/0 require- 
ments of the algorithms of this section and the next. However, it assumes all 
arguments are clustered. How would the entries change if one or both arguments 
were not clustered? 

! Exercise 15.2.4: Give one-pass algorithms for each of the following join-like 
operators: 

* a) R D< S, assuming R fits in memory (see Exercise 5.2.10 for a definition 
of the semijoin). 

* b) R D< S, assuming S fits in memory. 

c) R F? S. assuming R fits in memory (see Exercise 5.2.11 for a definition 
of the antisemijoin). 

d) R S, assuming S fits in memory. 

* e )  I2 prbL S, assuming R fits in memory (see Section 5.4.7 for definitions 
involving outerjoins) . 

f) R S, assuming S fits in memory. 
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g) R AR S, assuming R fits in memory. 

h) R A ,  S: assuming S fits in memory. 

i) R S ,  assuming R fits in memory. 

15.3 Nested-Loop Joins 

Before proceeding to the more complex algorithms in the next sections, tve shall 
tarn our attention to a family of algorithms for the join operator called "nested- 
loop" joins. These algorithms are, in a sense, "one-and-a-half" passes, since in 
each variation one of the two arguments has its tuples read only once, while 
the other argument will be read repeatedly. Nested-loop joins can be used for 
relations of any size; it is not necessary that one relation fit in main memory. 

15.3.1 Tuple-Based Nested-Loop Join 

The simplest variation of nested-loop join has loops that range over individual 
tuples of the relations involved. In this algorithm, which we call tuple-based 
nested-loop jozn, we compute the join R(,Y,Y) w S(Y, 2) as follo\vs: 

FOR each tuple s i n  S DO 
FOR each tuple r i n  R DO 

IF r and s j o in  t o  make a tuple t THEN 
output t ; 

If we are careless about how n-e buffer the blocks of relations R and S, then 
this algorithm could require as many as T(R)T(S) disk 110's. Ho~vever. there 
are many situations tvhere this algoritllm can be modified to ha\-e much lon-er 
cost. One case is when we can use an indcx on tlie join attribute or attributes 
of R to find the tuples of R that match a given tuple of S ,  without having to 
read the entire relation R. \Ye discuss index-based joins in Sectiotl 15.6.3. -4 
s~cond improvement looks much more carefully at the way tuples of R and S 
are divided among blocks, and uses as much of the memory as it can to reduce 
the number of disk I/O's as we go through the inner loop. We shall consider 
this block-based version of nested-loop join in Section 15.3.3. 

15.3.2 An Iterator for Tuple-Based Nested-Loop Join 

One advantage of a nested-loop join is that it fits t-ell into an iterator frame- 
work. and thus. as xve shall see in Section 16.7.3. allotvs us to avoid storing 
i~ltcrlnediate relations on disk in some situations. The iterator for R w S is 
easy to build from the iterators for R and S,  ~vliich support functions R .  Openo. 
and so on, as in Section 15.1.6. The code for the three iterator functions for 
nested-loop join is in Fig. 15.7. It makes the assumption that neither relation 
R nor S is empty. 
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Open0 C 
R.Open() 
S . Open () 
s := S.G 

1 

GetNextO { 
REPEAT C 

r := R.GetNext(); 
IF ( r  = NotFound) C /* R is exhausted f o r  

the  current s */ 
R.Close(); 
s := S.GetNext(); 
IF ( s  = NotFound) RETURN NotFound; 

/* both R and S a re  exhausted */ 
R.Open0 ; 
r := R.GetNext(); 

1 
1 
UNTIL(r and s join) ; 
RETURN the  join of r and s; 

1 

Close0 ( 
R. Close () ; 
S. Close () ; 

1 

Figure 15.7: Iterator functions for tuple-based nested-loop join of R and S 

15.3.3 A Block-Based Nested-Loop Join Algorithm 
1% can improve on the tuple-based nested-loop join of Section 15.3.1 if we 
compute R w S by: 

1. Organizing access to both argument relations by blocks, and I 
2. Using as much main memory as we can to store tuples belonging to the 

relation S! the relation of the outer loop. 

Point (1) makes sure that when xve run through the tuples of R in the inner 
loop, we use as few disk I/07s as possible to read R. Point (2) enables us to join 
each tuple of R that we read with not just one tuple of S ,  but with as many 
tuples of S as will fit in memory. 

As in Section 15.2.3, let us assume B(S)  5 B(R), but now let us also 
assume that B(S) > M ;  i.e., neither relation fits entirely in main memory. ITTe 
repeatedly read A4- 1 blocks of S into main-memory buffers. A search structure, 
with search key equal to the common attributes of R and S, is created for the 
tuples of S that are in main memory. Then we go through all the blocks of R, 
reading each one in turn into the last block of memory. Once there. we compare 
all the tuples of R's block with all the tuples in all the blocks of S that are 
currently in main memory. For those that join, we output the joined tuple. 
The nested-loop structure of this algorithm can be seen when we describe the 
algorithm more formally, in Fig. 15.8. 

FOR each chunk of M-1 blocks of S DO BEGIN 
read these  blocks in to  main-memory buffers ;  
organize t h e i r  t up les  in to  a search s t ruc tu re  whose 

search key is t h e  common a t t r i b u t e s  of R and S; 
FOR each block b of R DO BEGIN 

read b in to  main memory; 
FOR each tup le  t of b DO BEGIN 

f ind  the  tuples  of S i n  main memory t h a t  
jo in  with t ;  

output the  jo in  of t with each of these  tuples ;  
END ; 

END ; 
END ; 

Figure 15.8: The nested-loop join algorithm 

The program of Fig. 15.8 appears to have three nested loops. However, there 
really are only two loops if ~ve  look at  the code at the right level of abstraction. 
The first, or outer loop, runs through the tuples of S. The other two loops 
run through the tuples of R. However, xi-e expressed the process as two loops 
to emphasize that the order in n-hich n-e visit the tuples of R is not arbitrary. 
Rather. n-e need to look at  these tuples a block at  a time (the role of the second 
loop), and ~vithin one block. we look at  all the tuples of that block before moving 
on to the next block (the role of the third loop). 

Example 15.4: Let B(R) = 1000. B ( S )  = 500, and ,If = 101. 11-e shall use 
100 blocks of memory to buffer S in 100-block chunks, so the outer loop of 
Fig. 15.8 iterates five times. .It each iteration, ~ v e  do 100 disk I/O's to read the 
chunk of S. and ~i-e must read R entirely in the second loop, using 1000 disk 
I/O's. Thus, the total number of disk I/O's is 5500. 

Sotice that if n-e rel-ersed the roles of R and S ,  the algorithm ~vould use 
slightly more disk I/O's. 1T'e would iterate 10 times through the outer loop and 
do 600 disk I/O% at each iteration, for a total of 6000. In general. there is a 
slight admntage to using the smaller relation in the outer loop. 
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The algorithm of Fig. 15.8 is sometimes called "nested-block join." We shall 
continue to call it simply nested-loop join, since it is the variant of the nested- 
loop idea most commonly implemented in practice. If necessary to distinguish 
it from the tuple-based nested-loop join of Section 15.3.1, we can call Fig. 15.8 
"block-based nested-loop join." 

15.3.4 Analysis of Nested-Loop Join 

The analysis of Example 15.4 can be repeated for any B(R), B(S), and Ai. 
Assuming S is the smaller relation, the number of chunks, or iterations of the 
outer loop is B(S)/(M - 1). At each iteration, we read hf - 1 blocks of S and 
B(R) blocks of R. The number of disk I/O's is thus 

Assuming all of M,  B(S), and B(R) are large, but M is the smallest of 
these, an approximation to the above formula is B(S)B(R)/M. That is, the 
cost is proportional to the product of the sizes of the two relations, divided by 
the amount of available main memory. We can do much better than a nested- 
loop join when both relations are large. But for reasonably small examples 
such as Example 15.4, the cost of the nested-loop join is not much greater than 
the cost of a one-pass join, which is 1500 disk 110's for this example. In fact. 
if B(S) 5 lZI - 1, the nested-loop join becomes identical to the one-pass join 
algorithm of Section 15.2.3. 

Although nested-loop join is generally not the most efficient join algorithm 
possible, we should note that in some early relational DBhlS's, it was the only 
method available. Even today, it is needed as a subroutine in more efficient 
join algorithms in certain situations, such as when large numbers of tuples from 
each relation share a common value for the join attribute(s). For an example 
where nested-loop join is essential, see Section 15.4.5. 

15.3.5 Summary of Algorithms so Far 

The main-memory and disk 110 requirements for the algorithms we have dis- 
cussed in Sections 15.2 and 15.3 are shown in Fig. 15.9. The memory require- 
ments for y and d are actually more complex than shown, and hi = 3 is only 
a loose approximation. For y, Ai grow with the number of groups, and for d. 
M grows with the number of distinct tuples. 

15.3.6 Exercises for Section 15.3 

Exercise 15.3.1 : Give the three iterator functions for the block-based version 
of nested-loop join. 
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Figure 15.9: Main memory and disk I/O requirements for one-pass and nested- 
loop algorithms 

* Exercise 15.3.2 : Suppose B(R) = B(S) = 10,000, and ki = 1000. Calculate 
the disk I/O cost of a nested-loop join. 

Section 
15.2.1 
15.2.2 
15.2.3 
15.3.3 

Exercise 15.3.3 : For the relations of Exercise 15.3.2, what value of Af would 
we need to compute R w S using the nested-loop algorithm with no more than 
a) 100,000 ! b) 25,000 ! c) 15,000 disk I/07s? 

Disk I/O 
B 
B 

B(R) + B(S) 
B(R)B(S)/Al 

Operators 

u, T 

7, 6 
u, n, -, x ,  w 
w 

! Exercise 15.3.4 : If R and S are both unclustered, it seems that nested-loop 
join would require about T(R)T(S)/i%l disk I/O3s. 

Approximate 
h i  required 

1 
B 

r n i n ( ~ ( ~ ) ,  B(s)) 
any AjI 2 2 

a)  How can you do significantly better than this cost? 

b) If only one of R and S is unclustered, horn* would yo11 perform a nested- 
loop join? Consider both the cases that the larger is unclustered and that 
the smaller is unclustered. 

! Exercise 15.3.5 : The iterator of Fig. 15.7 will not work properly if either R 
or S is empty. Rem-rite the functions so they will 15-ork. even if one or both 
relations are empty. 

15.4 Two-Pass Algorithms Based on Sorting 

\Ire shall now begin the study of multipass algorithms for performing relational- 
algebra operations on relations that are larger than what the one-pass algo- 
rithms of Section 15.2 can handle. We concentrate on two-pass algorithms, 
where data from the operand relations is read into main memory, processed in 
some ~vay. n-ritten out to disk again. and then reread from disk to complete the 
operation. \\e can naturally estend this idea to any number of passes, where 
the data is read many tinlcs into main mrnloly. Howe~er. n-e concentrate on 
two-pass algorithms because: 

a) TKO passes are usually enough. even for very large relations. 

b) Generalizing to more than two passes is not hard; we discuss these exten- 
sions in Section 13.8. 
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In this section, we consider sorting as a tool for implementing relational 
operations. The basic idea is as follows. If we have a large relation R, where 
B(R) is larger than M ,  the number of memory buffers we have available, then 
we can repeatedly: 

1. Read h1 blocks of R into main memory. 

2. Sort these Y blocks in main memory, using an efficient, main-memory 
sorting algorithm. Such an algorithm will take an amount of processor 
time that is just slightly more than linear in the number of tuples in main 
memory, so we expect that the time to sort will not exceed the disk 1/0 
time for step (1). 

3. Write the sorted list into M blocks of disk. We shall refer to the contents 
of these blocks as one of the sorted sublists of R. 

All the algorithms we shall discuss then use a second pars to ''merge" the sorted 
sublists in some way to execute the desired operator. 

15.4.1 Duplicate Elimination Using Sorting 

To perform the 6(R) operat,ion in two passes, we sort the tuples of R in sublists 
as described above. We then use the available main memory to hold one block 
from each sorted sublist, as we did for the multiway merge sort of Section 11.4.4. 
However, instead of sorting the tuples from these sublists, we repeatedly copy 
one to the output and ignore dl tuples identical to it. The process is suggested 
by Fig. 15.10. 

M buffers Same M buffers 

Figure 15.10: A two-pass algorithm for eliminating duplicates 

More precisely, we look at the first unconsidered tuple from each block, and 
we find among them the first in sorted order, say t. \Ye make one copy of t in 
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the output, and we remove from the fronts of the various input blocks all copies 
of t. If a block is exhausted, we bring into its buffer the next block from the 
same sublist, and if there are t7s on that block we remove them as well. 

Example 15.5 : Suppose for simplicity that tuples are integers, and only two 
tuples fit on a block. Also, hf = 3; i.e., t.here are three blocks in main memory. 
The relation R consists of 17 tuples: 

\Ve read the first six tuples illto the three blocks of main memory, sort them, 
and write them out as the sublist R1. Similarly, tuples seven through twelve 
are then read in, sorted and written as the sublist Rz. The last five tuples are 
likewise sorted and become the sublist R3. 

To start the second pass, we can bring into main memory the first block 
(two tuples) from each of the three sublists. The situation is now: 

Sublist In memory Waiting on disk 
R1: 1 2  2 2 , 2 5  

Looking at  the first tuples of the three blocks in main memory, we find that 
I is the first tuple in sorted order. \ITe therefore make one copy of 1 on the 
output, and Xve remove all 1's from the blocks in memory. When we do so, the 
block from R3 is exharlstcd. so we bring in the nest block, wit11 truples 2 and 3: 
from that sublist. IIad there been more 1's on this block, we would eliminate 
them. The situation is now: 

Sublist In memory ivaiting on disk 
R1: 2 2 2 ,  2 5  

Sow. 2 is the least tuple at the fronts of the list,s, and in fact it happells 
to appear on each list. We write one copy of 2 to the output and eliminate 
2's from the in-memory blocks. The block from R1 is exhausted and the next 
block from that sublist is brought to memory. That block has 2's, which are 
eliminated. again exhausting the block from Rl.  The third block from that 
sublist is brought to nlenlory. and its 2 is eliminated. The present situation is: 

Sublist In memory U'aiting on disk 
R1: J 

Sol\-. 3 is selected as the least tuple, one copy of 3 is written to the output, 
and the blocks from Rr and Rg are exhausted and replaced from disk, leaving: 
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Sublist In memory Waiting on disk 
R1 : 5 

To complete the example, 4 is next selected, consuming most of list R2. At the 
final step, each list happens to consist of a single 5, which is output once and 
eliminated from the input buffers. 

The number of disk I/07s performed by this algorithm, as always ignoring 
the handling of the output, is: 

1. B ( R )  to read each block of R when creating the sorted sublists. 

2. B ( R )  to write each of the sorted sublists to disk. 

3. B ( R )  to read each block from the sublists at the appropriate time. 

Thus, the total cost of this algorithm is 3B(R) ,  compared with B(R) for the 
single-pass algorithm of Section 15.2.2. 

On the other hand, we can handle much larger files using the two-pass 
algorithm than with the one-pass algorithm. Assuming M blocks of memory 
are available, we create sorted sublists of M blocks each. For the second pass, 
we need one block from each sublist in main memory, so there can be no more 
than A 1  sublists, each A 1  blocks long. Thus, B 5 M2 is required for the hi-o- 
pass algorithm to be feasible, compared with B 5 A f  for the one-pass algorithm. 
Put another way, to compute b (R)  with the two-pass algorithm requires only 

blocks of main memory, rather than B ( R )  blocks. 

15.4.2 Grouping and Aggregation Using Sorting 
The two-pass algorithm for ~ L ( R )  is quite similar to the algorithm of Sec- 
tion 15.4.1 for d(R).  i r e  summarize it as follows: 

1. Read the tuples of R into memory, M blocks at  a time. Sort each -21 
blocks, using the grouping attributes of L as the sort key. Write each 
sorted sublist to disk. 

2. Use one main-memory buffer for each sublist, and initially load the first 
block of each sublist into its buffer. 

3. Repeatedly find the least value of the sort key (grouping attributes) 
present among the first available tuples in the buffers. This value. r.  
becomes the nest group, for which we: 

(a) Prepare to compute all the aggregates on list L for this group. -1s 
in Section 15.2.2, use a count and sum in place of an average. 
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(b) Examine each of the tuples with sort key v, and accumulate the 
needed aggregates. 

(c) If a buffer becomes empty, replace it with the next block from the 
same sublist. 

When there are no more tuples with sort key v available, output a tuple 
consisting of the grouping attributes of L and t.he associated values of the 
aggregations we have computed for the group. 

As for the 6 algorithm, this t\o-pass algorithm for y takes 3B(R) disk 1/0's, 
and will work as long as B ( R )  < 11.1'. 

15.4.3 A Sort-Based Union Algorithm 

\%'hen bag-union is wanted, the one-pass algorithm of Section 15.2.3, where we 
simply copy both relations, works regardless of the size of the arguments, so 
there is no need to consider a two-pass algorithm for UB. However, the one- 
pass algorithm for Us only works when at least one relation is smaller than 
the available main memory, so we should consider a two-pass algorithm for 
set union. The methodology we present works for the set and bag versions of 
intersection and difference as well, as we shall see in Section 15.4.4. To compute 
R Us S ,  we do the folloxi-ing: 

1. Repeatedly bring 11 blocks of R into main memory, sort their tuples, and 
write tlie resulting sorted sublist back to disk. 

2. Do the same for S, to create sorted sublists for relation S. 

3. Use one main-memory buffer for each sublist of R and S .  Initialize each 
with the first block frorn the corresponding sublist. 

4. Repeatedly find the first remaining tuple t among all the buffers. Copy 
t to the output. and remove from the buffers all copies of t (if R and S 
are sets there should be at most ttvo copies). If a buffer becomes empty, 
reload it with the next block from its sublist. 

IVe observe that each tuple of R and S is read twice into main memory. 
once \r-hen tile subiists are being created. and the second time as part of one of 
the sublists. The tuple is also written to disk once, as part of a newly formed 
sublist. Thus. the cost in disk 110's is 3(B(R) i- B ( S ) ) .  

The algorithm XI-orks as long as the total number of sublists among the two 
relations does not exceed .If. because we need one buffer for each sublist. Since 
each sublist is *\I blocks long, that says the sizes of the two relations must not 
exceed Al':  that is. B ( R )  + B ( S )  5 ill'. 
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15.4.4 Sort-Based Intersection and Difference 

Whether the set version or the bag version is wanted, the algorithms are es- 
sentially the same as that of Section 15.4.3, except that the way we handle the 
copies of a tuple t at  the fronts of the sorted sublists differs. In general we 
create the sorted sublists of M blocks each for both argument relations R and 
S. We use one main-memory buffer for each sublist, initially loaded with the 
first block of the sublist. 

We then repeatedly consider the least tuple t among the remaining tuples 
in all the buffers. We count the number of tuples of R that are identical to t 
and we also count the number of tuples of S that are identical to t.  Doing so 
requires that we reload buffers from any sublists whose currently buffered block 
is exhausted. The following indicates how we determine whether t is output, 
and if so, how many times: 

For set intersection, output t if it appears in both R and S. 

For bag intersection, output t the minimum of the number of times it 
appears in R and in S. Note that t is not output if either of these counts 
is 0; that is, if t is missing from one or both of the relations. 

For set difference, R -s S, output t if and only if it appears in R but not 
in S. 

For bag difference, R -B S, output t the number of times it appears in R 
minus the number of times it appears in S. Of course, if t appears in S 
at least as many times as it appears in R, then do not output t at  all. 

Example 15.6: Let us make the same assumptions as in Example 15.5: JI = 
3, tuples are integers, and two tuples fit in a block. The data will be almost 
the same as in that example as well. However, here we need two arguments. so 
we shall assume that R has 12 tuples and S has 5 tuples. Since main menlory 
can fit six tuples, in the first pass we get two sublists from R, which we shall 
call Rl and Rg, and only one sorted sublist from S ,  which we refer to as Sl.' 
After creating the sorted sublists (from unsorted relations similar to the data 
from Example 15.5), the situation is: 

Sublist In memory Waiting on disk 
R1: 1 2  2 2 , 2 5  
Rz: 2 3  4 4 4 5  
S1 : 1 1  23 ,  5 

Suppose we want to take the bag difference R -B S. We find that the least 
tuple among the main-memory buffers is 1. so we count the number of 1's among 
the sublists of R and among the sublists of S. We find that 1 appears once in R 

2 ~ i n c e  S fits in main memory, we could actually use the one-pass algorithms of Sec- 
tion 15.2.3, but u.e shall use the two-pass approach for illustration. 
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and twice in S. Since 1 does not appear more times in R than in S ,  we do not 
output any copies of tuple 1. Since the first block of S1 was exhausted counting 
l's, we loaded the next block of S1, leaving the following situation: 

Sublist In memory Waiting on disk 
R1: 2 2 2 , 2 5  

We now find that 2 is the least remaining tuple, so we count the number 
of its occurrences in R, which is f i ~ e  occurrences, and we count the number of 
its occurrences in S, which is one. We thus output tuple 2 four times. As we 
perform the counts, we must reload the buffer for R1 twice, which leaves: 

Sublist In memory Waiting on disk 

Next, we consider tuple 3, and find it appears once in R and once in S. \Ve 
therefore do not output 3 and remove its copies from the buffers, leaving: 

Sublist In memory IVaiting on disk 

Tuple 4 occurs three times in R and not at  all in S, so we output three 
copies of 4. Last, 3 appears twice in R and once in S ,  so we output 5 once. The 
complete output is 2, 2, 2; 2, 4, 4, 4. 5. 

The analysis of this family of algorithms is the same as for the set-union 
algorithm described in Section 15.4.3: 

3(B(R) + B(S)) disk 110's. 

Approximately B(R) + B(S) < A12 for the algorithm to work. 

15.4.5 A Simple Sort-Based Join Algorithm 

There are several ~i-ays that sorting can be used to join large relations. Before 
examining the join algorithms. let us observe one problem that can occur when 
we compute a join but was not an issue for the binary operations considered 
so far. When taking a join, the number of tuples from the two relations that 
share a common i-alue of the join attribute(s), and therefore need to be in main 
memory simultaneousl~: can exceed what fits in memory. The extreme example 
is when there is only one value of the join attribute(s), and ever)? tuple of one 
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relation joins with every tuple of the other relation. In this situation, there is 
really no choice but to take a nested-loop join of the two sets of tuples with a 
common value in the join-attribute(s). 

To avoid facing this situation, are can try to reduce main-memory use for 
other aspects of the algorithm, and thus make available a large number of buffers 
to hold the tuples with a given join-attribute value. In this section we shall dis- 
cuss the algorithm that makes the greatest possible number of buffers available 
for joining tuples with a common value. In Section 15.4.7 we consider another 
sort-based algorithm that uses fewer disk I/O's, but can present problems when 
there are large numbers of tuples with a common join-attribute value. 

Given relations R(X, Y) and S(Y, 2) to join, and given A l  blocks of main 
memory for buffers, we do the following: 

1. Sort R, using a two-phase, multiway merge sort, with Y as the sort key. 

2. Sort S similarly. 

3. Merge the sorted R and S. We generally use only two buffers, one for the 
current block of R and the other for the current block of S. The following 
steps are done repeatedly: 

(a) Find the least value y of the join attributes Y that is currently at 
the front of the blocks for R and S. 

(b) If y does not appear at  the front of the other relation, then remove 
the tuple(s) with sort key y. 

(c) Otherwise, identify all the tuples from both relations having sort key 
y. If necessary, read blocks from the sorted R and/or S. until we are 
sure there are no more y's in either relation. As many as A f  buffers 
are available for this purpose. 

(d) Output all the tuples that can be formed by joining tuples from R 
and S with a common Y-value y. 

(e) If either relation has no more unconsidered tuples i11 main memory. 
reload the buffer for that relation. 

Example 15.7: Let us consider the relations R and S from Example 15.4. 
Recall these relations occupy 1000 and 500 blocks, respectively, and there are 
d l  = 101 main-memory buffers. \\'hen ne use two-phase, multiway merge sort 
on a relation. ~ve do four disk I/O's per block, two in each of the tx-o phases. 
Thus. we use -i(B(R) + B(S) )  disk I/O's to sort R and S, or 6000 disk 110's. 

When 1%-e merge the sorted R and S to find the joined tuples, 1-e read each 
block of R and S a fifth time, using another 1500 disk I/O's. In this merge we 
generally need only two of the 101 blocks of memory. However, if necessary, we 
could use all 101 blocks to hold the tuples of R and S that share a common 
Y-value V. Thus, it is sufficient that for no y do the tuples of R and S that 
have k7-l-a.alue y together occupy more than 101 blocks. 
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Notice that the total number of disk 110's performed by this algorithm 
is 7500, compared with 5500 for nested-loop join in Example 15.4. However, 
nested-loop join is inherently a quadratic algorithm, taking time proportional 
to B(R)B(S), while sort-join has linear 1 / 0  cost, taking time proportional to 
B(R) + B(S). It is only the constant factors and the small size of the example 
(each relation is only 5 or 10 times larger than a relation that fits entirely 
in the allotted buffers) that make nested-loop join preferable. Moreover, we 
shall see in Section 15.4.7 that it is usually possible to perforni a sort-join in 
3(B(R) + B(S))  disk I/07s, which would be 4500 in this example and which is 
below the cost of nested-loop join. 

If there is a Y-value y for which the number of tuples with this Y-value does 
not fit in M buffers, then we need to modify the above algorithm. 

1. If the tuples from one of the relations, say R, that have Y-value y fit in 
M- 1 buffers, then load these blocks of R into buffers, and read the blocks 
of S that hold tuples with y, one a t  a time, into the remaining buffer. In 
effect, we do the one-pass join of Section 15.2.3 on only the tuples with 
Y-value y . 

2. If neither relation has sufficiently few tuples with Y-value y that they all 
fit in M - 1 buffers, then use the hf buffers to perform a nested-loop join 
on the tuples with 1'-value y from both relations. 

Note that in either case, it may be necessary to read blocks from one relation 
and then ignore them, having to read them later. For example, in case (I), we 
might first read the blocks of S that have tuples with Y-value y and find that 
there are too many to fit in & I -  1 buffers. However, if 1-e then read the tuples 
of R with that Y-value we find that they do fit in M - 1 buffers. 

15.4.6 Analysis of Simple Sort-Join 

As we noted in Example 15.7, our algorithm performs five disk 110's for every 
block of the argument relation. The exception would be if there were so many 
tuples with a common Y-value that we needed to do one of the specialized 
joins on these tuples. In that case, the number of extra disk 110's depends 
on whether one or both relations have so many tuples with a common Y-value 
that they require more than A i  - 1 buffers by themselves. We shall not go into 
all the cases here; the exercises contain some examples to work out. 

We also need to consider how big 31 needs to be in order for the simple sort- 
join to work. The primary constraint is that we need to be able to perform the 
two-phase. multinay merge sorts on R and S. As we observed in Section 11.4.4. 
we need B(R) _< Af2  and B(S )  < ,If2 to perform these sorts. Once done. we 
shall not run out of buffers, although as discussed before, we may have to 
deviate from the simple merge if the tuples with a common Y-value cannot fit 
in 121 buffers. In summary, assuming no such deviations are necessary: 
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The simple sort-join uses 5(B(R) + B(S)) disk 110's. 

It requires B(R) 5 M2 and B(S) <_ hf2 to work. 

15.4.7 A More Efficient Sort-Based Join 
If we do not have to worry about very large numbers of tuples with a com- 
mon value for the join attribute(s), then we can save two disk 110's per block 
by combining the second phase of the sorts with the join itself. We call this 
algorithm sort-join; other names by which it is known include "merge-join" 
and "sort-merge-join." To compute R(X, Y) w S(Y, Z) using A f  main-memory 
buffers: 

1. Create sorted sublists of size A4, using Y as the sort key, for both R and 
S. 

2. Bring t,he first block of each sublist into a buffer; we assume there are no 
more than M sublists in all. 

3. Repeatedly find the least Y-value y among the first available tuples of all 
the sublists. Identify all the tuples of both relations that have 1'-value 
y, perhaps using some of the M available buffers to hold them, if there 
are fewer than M sublists. Output the join of all tuples from R with all 
tuples from S that share this common Y-value. If the buffer for one of 
the sublists is exhausted, then replenish it from disk. 

Example 15.8 : Let us again consider the problem of Example 15.4: joining 
relations R and S of sizes 1000 and 500 blocks, respecti~ely, using 101 buffers. 
We divide R into 10 sublists and S into 5 sublists, each of length 100, and 
sort them.3 We then use 15 buffers to hold the current blocks of each of the 
sublists. If we face a situation in which many tuples have a fixed Y-value, we 
can use the remaining 86 buffers to store these tuples, but if there are more 
tuples than that we must use a special algorithm such as was discussed at  the 
end of Section 15.1.5. 

Assuming that we do not need to modifv the algorithm for large groups of 
tuples with the same Y-value, then we perform three disk I/O1s per block of 
data. Two of those are to create the sorted sublists. Then, every block of every 
sorted sublist is read into main memory one more time in the multimay nlerging 
process. Thus. the total number of disk 110's is 3500. 

This sort-join algorithm is more efficicnt than the algorithm of Section 15.4.5 
when it can be used. -1s we observed in Esan~ple 13.8, the nu~rlbcr of disk I/O's 
is 3(B(R) + B(S)). We can perform the algorithm on data that is almost as 
large as that of the previous algorithm. The sizes of the sorted sublists are 

3Technically, we could have arranged for the sublists to have length 101 blocks each, with 
the last sublist of R having 91 blocks and the last sublist of S having 06 blocks, but the costs 
~vould turn out exactly the same. 

15.4. TIVO-P-ASS ALGORITHiCfS BASED ON SORTING 747 

Jf blocks, and there can be at  most M of them among the two lists. Thus, 
B(R) + B(S) 5 n i 2  is sufficient. 

We might ~vonder whether we can avoid the trouble that arises when there 
are many tuples with a common Y-value. Some important considerations are: 

1. Sometimes we can be sure the problem will not arise. For example, if Y 
is a key for R, then a given Y-value y can appear only once among all the 
blocks of the sublists for R. When it is y's turn, lve can leave the tuple 
from R in place and join it with all the tuples of S that match. If blocks of 
S's sublists are exhausted during this process, they can have their buffers 
reloaded with the next block, and there is never any need for additional 
space, no matter how many tuples of S have Y-value y. Of course, if Y 
is a key for S rather than R, the same argument applies with R and S 
switched. 

2. If B(R) + B(S)  is much less than M2, we shall have many unused buffers 
for storing tuples with a common Y-value, as we suggested in Exam- 
ple 15.8. 

3. If all else fails, we can use a nested-loop join on just the tuples with a 
common Y-value, using extra disk 110's but getting the job done correctly. 
This option was discussed in Section 15.4.5. 

15.4.8 Summary of Sort-Based Algorithms 
In Fig. 15.11 is a table of the analysis of the algorithms we have discussed in 
Section 1.5.4. As discussed in Sections 1.5.4.5 and 15.3.7, modifications to the 
time and memory requirements are necessary if we join two relations that hare 
many tuples with the same value in the join attribute(s). 

Figure 15.11: lIain menlory and disk 110 requirements for sort-based algo- 
rit hms 

Section Disk I/O Operators 
-Approximate 
nr required 
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15.4.9 Exercises for Section 15.4 t c) There are 10 Y-values, each equally likely in each relation. 

Exercise 15.4.1: Using the assumptions of Example 15.5 (two tuples per ! Exercise 15.4.6 : Repeat Exercise 15.4.5 for the more efficient sort-join of 
block, etc.), Section 15.4.7. 

a) Show the behavior of the two-pass duplicate-elimination algorithm on the Exercise 15.4.7: How much memory do n-e need to use a two-pass, sort-based 
sequence of thirty one-component tuples in which the sequence 0, 1, 2, 3, algorithm for relations of 10,000 blocks each, if the operation is: 
4 repeats six times. 

* a) 6. 
b) Show the behavior of the two-pass grouping algorithm computing the 

relation ~ ~ , ~ v ~ ( b ) ( R ) .  Relation R(a, b) consists of the thirty tuples to b) 7. 
through t 2 9 ,  and the tuple ti has i modulo 5 as its grouping component 
Q, and i as its second component b. c) A binary operation such as join or union. 

Exercise 15.4.2 : For each of the operations below, write an iterator that uses 
the algorithm described in this section. 

* a) Distinct (6). 

b) Grouping (7~) .  

* c) Set intersection. 

d) Bag difference. 

e) Xatural join. 

Exercise 15.4.3: If B(R) = B ( S )  = 10,000 and hl = 1000, what are the disk 
110 requirements of: 

a) Set union. 

* b) Simple sort-join. 

c) The more efficient sort-join of Section 15.4.7. 

! Exercise 15.4.4: Suppose that the second pass of a11 algorithm described 
in this section does not need all M buffers, because there are fewer than SI 
sublists. How might we save disk 1/O7s by using the extra buffers? 

! Exercise 15.4.5 : In Example 15.7 we discussed the join of two relations R and 
S, with 1000 and 500 blocks, respectively, and AI = 101. However, 1-e pointed 
out that there would be additional disk 110's if there were so many tuples with 
a given value that neither relation's tuples could fit in main memory. Calculate 
the total number of disk 110's needed if: 

* a) There are only two Y-values, each appearing in half the tuples of R and 
half the tuples of S (recall Y is the join attribute or attributes). 

b) There are five I--values, each equally likely in each relation. 

Exercise 15.4.8: Describe a two-pass, sort-based algorithm for each of the 
join-like operators of Exercise 13.2 4. 

! Exercise 15.4.9 : Suppose records could be larger than blocks, i.e., we could 
have spanned records. How ~vould the memory requirements of two-pass, sort- 
based algorithms change? 

!! Exercise 15.4.10 : Sometimes. it is possible to save some disk 110's if we leave 
the last sublist in memory. It may even make sense to use sublists of fewer than 
dI blocks to take advantage of this effect. How many disk 110's can be saved - 
this way? 

I 

!! Exercise 15.4.11: OQL allows grouping of objects according to arbitrary, 
user-specified functions of the objects. For example. one could group tuples 
according to the sum of two attributes. How ~vould we perform a sort-based 

I grouping operation of this type on a set of objects? 

15.5 Two-Pass Algorithms Based on Hashing 

There is a family of hash-based algorithms that attack the same problems as 
in Section 15.4. The essential idea behind all these algorithms is as follows. 
If the data is too big to store in main-memory buffers. hash all the tuples of 
the argument or arguments using an appropriate hash key. For all the common 
operations. there is a way to select the hash key so all the tuples that need to be 
considered together when we perform the operation h a ~ e  the same hash value. 

n'e then perform the opelation by \\orking on one bucket at a time (or on 
a pair of buckets with the same hash value. in the case of a binary operation). 
In effect. we have reduced the size of the operand(s) by a factor equal to the 
number of buckets. If there are .\I buffers available. we can pick d l  as the 
number of buckets, thus gaining a factor of SI in the size of the relations we 
can handle. Sotice that the sort-based algorithms of Section 15.4 also gain 
a factor of 31 by preprocessing. although the sorting and hashing approaches 
achieve their similar gains by rather different means. 
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15.5.1 Partitioning Relations by Hashing 

To begin, let us review the way we would take a relation R and, using A l  buffers, 
partition R into M - 1 buckets of roughly equal size. \Ye shall assume that 
h is the hash function, and that h takes complete tuples of R as its argument 
(i.e., all attributes of R are part of the hash key). We associate one buffer with 
each bucket. The last buffer holds blocks of R, one at a time. Each tuple t in 
the block is hashed to bucket h(t) and copied to the appropriate buffer. If that 
buffer is full, we write it out to disk, and initialize another block for the same 
bucket. At the end, we write out the last block of each bucket if it is not empty. 
The algorithm is given in more detail in Fig. 15.12. Note that it assumes that 
tuples, while they may be variable-length, are never too large to fit in an empty 
buffer. 

i n i t i a l i z e  M - 1  buckets using M-1 empty buffers;  
FOR each block b of r e l a t i o n  R DO BEGIN 

read block b in to  the  Mth buffer; 
FOR each tup le  t i n  b DO BEGIN 

I F  t h e  buffer f o r  bucket h ( t )  has no room f o r  t THEN 
BEGIN 

copy the  buffer t o  disk;  
i n i t i a l i z e  a new empty block in  tha t  buffer ;  

END; 
copy t t o  the  buffer f o r  bucket h ( t ) ;  

END ; 
END ; 
FOR each bucket DO 

IF the  buffer  f o r  t h i s  bucket i s  not empty THEN 
wri te  the  buffer t o  disk;  

Figure 15.12: Partitioning a relation R into d l  - 1 buckets 

15.5.2 A Hash-Based Algorithm for Duplicate 
Elimination 

U'e shall now consider the details of hash-based algorithms for the various 
operations of relational algebra that might need two-pass algorithms. First. 
consider duplicate elimination, that is, the operation 6(R). nF hash R to 
dl - 1 buckets, as in Fig. 15.12. Xote that two copies of the same tuple t \\-ill 
hash to the same bucket. Thus, 6 has the essential property we need: we can 
examine one bucket at  a time, perform 6 on that bucket in isolation, and take as 
the answer the union of 6(R,), where Ri is the portion of R that hashes to the 
ith bucket. The one-pass algorithm of Section 15.2.2 can be used to eliminate 
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duplicates from each Ri in turn and write out the resulting unique tuples. 
This method will work as long as the individual &'s are sufficiently small to 

fit in main memory and thus allow a onepass algorithm. Since m-e assume the 
hash function h partitions R into equal-sized buckets, each Ri will be approxi- 
mately B(R)/(Af - 1) blocks in size. If that number of blocks is no larger than 
M ,  i.e., B(R) < Jf(k1- I ) ,  then the two-pass, hash-based algorithm will work. 
In fact, as we discussed in Section 15.2.2, it is only necessary that the number 
of distinct tuples in one bucket fit in Al buffers, but me cannot be sure that 
there are any duplicates at all. Thus, a conservative estimate, with a simple 
form in which M and Af - 1 are considered the same, is B(R) 5 6f2, exactly 
as for the sort-based, two-pass algorithm for 6. 

The number of disk I/O's is also similar to that of the sort-based algorithm. 
We read each block of R once as we hash its tuples, and we write each block 
of each bucket to disk. \ e  then read each block of each bucket again in the 
one-pass algorithm that focuses on that bucket. Thus, the total number of disk 
I/O's is 3B(R). 

15.5.3 Hash-Based Grouping and Aggregation 

To perform the Y ~ ( R )  operation, we again start by hashing all the tuples of 
R to ill - 1 buckets. Howeyer, in order to make sure that all tuples of the 
same group wind up in the same bucket, we must choose a hash function that 
depends only on the grouping attributes of the list L. 

Having partitioned R into buckets, wve can then use the one-pass algorithm 
for 7 from Section 13.2.2 to process each bucket in turn. .is R-e discussed 
for b in Section 13.3.2, n-e can process each bucket in main memory provided 
B(R) < )If2. 

Hoxsever, on the second pass, we only need one record per group as we 
process each bucket. Thus, even if the size of a bucket is larger than A i ,  we 
can handle the bucket in one pass provided the records for all the groups in 
the bucket take no lnore than )\I buffers. Sormally. a group's record will be no 
larger than a tuple of R. If so, then a better upper bound on B(R)  is Af2 times 
the average rlun~ber of tuples per group. 

-4s a consequence, if there are are few groups, then R-e ma>- actually be able 
to handle much larger relations R than is indicated by the B(R) < 1\1%ule. 
On the other hand. if d l  exceeds the number of groups, then n-e cannot fill 
all buckets. Thus. the actual limitation on the size of R as a function of Al is 
comples. but B ( R )  < J f2  is a conservative estimate. Finally. we observe that 
the number of disk I/O's for ?. as for 6. is 3B(R). 

I 15.5.4 Hash-Based Union, Intersection, and Difference 

I ii-hen the operation is binary, \se must make sure that we use the same hash 
function to hash tuples of both arguments. For example. to compute R US S. 
we hash both R and S to Ji - 1 buckets each, say R1. RP.. . . . RJI-1 and 
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S1,SZ,. . . , SM-h We then take the set-union of Ri with S, for all i, and 
output the result. Notice that if a tuple t appears in both R and S, then for 
some i we shall find t in both R, and S,. Thus, when we take the union of these 
two buckets, we shall output only one copy of t ,  and there is no possibility of 
introducing duplicates into the result. For Ug, the simple bag-union algorithm 
of Section 15.2.3 is preferable to any other approach for that operation. 

To take the intersection or difference of R and S ,  we create the 2(M - 1) 
buckets exactly as for set-union and apply the appropriate one-pass algorithm 
to each pair of corresponding buckets. Notice that all these algorithms require 
B(R) + B(S) disk I/07s. To this quantity we must add the two disk I/O's per 
block that are necessary to hash the tuples of the two relations and store the 
buckets on disk, for a total of 3(B(R) + B(S)) disk I/O's. 

In order for the algorithms to work, we must be able to take the one-pass 
union, intersection, or difference of R, and Si, whose sizes will be approsi- 
mately B(R)/(M - 1) and B(S)/(lII - I), respectively. Recall that the one- 
pass algoiithms for these operations require that the smaller operand occupies 
at most h i  - 1 blocks. Thus, the two-pass, hash-based algorithms require that ' 

min(B(R), B ( S ) )  5 h12, approximately. 

15.5.5 The Hash-Join Algorithm 

To compute R(X,Y) w S(Y, Z) using a two-pass, hash-based algorithm. 1-e 
act almost as for the other binary operations discussed in Section 15.5.4. The 
only difference is that we must use as the hash key just the join attributes. 
Y. Then we can be sure that if tuples of R and S join, they will wind up in 
corresponding buckets R, and S, for some i. -4 one-pass join of all pairs of 
corresponding buckets completes this algorithm, which we call hash-join." 

Example 15.9 : Let us renew our discussion of the two relations R and S from 
Example 15.4, whose sizes were 1000 and 500 blocks, respectively, and for ~vhich 
101 main-memory buffers are made available. We may hash each relation to 
100 buckets, so the average size of a bucket is 10 blocks for R and 3 blocks 
for S. Since the smaller number, 5, is much less than the number of available 
buffers, 11-e expect to have no trouble performing a one-pass join on each pair 
of buckets. 

The number of disk I/O's is 1500 to read each of R and S while hashing - 
into buckets, another 1500 to write all the buckets to disk, and a third 1500 to 
read each pair of buckets into main memory again while taking the one-pass 
joi~i of corresponding buckets. Thus. the nulnber of disk 110's required is 4300. 
just as for the efficient sort-join of Section 13.4.7. 0 

\Ye may generalize Example 15.9 to conclude that: 
- 

4%metimes~ the term .'hash-join" is reserved for the variant of the oncpass join algorithm 
of Section 15.2.3 in which a hash table is used as the main-memory search structure. Then, 
the two-pass hash-join algorithm described here is called "partition hash-join." 
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Hash join requires 3(B(R) + B(S))  disk I/O's to perform its task. 

Thc two-pass hash-join algorithm will work as long as approximately 
min(B(R), B(S)) 5 A12. 

The argument for the latter point is the same as for the other binary operations: 
one of each pair of buckets must fit in Al- 1 buffers. 

15.5.6 Saving Some Disk I/O's 

If there is Inore nlemory available on the first pass than we need to hold one 
block per bucket, then we have some opportunities to save disk I/O's. One 
option is to use several blocks for each bucket, and write them out as a group, 
in consecutive blocks of disk. Strictly speaking, this technique doesn't save disk 
I/O1s, but it makes the I/O's go faster, since we save seek time and rotational 
latency when Re write. 

However, there are several tricks that have been used to avoid writing some 
of the buckets to disk and then reading them again. The most effective of them, 
called hybrid hash-join, works as fol10~~s. In general, suppose we decide that to 
join R w S, with S the smaller relation, we need to create k buckets, where k 
is much less than A l ,  the available memory. When we hash S, rve can choose 
to keep rn of the k buckets entirely in main memory, while keeping only one 
block for each of the other k - m buckets. We can manage to do so provided 
the expected size of the buckets in memory. plus one block for each of the other 
buckets. does not exceed Ii; that is: 

In esplanation. the expected size of a bucket is B(S)/k, and there are m buckets 
in memory. 

Now, 1,-hen 11-e read the tuples of the other relation, R, to hash that relation 
into buckets, we keep in memory: 

1. The nl, buckets of S that were never written to disk, and 

2. One block for each of the k - m buckets of R whose corresponding buckets 
of S were written to disk. 

If a tuple t of R hashes to one of the first m buckets, then we immediately 
join it ~vitll all the tuples of the corresponding S-bucket. as if this \yere a one- 
p a s  hash-join. The result of any successful joins is immediately output. It 
is necessary to organize each of the in-memory buckets of S into an efficient 
search structure to facilitate this join, just as for the one-pass hash-join. If t 
hashes to one of the buckets IX-hose corresponding S-bucket is on disk, then t 
is sent to the main-memory block for that bucket, and eventually migrates to 
disk, as for a two-pass, hash-based join. 
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On the second pass, we join the corresponding buckets of R and S as usual. 
However, there is no need to join the pairs of buckets for which the S-bucket 
was left in memory; these buckets have already been joined and their result 
output. 

The savings in disk 110's is equal to two for every block of the buckets of S 
that remain in memory, and their corresponding R-buckets. Since m/k of tlle 
buckets .are in memory, the savings is 2(m/k)(B(R) + B(S)). We must thus 
ask how to maximize m/k, subject to the constraint of equation (15.1). The 
surprising answer is: pick m = 1, and then make k as small as possible. 

The intuitive iustification is that all but k - m of the main-memorv buffers 
can be used to hold tuples of S in main memory, and the more of these tuples, 
the fewer the disk I/O's. Thus, we want to minimize k, the total number of 
buckets. We do so by making each bucket about as big as can fit in main 
memory; that is, buckets are of size h1, and therefore k = B(S)/AI. If that is 
the case, then there is only room for one bucket in the extra main memory; i.e., 
m = l .  

In fact, we redly need to make the buckets slightly smaller than B(S)1111, 
or else n-e shall not quite have room for one full bucket and one block for the 
other k - 1 buckets in memory at  the same time. Assuming, for simplicity, that 
k is about B(S)/M and m = 1, the savings in disk I/O's is 

and the total cost is 
2M 

Example 15.10 : Consider the problem of Example 15.4, where we had to join 
relations R and S,  of 1000 and 500 blocks, respectively-, using 111 = 101. If Ive 
use a hybrid hash-join, then we want k, the number of buckets, to be about 
500/101. Suppose a-e pick k = 5. Then the average bucket will have 100 blocks 
of S's tuples. If we try to fit one of these buckets and four extra blocks for the 
other four buckets, we need 104 blocks of main memory, and we cannot take 
the chance that the in-memory bucket will overflow memory. 

Thus. we are advised to choose k = 6. Now, when hashing S on tlie first 
pass, \re have five buffers for five of the buckets, and we have up to 96 buffers 
for the in-memory bucket, whose expected size is 50016 or 83. The ilurnber 
of disk I/O1s we use for S on the first pass is thus 500 to read all of S. and 
500 - 83 = 417 to write five buckets to disk. When n-e process R on the first 
pass. we need to read all of R (1000 disk 110's) and write 3 of its 6 buckets 
(833 disk I/O's). 

On the second pass. we read all the buckets written to disk, or 417 + 833 = 
1250 additional disk I/07s. The total number of disk I/O's is thus 1500 to read 
R and S ,  1250 to write 316 of these relations, and another 1250 to read those 
tuples again. or 4000 disk 110's. This figure compares with the 4500 disk 110's 
needed for the straightforward hash-join or sort-join. 
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15.5.7 Summary of Hash-Based Algorithms 

Figure 15.13 gives the memory requirements and disk I/O's needed by each of 
the algorithms discussed in this section. As with other types of algorithms, we 
should observe that the estimates for 7 and 6 may be conservative, since they 
really depend on the number of duplicates and groups, respectively, rather than 
on the number of tuples in the argument relation. 

Approximate 
Operators A I  required Disk I/O Section 

Figure 15.13: Xlain memory and disk I/O requirements for hash-based algo- 
rithms; for binary operations, assume B(S)  5 B(R) 

Kotice that the requirements for sort-based and the corresponding hash- 
based algorithms are almost the same. The significant differences between the 
two approaches are: 

1. Hash-based algorithms for binary operations hare a size requirement that 
depends only on the smaller of two argumellts rather than on the sum of 
the argument sizes, as for sort-based algorithms. 

2. Sort-based algorithms sometimes allow us to produce a result in sorted 
order and take advailtage of that sort later. The result niight be used in 
another sort-based algorithm later, or it could be the answer to a query 
that is required to be produced in sorted order. 

3. Hash-based algorith~tts depend on the buckets being of equal size. Since 
there is generally at least a small variation in size. it is not possible to 
use buckets that. on average, occupy 111 blocks: we must limit them to a 
some~vhat smaller figure. This effect is especially prominent if the liurnber 
of different hash keys is small, e.g., performing a group-by on a relation 
with few groups or a join with very few values for the join attributes. 

4. In sort-based algorithms, the sorted sublists may be written to consecutive 
blocks of the disk if we organize the disk properly. Thus, one of the three 
disk I/O's per block may require little rotational latency or seek time 
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and therefore may be much faster than the I/OYs needed for hash-based 
algorithms. 

5. Moreover, if M is much larger than the number of sorted sublists, then 
n-e may read in several consecutive blocks a t  a time from a sorted sublist, 
again saving some latency and seek time. 

6. On the other hand, if we can choose the number of buckets to be less than 
,If in a hash-based algorithm, then we can write out several blocks of a 
bucket at once. We thus obtain the same benefit on the write step for 
hashing that the sort-based algorithms have for the second read, as we 
observed in (5). Similarly, we may be able to organize the disk so that a 
bucket eventually winds up on consecutive blocks of tracks. If so, buckets 
can be read with little latency or seek time, just as sorted sublists were 
observed in (4) to be writable efficiently. 

15.5.8 Exercises for Section 15.5 

Exercise 15.5.1 : The hybrid-hash-join idea, storing one bucket in main mem- 
ory, can also be applied to other operations. Show how to save the cost of stor- 
ing and reading one bucket from each relation when implementing a two-pass. 
hash-based algorithm for: *a) 6 b) y c) nB d) -s. 

Exercise 15.5.2: If B(S)  = B(R)  = 10,000 and hf = 1000, what is the 
number of disk I/07s required for a hybrid hash join? 

Exercise 15.5.3: Write iterators that implement the two-pass, hash-based 
algorithms for a) 6 b) -y c) nB d) -s e) w. 

*! Exercise 15.5.4: Suppose we are performing a two-pass, hash-based grouping 
operation on a relation R of the appropriate size; i.e., B(R) 5 dl''. However, 
there are so few groups, that some groups are larger than Af; i.e., they will not 
fit in main memory at  once. What modifications, if anj5 need to be made to 
the algorithm given here? 

! Exercise 15.5.5: Suppose that we are using a disk where the time to move 
the head to a block is 100 milliseconds, and it takes 112 millisecond to read 
one block. Therefore, it takes k/2 milliseconds to read k consecutive blocks, 
once the head is positioned. Suppose we want to compute a two-pass hash-join 
R w S. 11-11ere B(R)  = 1000, B(S) = .500, and A f  = 101. To speed up the join. 
Ire want to use as few buckets as possible (assuming tuples distribute el-cnlv 
among buckets). and read and write as many blocks as we can to consecutive 
positions on disk. Counting 100.5 milliseconds for a random disk I/O and 
100 + k/2 milliseconds for reading or writing k consecutive blocks from or to 
disk: 

a) How much time does the disk 1 / 0  take? 
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b) How much time does the disk I/O take if we use a hybrid hash-join as 
described in Example 15.10? 

c) How much time does a sort-based join take under the same conditions, 
assuming we write sorted sublists to consecutive blocks of disk? 

15.6 Index-Based Algorit hrns 

The existence of an index on one or more attributes of a relation makes available 
some algorithms that would not be feasible without the index. Index-based 
algorithms are especially useful for the selection operator, but algorithms for 
join and other binary operators also use indexes to very good advantage. In 
this section, we shall introduce these algorithms. We also continue with the 
discussion of the index-scan operator for accessing a stored table with an index 
that we began in Section 15.1.1. To appreciate many of the issues, we first need 
to digress and consider "clustering" indexes. 

15.6.1 Clustering and Nonclustering Indexes 

Recall from Section 15.1.3 that a relation is '.clustered" if its tuples are packed 
into roughly as few blocks as can possibly hold those tuples. .A11 the analyses 
we have done so far assume that relations are clustered. 

We may also speak of clustera'ng zndexes, which are indexes on an attribute 
or attributes such that all the tuples with a fixed value for the search key of this 
index appear on roughly as few blocks as can hold them. Note that a relation 
that isn't clustered cannot have a clustering index,j but even a clustered relation 
can have nonclustering indexes. 

Example 15.11 : X relation R(a, b)  that is sorted on attribute a and stored in 
that order, packed into blocks, is surely clustered. An index on a is a clustering 
index, since for a given a-value ax, all the tuples with that value for a are 
consecutive. They thus appear packed into blocks, except possibly for the first 
and last blocks that contain a-value a,, as suggested in Fig. 15.14. However. an 
index on b is unlikely to be clustering, since the tuples with a fixed b-value will 
be spread all over the file unless the values of a and b are very closely correlated. 

5Technically, if the index is on a key for the relation, so only one tuple with a given value 
in the index key exists, then the index is always "clustering," even if the relation is not 
clustered. Housever, if there is only one tuple per index-key value, then there is no advantage 
from clustering. and the performance measure for such an index is the same as if it were 
considered nonclustering. 
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- C 

All the al tuples 

Figure 13.14: A clustering index has all tuples with a fixed value packed into 
(close to) the minimum possible number of blocks 

15.6.2 Index-Based Selection 

In Section 15.1.1 vie discussed implementing a selection c~c(R) by reading all 
the tuples of relation R, seeing which meet the condition C ,  and outputting 
those that do. If there are no indexes on R, then that is the best we can do; 
the number of disk I/O's used by the operation is B(R), or even T(R), the 
number of tuples of R, should R not be a clustered r e l a t i ~ n . ~  However, suppose 
that the condition C is of the form a = v, where a is an attribute for which 
an index exists, and v is a value. Then one can search the index with value v ' 

and get pointers to exactly those tuples of R that have a-value v. These tuples 
constitute the result of u,=,(R), so all we have to do is retrieve them. 

If the index on R.a is clustering, then the number of disk I/O's to retrieve the 
set cr,=,.(R) will average B(R)/V(R, a). The actual number may be somen-hat 
higher, because: 

1. Often, the index is not kept entirely in main memory, and therefore some 
disk 110's are needed to support the index lookup. 

2. Even though all the tuples with a = v might fit in b blocks, they could 
be spread over b + 1 blocks because they don't start at the beginning of 
a block. 

3. Although the index is clustering, the tuples with a = v may be spread 
over several extra blocks. Tm-o reasons ~ h y  that situation might occur 
are: 

(a) We might not pack blocks of R as tightly as possible because tve 
want to leave room for gron-th of R, as discussed in Section 13.1.6. 

(b) R might. be stored with some other tuples that do not belong to R. 
say in a clustered-file organization. 

Iloreover, we of course must round up if tlie ratio B(R)/IT(R,o) is not an 
integer. lIost significant is that shol~ld a be a kc?\- for R. then I7(R.a) = T ( R ) .  
ivhich is presumably much bigger than B(R).  yet XI-e surely require one disk 
I/O to retrieve the tuple with key value tt, plus whatever disk 110's are needed 
to access the index. 

6Recall from Section 15.1.3 the notation rve developed: T ( R )  for the number of tuples in 
R. B ( R )  for the number of blocks in which R fits, and I7(R.  L )  for the number of distinct 
tuples in ?TL(R).  
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Notions of Clustering 

?Ye have seen three different, although related, concepts called "clustering" 
or "clustered." 

1. In Section 13.2.2 we spoke of the "clustered-file organization," where 
tuples of one relation R are placed with a tuple of some other relation 
S with which they share a common value; the example was grouping 
movie tuples with the tuple of the studio that made the movie. 

2. In Section 15.1.3 we spoke of a "clustered relation," meaning that 
the tuples of the relation are stored in blocks that are exclusively, or 
at least predominantly, devoted to storing that relation. 

3. Here, n-e have introduced the notion of a clustering index - an index 
in which tlie tuples having a given value of the search key appear in 
blocks that are largely devoted to storing tuples with that search- 
key value. Typically, the tuples with a fixed value mill be stored 
consecutively, and only the first and last blocks with tuples of that 
value !\-ill also have tuples of another search-keg value. 

The clustered-file organization is one esarnple of a way to have a clustered 
relation that is not packed into blocks ~vhich are exclusively its o~vn. Sup- 
pose that one tuple of the relation S is associated with many R-tuples in a 
clustered file. Then, ~vliile the tuples of R are not packed in blocks exclu- 
sively devoted to R. these blocks are "predominantly" devoted to R, and 
we call R clustered. On the other hand, S will typically not be a clustered 
relation. since its tuples are usually on blocks devoted predominantly to 
R-tuples rather than S-tuples. 

Sow. let us consider what happens when the index on R.a is nonclustering. 
To a first approsimation, each tuple we retrieve will be on a different block, 
and ive must access T(R)/I,'(R,a) tuples. Thus, T(R)/IJ(R, a)  is an estimate 
of the number of disk I/O1s we need. Thc number could be higher because we 
may also need to read sonie index blocks from disk: it could be lower because 
fortuitously some retrieved tuples appear on the same block, and that block 
remains buffered in memory. 

Example 15.12 : Suppose B(R) = 1000. and T(R) = 20.000. That is, R has 
20.000 tuples that are packed 20 to a block. Let a be one of the attributes of 
R, suppose there is an index on a, and consider the operation U,,~(R). Here 
are some possible situations and the worst-case number of disk I /07s  required. 
We shall ignore the cost of accessing the index blocks in all cases. 

1. If R is clustered. but we do not use the index, then the cost is 1000 disk 
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110's. That is, ive must retrieve every block of R. 

2. If R is not clustered and we do not use the index, then the cost is 20:000 
disk 110's. 

3. If V(R, a) = 100 and the index is clustering, then the index-based algo- 
rithm uses 1000/100 = 10 disk I/O's. 

4. If V(R,a) = 10 and the index is nonclustering, then the index-based 
algorithm uses 20,000/10 = 2000 disk I/O's. Notice that this cost is 
higher than scanning the entire relation R, if R is clustered but the index 
is not. 

5. If V(R, a) = 20,000, i.e., a is a key, then the index-based algorithm takes 1 
disk 110 plus whatever is needed to access the index, regardless of ~he the r  
the index is clustering or not. 

Index-scan as an access method can help in several other kinds of selection 
operations. 

a) An index such as a B-tree lets us access the search-key values in a given 
range efficiently. If such an index on attribute a of relation R exists. then 
we can use the index to retrieve just the tuples of R in the desired range 
for selections such as aallo(R), or even aa21o AND a<20(R). 

b) A selection with a complex condition C can sometimes be implenlented by 
an index-scan followed by another selection on only those tuples retrieved 
by the index-scan. If C is of the form a = v AND C'. where C' is any 
condition, then we can split the selection into a cascade of two selections. 
the first checking only for a = u .  and the second checking condition C'. 
The first is a candidate for use of the index-scan operator. This splitting 
of a selection operation is one of many improvements that a query op- 
timizer may make to a logical query plan; it is discussed particularly in 
Section 16.7.1. 

S5.6.3 Joining by Using an Index 

-111 the binary operations we have considered. and the unary full-relation op- 
erations of y and d as well. can use certain indexes profitably. \Ye shall leave 
most of these algorithms as exercises. n-hile we focus on the matter of joins. In 
particular. let us examine the natural join R ( S .  Y) w S(l'.Z); recall that S. 
I'. and Z can stand for sets of attributes, although it is adequate to rhink of 
them as sinde attributes. 

.2 

For our first index-based join algorithm, suppose that S has an index on the 
attribute(s) Y .  Then one way to compute the join is to examine each block of 
R, and within each block consider each tuple t .  Let t y  be the coniponent or 
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components d t corresponding to the attribute(s) Y. Use the index to find all 
those tuples of S that have t y  in their Y-component(s). These are exactly the 
tuples of S that join with tuple t of R, so we output the join of each of these 
tuples with t. 

The number of disk 110's depends on several factors. First, assuming R is 
clustered, we shall have to read B(R) blocks to get all the tuples of R. If R is 
not clustered, then up to T(R) disk I/O's may be required. 

For each tuple t of R we must read an average of T(S)/V(S,Y) tuples 
of S. If S has a nonclustered index on Y, then the number of disk I/O's 
required to read S is T(R)T(S)/V(S,Y), but if the index is clustered, then 
only T(R)B(S)/V(S,Y) disk I/03s s~ f f i ce .~  In either case, we may have to add 
a few disk 110's per Y-value, to account for the reading of the index itself. 

Regardless of whether or not R is clustered, the cost of accessing tuples of 
S dominates. Ignoring the cost of reading R, we shall take T(R)T(S)/V(S, Y) 
or T(R)(max(l, B(S)/V(S,Y))) as the cost of this join method, for the cases 
of nonclustered and clustered indexes on S ,  respectively. 

Example 15.13 : Let us consider our running example, relations R ( X ,  Y) and 
S(Y, 2)  covering 1000 and 500 blocks, respectively. Assume ten tuples of either 
relation fit on one block, so T(R) = 10,000 and T(S) = 5000. Also, assume 
V(S, Y) = 100; i.e., there are 100 different values of Y among the tuples of S. 

Suppose that R is clustered, and there is a clustering index on Y for S. Then 
the approximate number of disk I/O1s, excluding what is needed to access the 
index itself, is 1000 to read the blocks of R (neglected in the formulas above) 
plus 10,000 x 300 / 100 = 50,000 disk I/O's. This nnmber is considerably above 
the cost of other methods for the same data discussed previously. If either R 
or the index on S is not clustered, then the cost is even higher. 

IVhile Example 13.13 niakes it look as if an index-join is a very bad idea, 
there are other situations where the join R w S by this method makes much 
more sense. hIost common is the case where R is very small compared with S, 
and V(S, Y )  is large, IVe discuss in Exercise 15.6.5 a typical query in which 
selection before a join makes R tiny. In that case, most of S will never be 
examined by this algorithm, since most Y-values don't appear in R a t  all. 
However, both sort- and hash-based join methods will examine every tuple of 
S at least once. 

15.6.4 Joins Using a Sorted Index 

When the index is a B-tree. or any other structure from which we easily can 
extract the tuples of a relation in sorted order, we have a number of other op- 
portunities to use the index. Perhaps the simplest is xhen we \\-ant to compute 
R(X, Y) w S(I: Z),  and we have such an index on Y for either R or S .  We 

'But remember that B(S)/V(S,Y) must be replaced by 1 if it is less, as discussed in 
Section 15.6.2. 
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can then perform an ordinary sort-join, but we do not have to perform the 
intermediate step of sorting one of the relations on Y. 

As an extreme case, if we have sorting indexes on Y for both R and S, 
then we need to perform only the final step of the simple sort-based join of 
Section 15.4.5. This method is sometimes called zig-zag join, because we jump 
back and forth between the indexes finding Y-values that they share in common. 
Notice that tuples from R with a Y-value that does not appear in S need never 
be retrieved, and similarly, tuples of S whose Y-value does not appear in R 
need not be retrieved. 

Example 15.14: Suppose that we have relations R(X,Y) and S(Y, Z) with 
indexes on Y for both relations. In a tiny example, let the search keys (Y- 
values) for the tuples of R be in order 1,3,4,4,4,5,6, and let the search key 
values for S be 2,2,4,4,6,7. We start with the first keys of R and S ,  which are 
1 and 2, respectively. Since 1 < 2, we skip the first key of R and look at  the 
second key, 3. Now, the current key of S is less than the current key of R, so 
we skip the two 2's of S to reach 4. 

At this point, the key 3 of R is less than the key of S, so we skip the key 
of R. Xow, both current keys are 4. \Ire follow the pointers associated with 
all the keys 4 from both relations, retrieve the corresponding tuples, and join 
them. Notice that until we met the common key 4, no tuples of the relation 
were retrieved. 

Having dispensed with the 4's: we go to key 5 of R and key 6 of S. Since 
.5 < 6, we skip to the next key of R. Now the keys are both 6, so we retrieve 
the corresponding tuples and join them. Since R is now exhausted. we know 
there are no more pairs of tuples from the two relations that join. 

If the indexes are B-trees, then we can scan the leaves of the two B-trees in 
order from the left, using the pointers from leaf to leaf that are built into the 
structure, as suggested in Fig. 13.15. If R and S are clustered. then retrieval of 
all the tuples with a given key will result in a number of disk 110's proportional 
to the fractions of these two relations read. Note that in extreme cases. n-here 
there are so many tuples from R and S that neither fits in the available main 
memory, we shall have to use a fixup like that discussed in Section 13.1.5. 
However, in typical cases, the step of joining all tuples with a common 1'-value 
can be carried out with only as many disk 110's as it takes to read them. 

Exarnple 15.15 : Let us continue with Exaniple 15.13, to see how joins using 
a combination of sorting and indexing would typically perform on this data. 
First, assume that there is an index on 2' for S that allows us to retrieve the 
tuples of S sorted by Y. We shall. in this example, also assume both relations 
and the index are clustered. For the monlent, we assume there is no index on 
R. 

-4ssuming 101 available blocks of main memory, we may use them to create 
10 sorted sublists for the 1000-block relation R. The number of disk I/O's is 
2000 to read and write all of R. nk nest use 11 blocks of memory - 10 for 
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Index v 
Figure 15.15: A zig-zag join using two indexes 

the sublists of R and one for a block of S's tuples, retrieved via the index. We 
neglect disk I /07s  and memory buffers needed to manipulate the index, but if 
the index is a B-tree, these numbers will be small anyway. In this second pass, 
we read all the tuples of R and S ,  using a total of 1500 disk I/O's, plus the small 
amount needed for reading the index blocks once each. \Ire thus estimate the 
total number of disk 1/03 at 3500, which is less than that for other metliods 
considered so far. 

Sow. assume that both R and S have indexes on 1'. Then there is no need 
to sort either relation. \Ye use just 1500 disk 110's to read the blocks of R 
and S throuah their indexes. In fact, if we determine from the indexes alone . . u 

that a large fraction of R or S cannot match tuples of the other relation, then 
the total cost could he considerably less than 1500 disk I/O1s. Holsever, in any 
esent we should add the small number of disk 110's needed to read the indexes 
themselves. 

15.6.5 Exercises for Section 15.6 

Exercise 15.6.1: Suppose there is an index on attribute R.u. Describe 1 1 0 ~  
this index could be used to improve the execution of the follo~ving operations. 
Under what circumstailces mould the index-based algorithm be more efficient 
than sort- or hash-based algorithms? 

* a) R Us S (assume that R and S have no duplicates, although they may 
have tuples in common). 

b) R ns S (again. with R and S sets). 

Exercise 15.6.2: Suppose B(R) = 10.000 and T ( R )  = 500.000. Let thcre 
be an index on R.a, and let V(R,a) = I; for some number k. G i ~ e  the cost 
of U,,~(R), as a function of k, under the follo~ving circumstances. You rnav 
neglect disk I /07s  needed to access the index itself. 
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* a) The index is clustering. 

b) The index is not clustering. 

c) R is clustered, and the index is not used. 

Exercise 15.6.3: Repeat Exercise 15.6.2 if the operation is the range query 
ucca AND o < ~ ( R ) .  YOU may assume that C and D are constants such that li/lO 
of <he values are in the range. 

! Exercise 15.6.4 : If R is clustered, but the index on R.a is not clustering, then 
depending on Ic we may prefer to impleme~it a query by performing a table-scan 
of R or using the index. For what values of k would we prefer to use the index 
if the relation and query are as in: 

a) Exercise 15.6.2. 

b) Exercise 15.6.3. 

* Exercise 15.6.5 : Consider the SQL query: 

SELECT birthdate 
FROM StarsIn,  MovieStar 
WHERE movieTitle = 'King Kong' AND starName = name; 

This query uses the "movien relations: 

StarsIn(rnovieTit1e , movieyear, starName) 
MovieStar(name, address, gender, bir thdate) 

If we translate it to relational algebra, the heart is an equijoin betn-een 

~ m o o i e T i t l e = ' K i n g  Kong' (StarsIn) 

and HovieStar, which can be implemented much as a natural join R w S. Since 
there were only two movies named .'King I<ong," T(R)  is very small. Suppose 
that S, the relation MovieStar, has an index on name. Compare the cost of an 
index-join for this R w S with the cost of a sort- or hash-based join. 

! Exercise 15.6.6: In Example 15.15 we discussed the disk-I/O cost of a join 
R w S in which one or both of R and S liad sorting indexes on the join 
attribute(s). However, the methods described in that example can fail if there 
are too nlany tuples with the same value in the join attribute(s). What are 
the limits (in number of blocks occupied by tuples with the same value) under 
11-hich the methods described will not need to do additional disk I/O's? 

15.7. BUFFER .VANAGE-IIENT 

15.7 Buffer Management 

We have assumed that operators on relations have available some number M 
of main-memory buffers that they can use to store needed data. In practice, 
these buffers are rarely allocated in advance to the operator, and the value 
of A 1  may vary depending on system conditions. The central task of making 
main-memory buffers available to processes, such as queries, that act on the 
database is given to the buffer manager. It is the responsibility of the buffer 
manager to allow processes to get the memory they need, while minimizing the 
delay and unsatisfiable requests. The role of the buffer manager is illustrated 
in Fig. 15.16. 

Requests 

manager 

Figure 15.16: The buffer manager respo~lds to requests for main-memory access 
to disk blocks 

15.7.1 Buffer Management Architecture 

There are two broad architectures for a buffer manager: 

1. The buffer manager controls main memory directly, as in many relational 
DBMS's. or 

2. The buffer manager allocates buffers in virtual memory. allon-ing the op- 
erating system to decide \vhich buffers are actually in main memory at 
an' time and which are in the .'s~vap space" on disk that the operating 
system manages. Uany ~b~nain-n~en~ory" DBMS's and .'object-oriented" 
DBMS's operate this way. 

Whichever approach a DBMS uses, the same problem arises: the buffer 
manager should limit the number of buffers in use so they fit in the available 
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Memory Management for Query Processing 

We are assuming that the buffer manager allocates to an operator M 
main-memory buffers, where the value for M depends on system condi- 
tions (including other operators and queries underway), and may vary 
dynamically. Once an operator has M buffers, it may use some of them 
for bringing in disk pages, others for index pages, and still others for sort 
runs or hash tables. In some DBMS's, memory is not allocated from a 
single pool, but rather there are separate pools of memory - with sepa- 
rate buffer managers - for different purposes. For example, an operator 
might be allocated D buffers from a pool to hold pages brought in from 
disk, S buffers from a separate memory area allocated for sorting, and H 
buffers to build a hash table. This approach offers more opportunities for 
system configuration and "tuning," but may not make the best global use 
of memory. 

main memory. When the buffer manager controls main memory directly, and 
requests exceed available space, it has to select a buffer to empty, by returning 
its contents to disk. If the buffered block has not been changed, then it may 
simply be erased from main memory, but if the block has changed it must be 
written back to its place on the disk. When the buffer manager allocates space 
in virtual memory, it has the option to allocate more buffers than can fit in 
main memory. However, if all these buffers are really in use, then there will 
be "thrashing," a common operating-system problem, where many blocks are 
moved in and out of the disk's swap space. In this situation, the system spends 
most of its time swapping blocks, while very little useful work gets done. 

Normally, the number of buffers is a parameter set when the DBMS is 
initialized. We would expect that this number is set so that the buffers occupy 
the available main memory, regardless of whether the buffers are allocated in 
main or virtual memory. In what follo\vs, we shall not concern ourselves with 
xhirh mode of buffering is used, and simply assume that there is a fixed-size 
b u e r  pool. a set of buffers available to queries and other database actions. 

15.7.2 Buffer Management Strategies 

The critical choice that the buffer manager must make is what block to throw 
out of the buffer pool when a buffer is needed for a newly requested block. The 
buffer-=placement strategies in common use may be familiar to you from other 
applications of scheduling policies, such as in operating systems. These include: 
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Least-Recently Used (LRU) 

The LRU rule is to throw out the block that has not been read or written for the 
longest time. This method requires that the buffer manager maintain a table 
indicating the last time the block in each buffer was accessed. It also requires 
that each database access make an entry in this table, so there is significant 
effort in maintaining this information. However, LRU is an effective strategy; 
intuitively, buffers that haw not been used for a long time are less likely to be 
accessed sooner than those that have been accessed recently. 

First-In-First-Out (FIFO) 

When a buffer is needed, under the FIFO policy the buffer that has been oc- 
cupied the longest by the same block is emptied and used for the new block. 
In this approach, the buffer manager needs to know only the time a t  which the 
block currently occupying a buffer was loaded into that buffer. An entry into a 
table can thus be made when the block is read from disk, and there is no need 
to modify the table when the block is accessed. FIFO requires less maintenance 
than LRU, but it can make more mistakes. A block that is used repeatedly, say 
the root block of a B-tree index, will eventually become the oldest block in a 
buffer. I t  will be written back to disk, only to be reread shortly thereafter into 
another buffer. 

T h e  "Clock" Algorithm ("Second Chance") 

This algorithm is a commonly implemented, efficient approximation to LRU. 
Think of the buffers as arranged in a circle, as suggested by Fig. 15.17. -4 
"hand" points to one of the buffers. and will rotate clock~vise if it needs to find 
a buffer in which to place a disk block. Each buffer has an associated "flag," 
which is either 0 or 1. Buffers with a 0 flag are vulnerable to having their 
contents sent back to disk; buffers with a 1 are not. When a block is read into 
a buffer, its flag is set to 1. Likewise, when the contents of a buffer is accessed, 
its flag is set to 1. 

Khen the buffer manager needs a buffer for a new block. it looks for the 
first 0 it can find, rotating clock~vise. If it passes l's, it sets them to 0. Thus, 
a block is only thrown out of its buffer if it remains urlaccessed for the time it 
takes the hand to make a complete rotation to set its flag to 0 and then make 
another complete rotation to find the buffer with its 0 unchanged. For instance, 
in Fig. 13.17. the hand will set to 0 the 1 in the buffer to its left, and then move 
clockxi-ise to find the buffer with 0. ~vliose block it ~vill replace and whose flag 
it will set to 1. 

System Control  

The query processor or other components of a DBMS can give advice to the 
buffer manager in order to avoid some of the mistakes that ~ o u l d  occur with 
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Figure 15.17: The clock algorithm visits buffers in a round-robin fashion and 
replaces O l - . .  1 with 10...O 

More Tricks Using. the Clock Algorithm 

The "clock" algorithm for choosing buffers to free is not limited to the 
scheme described in Section 15.7.2, where flags had values 0 and 1. For 
instance, one can start an important page with a number higher than 1 
as its flag, and decrement the flag by 1 each time the "hand" passes that 
page. In fact, one can incorporate the concept of pinning blocks by giving 
the pinned block an infinite value for its flag, and then having the system 
release the pin at  the appropriate time by setting the flag to 0. 

a strict policy such as LRU, FIFO, or Clock. Recall from Section 12.3.5 that 
there are sometimes technical reasons why a block in main memory can not 
be moved to disk without first modifying certain other blocks that point to it. 
These blocks are called "pinned," and any buffer manager has to modify its 
buffer-replacement strategy to avoid expelling pinned blocks. This fact gives us 
the opportunity to force other blocks to renrain in main memory by declaring 
them "pinned," even if there is no technical reason why they could not be 
written to disk. For example, a cure for the problem with FIFO mentioned 
above regarding the root of a B-tree is to "pin" the root, forcing it to remain in 
memory at all times. Similarly, for an algorithm like a one-pass hash-join. the 
query processor may "pin" the blocks of the smaller relation in order to assure 
that it will remain in main memory during the entire time. 

15.7.3 The Relationship Between Physical Operator 
Selection and Buffer Management 

The queq optimizer will eventually select a set of physical operators that will 
be used to execute a given query. This selection of operators may assume that a 
certain number of buffers A l  is available for execution of each of these operators. 
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However, as we have seen, the buffer manager may not be willing or able to 
guarantee the availability of these AI buffers when the query is executed. There 
are thus tm-o related questions to ask about the physical operators: 

1. Can tlie algorithm adapt to changes in the value of 116, the number of 
main-memory buffers available? 

2. IlThen the expected A i  buffers are not available, and some blocks that are 
expected to be in memory have actually been moved to disk by the buffer 
manager, how does tlie buffer-replacement strategy used by the buffer 
manager impact the number of additional I/O's that must be performed? 

Example 15.16 : As an example of the issues, let us consider the block-based 
nested-loop join of Fig. 15.8. The basic algorithm does not really depend on 
the value of A l ,  although its performance depends on A l .  Thus, it is sufficient 
to find out what is just before execution begins. 

It is even possible that -\I will change at different iterations of the outer 
loop. That is. each time we load main memory with a portion of the relation S 
(the relation of the outer loop), we can use all but one of the buffers available at  
that time: the remaining buffer is reserved for a block of R, the relation of the 
inner loop. Thus, the number of times we go around the outer loop depends on 
the average number of buffers available at  each iteration. However, as long as 
A1 buffers are available on average, then the cost analysis of Section 15.3.4 will 
hold. In the extreme, we might have the good fortune to find that at  the first 
iteration. enough buffers are available to hold all of S ,  in which case nested-loop 
join gracefully becomes the one-pass join of Section 15.2.3. 

If lye pin the Af - 1 blocks we use for S on one iteration of the outer loop, 
then we shall not lose their buffers during the round. On the other hand, more 
buffers ma>- become available during that iteration. These buffers allow more 
than one block of R to be kept in nlemory at the same time, but unless we are 
careful. the extra buffers will not improve the running time of the nested-loop 
join. 

For instance. suppose that ~ v e  use an LRU buffer-replacement strategh and 
there are k buffers available to hold blocks of R. Xs \re read each block of R: 
in order. the blocks that remain in buffers at the end of this iteration of the 
outer loop ~vill be the last I; blocks of R. IVe next reload the 111 - 1 buffers for 
S with nelv blocks of S and start reading the blocks of R again, in the next 
iteration of the outer loop. Ho~erer .  if Tve start from the beginning of R again. 
then the k buffers for R will need to bc replaced. and we do not saw disk 110's 
just because k > 1. 

A better ilnplementatioll of nested-loop join. xvlien an LRC buffer-replace- 
ment strategy is used, visits the blocks of R in an order that alternates: first- 
to-last and then last-to-first (called rocking). In that way, if there are k buffers 
a~ailable to R, we save k disk I/O's on each iteration of the outer loop except 
the first. That is, the second and subsequent iterations require only B(R)  - k 
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disk I/O's for R. Notice that even if k = 1 (i.e., no a t r a  buffers are available 
to R), we save one disk I/O per iteration. 

Other algorithms also are impacted by the fact that M can vary and by the 
buffer-replacement strategy used by the buffer manager. Here are some useful 
observations. 

If we use a sort-based algorithm for some operator, then it is possible to 
adapt to changes in M. If Af shrinks, wve can change the size of a sublist, 
since the sort-based algorithms we discussed do not depend on the sublists 
being the same size. The major limitation is that as M shrinks, we could 
be forced to create so many sublists that we cannot then allocate a buffer 
for each sublist in the merging process. 

The main-memory sorting of sublists can be performed by a number of 
different algorithms. Since algorithms like merge-sort and quicksort are 
recursive, most of the time is spent on rather small regions of memory. 
Thus, either LRU or FIFO will perform well for this part of a sort-based 
algorithm. 

If the algorithm is hash-based, ive can reduce the number of buckets if 
shrinks, as long as the buckets do not then become so large that they do 
not fit in allotted main memory. However, unlike sort-based algorithms, 
we cannot respond to changes in A1 while the algorithm runs. Rather, 
once the number of buckets is chosen, it remains fixed throughout the first 
pass, and if buffers become unavailable, the blocks belonging to some of 
the buckets will have to be ST\-apped out. 

15.7.4 Exercises for Section 15.7 

Exercise 15.7.1: Suppose that we x\-ish to execute a join R w S, and the 
available memory will vary between JI and A1/2. In terms of B(R). and 
B(S),  give the conditions under which we can guarantee that the follo~ving 
algorithms can be executed: 

* a) A one-pass join. 

* b) h two-pass, hash-based join. 

c) d two-pass, sort-based join. 

! Exercise 15.7.2 : How \\-auld the nunlher of disk 110's taken by a nested-loop 
join improve if extra buffers became available and the buffer-replacement polic? 
were: 

b) The clock algorithm. 
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!! Exercise 15.7.3 : In Example 15.16, we suggested that it was possible to take 
advantage of extra buffers becoming available during the join by keeping more 
than one block of R buffered and visiting the blocks of R in reverse order on 
even-numbered iterations of the outer loop. However, we could also maintain 
only one buffer for R and increase the number of buffers used for S. Which 
strategy yields the fewest disk I/O's? 

15.8 Algorithms Using More Than Two Passes 

While two passes are enough for operations on all but the largest relations, we 
should observe that the principal techniques discussed in Sections 15.4 and 15.5 
generalize to algorithms that, by using as many passes as necessary, can process 
relations of arbitrary size. In this section we shall consider the generalization 
of both sort- and hash-based approaches. 

15.8.1 Multipass Sort-Based Algorithms 

In Section 11.4.5 wve alluded to how the txvo-phase multiwvay merge sort could be 
extended to a three-pass algorithm. In fact, there is a simple recursive approach 
to sorting that mill alloxv us to sort a relation, however large, con~pletely, or if 
we prefer, to create n sorted sublists for any particular n. 

Suppose we hare Jf main-memory buffers available to sort a relation R, 
which wve shall assume is stored clustered. Then do the followving: 

BASIS: If R fits in A 1  blocks (i.e., B(R) 5 ,\I): then read R into main memory, 
sort it using pour favorite main-memory sorting algorithm, and write the sorted 
relation to disk. 

INDUCTION: If R does not fit into main memory, partition the blocks holding 
R into -\I groups. which n-e shall call R1, Ru. . . . , Rw . Recursi~ely sort Ri for 
each i = 1.2,. ..,dl. Then, merge the A1 sorted sublists, as in Section 11.4.4. 

If we are not merely sorting R, but perforlning a unary operation such as y 
or 6 on R, then we modify the above so that at the final merge we perform the 
operation on the tuples at the front of the sorted sublists. That is, 

For a 6, output one copy of each distinct tuple, and skip eyer copies of 
the tuple. 

For a 7 ,  sort on the grouping attributes only. and combine the tuples with 
a given value of these grouping attributes in the appropriate manner. as 
discussed in Section 15.4.2. 

IVhen we vialit to perform a binary operation, such as intersection or join, we 
use essentially the same idea. except that the two relations are first divided into 
a total of Ai sublists. Then. each sublist is sorted by the recursive algorithm 
above. Finally, we read each of the 31 sublists, each into one buffer, and n-e 
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perform the operation in the manner described by the appropriate subsection 
of Section 15.4. 

We can divide the M buffers between relations Rand S as we wish. However, 
to minimize the total number of passes, we would normally divide the buffers 
in proportion to the number of blocks taken by the relations. That is, R gets 
M x B(R)/ (B(R) + B(S))  of the buffers, and S gets the rest. 

15.8.2 Performance of Multipass, Sort-Based Algorithms 
Now, let us explore the relationship between the number of disk I/O's required, 
the size of the relation(s) operated upon, and the size of main memory. Let 
s(M, k) be the maximum size of a relation that we can sort using M buffers 
and k passes. Then we can compute s(Af, k) as follows: 

BASIS: If k = 1, i.e., one pass is allowed, then we must have B(R) < M. Put 
another way, s(M, 1) = Af. 

INDUCTION: Suppose k > 1. Then we partition R into 1M pieces, each of 
which must be sortable in k - 1 passes. If B(R) = s(M, k), then s(M, k)/:l17 
which is the size of each of the M pieces of R, cannot exceed s(M, k - 1). That 
is: s ( M ,  k) = Ms(M, k - 1). 

If we expand the above recursion, we find 

Since s(M, I) = LM, we conclude that s(M, k) = IZI" That is, using k passes. 
we can sort a relation R if B(R) 5 s(A1. k), which says that B(R) < Mk. Put 
another way, if we want to sort R in k passes, then the minimum number of 
buffers we can use is A$ = (B(R))"'. 

Each pass of a sorting algorithm reads all the data from disk and writes it 
out again. Thus, a k-pass sorting algorithm requires 2kB(R) disk I/O's. 

Xow, let us consider the cost of a multipass join R(X,Y) w S(Y. 2). as 
representative of a binary operation on relations. Let j(l\l, k) be the largest 
number of blocks such that in k passes, using A i  buffers, we can join relations 
of j(M, k) or fewer total blocks. That is, the join can be accomplished provided 
B(R) + B(S) 5 j ( M ,  k). 

On the final pass. we merge A 1  sorted sublists from the two relations. 
Each of the sublists is sorted using k - 1 passes. so they can be no longer 
than s(Al. I; - 1) = A I  "I each. or a total of i\is(AI, k - 1) = Afk. That is. 
B(R) + B(S) can be no larger than 31% or put another way, j(.Ri,k) = J I k .  
Reversing the role of the parameters. a e  can also state that to compute the join 
in k passes requires (B(R) + B(s)) ''"buffers. 

To calculate the number of disk I/O's needed in the multipass algorithms. 
we should remember that, unlike for sorting, we do not count the cost of xriting 
the final result to disk for joins or other relational operations. Thus, we use 
2(k- 1) (B(R)+ B(S)) disk I/O's to sort the sublists, and another B(R) + B(S)  
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disk I/O's to read the sorted sublists in the final pass. The result is a total of 
(2k - 1) (B(R) f B(S)) disk I/03s. 

15.8.3 Multipass Hash-Based Algorithms 

There is a corresponding recursive approach to using hashing for operations on 
large relations. \Ye hash the relation or relations into df - 1 buckets, where B i  
is the number of a\ailable memory buffers. We then apply the operation to each 
bucket individually, in the case of a unary operation. If the operation is binary, 
such as a join, we apply the operation to each pair of corresponding buckets, as 
if they were the entire relations. For the common relational operations we have 
co~~sidered - duplicate-elimination, grouping, union, intersection, difference, 
natural join, and equijoin - the result of the operation on the entire relation@) 
will be the union of the results on the bucket(s). We can describe this approach 
recursively as: 

BASIS: For a unary operation, if the relation fits in h l  buffers, read it into 
memory and perfor111 the operation. For a binary operation, if either relation 
fits in ,11 - I buffers, perform the operation by reading this relation into main 
memory and then read the second relation, one block at a time, into the Mth 
buffer. 

INDUCTION: If no relation fits in main memory, then hash each relation into 
A 1  -1 buckets, as discussed in Section 15.5.1. Recursively perform the operation 
on each bucket or corresponding pair of buckets, and accumulate the output 
from each bucket or pair. 

15.8.4 Performance of Multipass Hash-Based Algorithms 

In what follo~x-s. \ye shall make the assumption that when we hash a relation, 
the tuples divide as evenly as possible anlong the buckets. In practice, this as- 
sumption \sill be met approximately if we choose a truly random hash functian, 
but there will alxvays be some me\-enness in the distribution of tuples among 
buckets . 

First. consider a unary operation, like 9 or b on a relation R using 31 buffers. 
Let u(ilf. k) be the number of blocks in the largest relation that a k-pass hashing 
algorithm can handle. We can define u recursively by: 

BASIS: u ( 3 l .  1) = -11. since the relati011 R must fit in J I  buffers; i.e., B(R) 5 
d l .  

INDUCTION: \\c assume that the first step divides the relation R into -If - 1 
buckets of equal size. Thus, we can co~nputc ~ ( 3 1 .  k )  as follo\vs. The buckets 
for the nest pass must be sufficiently small that they can be handled in k - 1 
passes: that is. the buckets are of size u(,\f, k- 1). Since R is divided into A i  - 1 
buckets. we must have u(h1. k) = (Af - l)u(lZI, k - I). 
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If we expand the recurrence above, we find that u(M,k) = hi(M - 
or approximately, assuming M is large, u(il1, k) = Mk. Equivalently, we can 
perform one of the unary relational operations on relation R in k passes with 

buffers, provided 111 5 (B(R))"~. 

We may perform a similar analysis for binary operations. As in Section 
15.8.2, let us consider the join. Let j(A4, k) be an upper bound on the size of 
the smaller of the two relations R and S involved in R(X, Y) w S(Y, 2). Here, 
as before, M is the number of available buffers and k is the number of passes 
we can use. 

BASIS: j (M,  1) = kf - 1; that is, if we use the one-pass algorithm to join, then 
either R or S must fit in M - 1 blocks, as we discussed in Section 15.2.3. 

INDUCTION: j(M, k) = (M - l ) j(M, k - 1); that is, on the first of k passes, 
we can divide each relation into hi - 1 buckets, and we may expect each bucket 
to be 1/(M - 1) of its entire relation, but we must then be able to join each 
pair of corresponding buckets in M - 1 passes. 

By expanding the recurrence for j (M,  k), R-e conclude that j ( M ,  k) = (A1 - I lk .  
Again assuming M is large, we can say approximately j ( M ,  k) = Atk. That 
is, we can join R(X, Y) w S(Y, 2) using k passes and M buffers provided 
hik 2 min(B(R), B(S)). 

15.8.5 Exercises for Section 15.8 I 
Exercise 15.8.1: Suppose B(R) = 20,000, B(S) = 50,000, and ill = 101. 
Describe the behavior of the following algorithms to compute R w S: 

* a) A three-pass, sort-based algorithm. I 
b) A three-pass, hash-based algorithm. I 

! Exercise 15.8.2: There are several "tricks" we have discussed for improving 
the performance of two-pass algorithms. For the following, tell whether the 
trick could be used in a multipass algorithm, and if so, how? 

a) The hybrid-hash-join trick of Section 15.3.6. I 
b) Itnproving a sort-based algorithm by storing blocks consecutively on disk 

(Section 15.5.7). I 
c) Improving a hash-based algorithm by storing blocks consecutively on disk 

(Section 15.5.7). 
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15.9 Parallel Algorithms for Relational 
Operat ions 

Database operations, frequently being time-consuming and inrolvi~lg a lot of 
data, can generally profit from parallel processing. In this section, we shall 
review the principal architectures for ~arallel  machines. We then concentrate on 
the "shared-nothing" architecture, whicb appears to be the most cost effective 
for database operations, although it may not be superior for other parallel 
applications. There are simple modifications of the standard algorithms for 
most relational operations that will exploit parallelism almost perfectly. That 
is, the time to complete an operation on a pprocessor machine is about l / p  of 
the time it takes to complete the operation on a uniprocessor. 

15.9.1 Models of Parallelism 

.At the heart of all parallel machines is a collection of processors. Often the 
number of processors p is large, in the hundreds or thousands. We shall assume 
that each processor has its own local cache, which we do not show explicitly 
in our diagrams. In most organizations, each processor also has local memory, 
which we do show. Of great importance to database processing is the fact that 
along with these processors are many disks, perhaps one or more per processor, 
or in some architectures a large collection of disks accessible to all processors 
directly. 

Figure 15.18: -1 shared-memory nlachine 

Additionally. parallel computers all have some comlnullications facility for 
passing illformation among processors. hl our diagrams. we show the rom- 
municatio~l as if there were a shared bus for all the elements of the machine. 
However, in practice a bus cannot interconnect as many processors or other 
elements as are found in the largest machines. so the i~lterconnection system 
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is in many architectures a powerful switch, perhaps augmented by busses that owIl disk or disks, as in Fig. 15.20. All communication is via the corn- 
connect subsets of the processors in local clusters. nlunication network, from processor to .processor. For example, if one 

The three most important classes of parallel machines are: processor p wants to read tuples from the disk of another Processor Q, 
then processor P sends a message to Q asking for the data. Then, Q ob- 

1. Shared Memory. In this architecture, illustrated in Fig. 15.18, each pro- tains the tuples from its disk and ships them over the network in another 
cessor has access to all the memory of all the processors. That is, there message, which is received by P. 
is a single physical address space for the entire machine, rather than one 
address space for each processor. The diagram of Fig. 15.18 is actually 
too extreme, suggesting that processors have no private memory at all. 
Rather, each processor has some local main memory, which it typically 
uses whenever it can. However, it has direct access to the memory of other 
processors when it needs to. Large machines of this class are of the NUMA P P P 
(nonuniform memory access) type, meaning that it takes somewhat more 
time for a processor to access data in a memory that "belongs" to some 
other processor than it does to access its "own" memory, or the memory of- 
processors in its local cluster. However, the difference in memory-access * 
times are not great in current architectures. Rather, all memory accesses, 
no matter where the data is, take much more time than a cache access. 
so the critical issue is whether or not the data a processor needs is in its 

Figure 15.20: X shared-nothing machine own cache. 

Figure 15.19: -4 shared-disk machine 

As ive mentioned in the introduction to this section, the shared-nothing 
architecture is the most commonly used architecture for high-performance data- 
base systems. Shared-nothing machines are relatively inexpensive to build, but 
when we design algorithms for these machines we must be aivare that it is costly 
to send data from one processor to another. 

Sormally. data must be sent between processors in a message, which has 
considerable overhead associated with it. Both processors must execute a pro- 
gram that supports the message transfer, and there may be contention or de- 
lays associated li-ith the communication net~vork as \-ell. Typically, the cost 
of a message can be broken into a large fised overhead plus a small amount of 
time per byte transmitted. Thus. there is a significant ad\-antage to designing 
a parallel algorithm so that conllnunications between processors involve large 
amounts of data sent at  once. For instance, Ive might buffer several blocks of 
data at processor P. all bound for processor Q. If Q does not need the data 
immediately. it may be much more efficient to 15-ait until we have a long message 
at P and then send it to Q. 

2. Shared Disk. In this architecture, suggested by Fig. 15.19; every pro- [ 15.9.2 T~~le-at-a-Time operations in Parallel 
ce5sor has its own memory, which is not accessible directly from ot]ler 
Processors. However, the disks are accessible from any of the processors ~ e t  us begin our discussion of parallel algorithms for a shared-nothing machine 
through the communication net\\-ork. Disk controllers mallage the poten- by considering the selection operator. First, we must consider how data is best 
tially competing requests from different processors. The number of disks stored. -1s first suggested by Section 11.5.2, it is useful to distribute our data 
alld Processors need not be identical. as it might appear from Fig. 13.19. across as many disks as possible. For con~enience, we shall assume there is one 

disk per processor. Then if there are p processors. divide any relation R's tuples 
3. Shared Nothing. Here, all processors have their own memory and their evenly among the p processor's disks. 
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Algorithms on Other Parallel Architectures 

The shared-disk machine favors long messages, just like the shared-nothing 
machine does. If all communication is via a disk, then we need to move 
data in block-sized chunks, and if we can organize the data to be moved 
so it is together on one track or cylinder, then we can save much of the 
latency, as discussed in Section 11.5.1. 

On the other hand, a shared-memory machine allows communication 
to occur between any two processors via the memory. There is no exten- 
sive software needed to send a message, and the cost of reading or writing 
main memory is proportional to the number of bytes involved. Thus, 
shared-memory machines can take advantage of algorithms that require 
fast, frequent, and short communications between processors. It is inter- 
esting that, while such algorithms are known in other domains, database 
processing does not seem to require such algorithms. 

To compute ac(R),  we may use each processor to examine the tuples of R 
on its own disk. For each, it finds those tuples satisfying condition C and copies 
those to the output. To avoid communication among processors, we store those 
tuples t in uc(R) at  the same processor that has t on its disk. Thus, the result 
relation uc(R) is divided among the processors, just like R is. 

Since uc(R) may be the input relation to another operation, and since we 
want to minimize the elapsed time and keep all the processors busy all the 
time, we would like uc(R) to be divided evenly among the processors. If we 
were doing a projection, rather than a selection, then the number of tuples in 

at each processor would be the same as the number of tuples of R at  
that processor. Thus, if R is distributed evenly, so would be its projection. 
However, a selection could radically change the distribution of tuples in the 
result, compared to the distribution of R. 

Example 15.17: Suppose the selection is U,,~~(R),  that is, find all the tuples 
of R whose value in the attribute a (assumed to be one of R's attributes) is 10. 
Suppose also that we have divided R according to the value of the attribute a. 
Then all the tuples of R with a = 10 are at one of the processors, and the entire 
relation u,,lo(R) is at  one processor. 

To avoid the problem suggested by Example 15.17, we need to think carefully 
about the policy for partitioning our stored relations anlong the processors. 
Probably the best we can do is to use a hash function h that involves all the 
components of a tuple in such a way that changing one component of a tuple 
t can change h(t) to be any possible bucket n ~ m b e r . ~  For example, if we want 
B buckets, we might convert each component somehow to an integer between 

8 ~ n  particular, mv do not want to use a partitioned hash function (which was discussed in 
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0 and B - 1, add the integers for each component, divide the result by B, and 
take the remainder as the bucket number. If B is also the number of processors, 
then we can associate each processor with a bucket and give that processor the 
contents of its bucket. 

15.9.3 Parallel Algorithms for Full-Relation Operat ions 

First, let us consider the operation b(R) ,  which is somewhat atypical of the 
full-relation operations. If we use a hash function to distribute the tuples of 
R as suggested in Section 15.9.2, then we shall place duplicate tuples of R at  
the same processor. If so, then we can produce 6(R) in parallel by applying a 
standard, uniprocessor algorithm (as in Section 15.4.1 or 15.5.2, e.g.) to the 
portion of R a t  each processor. Likewise, if we use the same hash functions to 
distribute the tuples of both R and S, then we can take the union, intersection, 
or difference of R and S by working in parallel on the portions of R and S at  
each processor. 

However, suppose that R and S are not distributed using the same hash 
function, and we wish to take their union.g In this case, we must first make 
copies of all the tuples of R and S and distribute them according to a single 
hash function h.1° 

In parallel, we hash the tuples of R and S at each processor, using hash 
function h. The hashing proceeds as described in Section 15.5.1, but when the 
buffer corresponding to a bucket i at one processor j is filled, instead of moving 
it to the disk at  j, n-e ship the contents of the buffer to processor i. If we have 
room for several blocks per bucket in main memory, then we may wait to fill 
se\-era1 buffers with tuples of bucket i before shipping them to processor i. 

Thus, processor 1 receives all the tuples of R and S that belong in bucket i. 
In the second stage. each processor performs the union of the tuples from R and 
S belonging to its bucket. -4s a result, the relation R U S will be distributed 
over all the processors. If hash function h truly randomizes the placement of 
tuples in buckets, then we expect approximately the same number of tuples of 
R U S to be at  each processor. 

The operations of intersection and difference may be performed just like 
a union; it does not matter whether these are set or bag versions of these 
operations. .\loreover: 

To take a join R(S .  I.) w S(k: 2):  lye hash the tuples of R and S to a 
number of buckets equal to the number of processors. Ho~vever, the hash 
function h 15-e use must depend only on the attributes of I-. not all the 

Section 1-1.2.5). because that ~rould place all the tuples with a gi\-en value of an attribute, 
say a = 10, among only a small subset of the buckets. 

"n principle. this union could be either a set- or bag-union. But the simple bag-union 
technique from Section 13.2.3 of copying all the tuples from both arguments \vorks in parallel, 
so \ve probably would not want to use the algorithm described here for a bag-union. 

''If the hash function used to distribute tuples of R or S is known, we can use that hash 
function for the other and not distribute both relations. 
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attributes, so that joining tuples are always sent to the same bucket. As if we used a two-pass sort-join at  each processor, a naive ~arallel  
with union, we ship tuples of bucket i to processor i. We may then perform algorithm would use 3(B(R) + B(S))/P disk 110's a t  each processor, since 
the join at  each processor using any of the uniprocessor join algorithms the sizes of the relations in each bucket would be approximately B(R)/P and 
we have discussed in this chapter. B(S)Ip, and this type of join takes three disk I /07s  per block occupied by each of 

the argument relations. To this cost we would add another ~ ( B ( R )  + B(s))/P 
To perform grouping and aggregation ~ L ( R ) ,  we distribute the tuples of disk 110's per processor, to account for the first read of each tuple and the 
R using a hash function h that depends only on the grouping attributes storing away of each tuple by the processor receiving the tuple during the hash 
in list L. If each processor has all the tuples corresponding to one of the and distribution of tuples. UB should also add the cost of shipping the data, 
buckets of h, then we can perform the y~ operation on these tuples locally, but ,ye elected to consider that cost negligible compared with the cost of 
using any uniprocessor y algorithm. disk 110 for the same data. 

The abo\-e comparison demonstrates the value of the multiprocessor. While 

15.9.4 Performance of Parallel Algorithms lve do more disk 110 in total - five disk 110's per block of data, rather than 
three - the elapsed time, as measured by the number of disk 110's ~erformed 

Now, let us consider how the running time of a parallel algorithm on a p at each processor has gone down from 3(B(R) + B(S)) to 5(B(R) + B(S))/P, 
processor machine compares with the time to execute an algorithm for the a significant win for large p. 
same operation on the same data, using a uniprocessor. The total work - XIoreover, there are ways to improve the speed of the parallel algorithm so 
disk 110's and processor cycles - cannot be smaller for a parallel machine that the total number of disk 110's is not greater than what is required for a 
than a uniprocessor. However, because there are p processors working with p uniprocessor algorithm. In fact, since we operate on smaller relations at  each 
disks, we can expect the elapsed, or wall-clock, time to be much smaller for the processor, nre maJr be able to use a local join algorithm that uses fewer disk 
multiprocessor than for the uniprocessor. I /03s  per block of data. For instance, even if R and S were so large that we 

: j unary operation such as ac(R) can be completed in l lpth of the time it need a t~f-o-pass algorithm on a uniprocessor, lye may be able to use a One-Pass 
would take to perform the operation a t  a single processor, provided relation R algorithnl on (1lp)th of the data. 
is distributed evenly, as was supposed in Section 15.9.2. The number of disk Ke can avoid tlvo disk 110's per block if: when we ship a block to the 
110's is essentially the same as for a uniprocessor selection. The only difference processor of its bucket, that processor can use the block imnlediatel~ as Part 
is that t,here will, on average, be p half-full blocks of R, one at  each processor, of its join 11ost of the algorithms known for join and the other 
rather than a single half-full block of R had we stored all of R on one processor's relational operators allolv this use, in which case the parallel algorithm looks 

just like a multipass algorithm in which the first pass uses the hashing technique 
xow, consider a binary operation, such as join. We use a hash function on of Section 13.8.3. 

the join attributes that sends each tuple to one of p buckets, where p is the 
mmber of ~rocessors. TO send the tuples of bucket i to processor i, for all Example 15.18 : Consider our running example R(-y, 1') w S(I'; 21, where R 
i, we must read each tuple from disk to memory, compute the hash function, and s Occupy 1000 and .jOO blocks, respectively. Sow. let there be 101 buffers 
and ship all tuples except the one out of p tuples that happens to belong to at each processor of a 10-processor machine. Also, assume that R and S are 
the bucket at its own processor. If we are computing R(,Y, Y )  w S(kF, z), then distributed uniforn~ly anlong these 10 processors. 
we need to do B(R) + B(S) disk 110's to read all the tuples of R and S and w e  begin by hashing each tuple of R and S to one of 10 L'buckets7" us- 
determine their buckets. ing a hash function h that depends only on the join attributes Y .  These 10 

n.e then must ship (9) (B(R) + B(S)) blocks of data across the machine's '.buckets" represent the 10 processors, and tuples are shipped to the processor 
interconnection network to their proper processors; only the (llp)tl1 correspondillg to their -.l),lckct." The total number of disk 110's needed to read 

the tuples already at the right processor need not be shipped. The cost of the tuples of R and S is 1300, or 1.50 per processor. Each processor will have 
can be greater or less than the cost of the same number of disk I/O.s, about 1.3 blocks \vortll of data for each other processor, SO it ships 133 blocks 

on the architecture of the machine. Ho~vever, we shall assullle that to the nine processors. The total communication is thus 1350 blocks. 
across the internal network is significantly cheaper than moyement w e  shall arrange that the processors ship the tuples of S before the tuples 

Of data between disk and memory, because no physical motion is involved in of R. Since each processor receives abont 50 blocks of tuples froin S ,  it can 
shipment among processors, while it is for disk 110. store those tuples in a main-memory data structure, using 50 of its 101 buffers. 

In principle, we might suppose that the receiving processor has to store the Then, when processors start sending R-tuples: each one is compared with the 
data on its own disk, then execute a local join on the tuples received. For local S-tuples, and any resulting joined tuples are output- 
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Biiig Mistake I 
When using hash-based algorithms to distribute relations among proces- 
sors and to execute operations, as in Example 15.18, we must be careful 
not to overuse one hash function. For instance, suppose we used a has11 
function h to hash the tuples of relations R and S among processors, in 
order to take their join. Wre might be tempted to use h to hash the tu- 
ples of S locally into buckets as we perform a one-pass hash-join at  each 
processor. But if we do so, all those tuples will go to the same bucket, 
and the main-memory join suggested in Example 15.18 will be extremely 
inefficient. 

In this way, the only cost of the join is 1500 disk I/O's, much less than for any 
other method discussed in this chapter. R~Ioreover, the elapsed time is prilnarily 
the I50 disk I/07s performed at each processor, plus the time to ship tuples 
between processors and perform the main-memory computations. Sote that 150 
disk I/O's is less than 1110th of the time to perform the same algorithm on a 
uniprocessor; we have not only gained because we had 10 processors working for 
us, but the fact that there are a total of 1010 buffers among those 10 processors 
gives us additional efficiency. 

Of course, one might argue that had there been 1010 buffers at a single 
processor, then our example join could have been done in one pass. using 1500 
disk 110's. However, since multiprocessors usually have memory in proportion 
to the number of processors, we have only exploited two advantages of multi- 
processing simultaneously to get two independent speedups: one in proportion 
to the number of processors and one because the extra memory allows us to use 
a more efficient algorithm. 

15.9.5 Exercises for Section 15.9 

Exercise 15.9.1 : Suppose that a disk 1/0 takes 100 milliseconds. Let B(R) = 
100, so the disk I/07s for computing uc(R) on a uniprocessor machine will take 
about 10 seconds. What is the speedup if this selectio~l is executed on a parallel 
machine with p processors, where: *a) p = 8 b) p = 100 c )  p = 1000. 

! Exercise 15.9.2 : In Example 15.18 1.o described an algorithm that conlputed 
the join R w S in parallel by first hash-distributing the tuples among the 
processors and then performing a one-pass join at the processors. In terms of 
B(R)  and B(S) ,  the sizes of the relations involved, p (the number of processors); 
and (the number of blocks of main memory at each processor), give the 
condition under which this algorithm call be executed successfully. 

" 15.10. SUAIIMRY OF CHAPTER 15 

15.10 Summary of Chapter 15 

+ Query Processing: Queries are compiled, which involves extensive o p  
timization, and then executed. The study of query execution involves 
knowing methods for executing operatiom of relational algebra with some 
extensions to match the capabilities of SQL. 

+ Query Plans: Queries are compiled first into logical query plans, which are 
often like expressions of relational algebra, and then converted to a physi- 
cal query plan by selecting an implementation for each operator, ordering 
joins and making other decisions, as will be discussed in Chapter 16. 

+ Table Scanning: To access the tuples of a relation, there are several pos- 
sible physical operators. The table-scan operator simply reads each block 
holding tuples of the relation. Index-scan uses an index to find tuples, 
and sort-scan produces the tuples in sorted order. 

+ Cost Measures for Physical Operators: Commonly, the number of disk 
I/O's taken to execute an operation is the dominant component of the 
time. In our model, we count only disk I/O time, and we charge for the 
time and space needed to read arguments, but not to write the result. 

+ Iterators: Several operations in~olved in the execution of a query can 
be meshed conveniently if we think of their execution as performed by 
an iterator. This mechanism consists of three functions, to open the 
construction of a relation, to produce the next tuple of the relation, and 
to close the construction. 

+ One-Pass Algonthms: As long as one of the arguments of a relational- 
algebra operator can fit in main memory. we can execute the operator by 
reading the smaller relation to memory, and reading the other argument 
one block at a time. 

+ Nested-Loop Join: This slmple join algorithm works even when neither 
argument fits in main memory. It reads as much as it can of the smaller 
relation into memory, and compares that rvith the entire other argument; 
this process is repeated until all of the smaller relation has had its turn 
in memory. 

+ Two-Pass Algonthms: Except for nested-loop join, most algorithms for 
argulnents that are too large to fit into memor? are either sort-based. 
hash-based, or indes-based. 

+ Sort-Based Algorithms: These partition their argument(s) into main- 
memory-sized, sorted suhlists. The sorted sublists are then merged ap- 
propriately to produce the desired result. 
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+ Hash-Based Algorithms: These use a hash function to partition the ar- 
gument(~) into buckets. The operation is then applied to the buckets 
individually (for a unary operation) or in pairs (for a binary operation). 

+ Hashing Versus Sorting: Hash-based algorithms are often superior to sort- 
based algorithms, since they require only one of their arguments to be 
LLsmall.'7 Sort-based algorithms, on the other hand, work well when there 
is another reason to keep some of the data sorted. 

+ Index-Based Algorithms: The use of an index is an excellent way to speed 
up a selection whose condition equates the indexed attribute to a constant. 
Index-based joins are also excellent when one of the relations is small, and 
the other has an index on the join attribute(s). 

+ The Buffer Manager: The availability of blocks of memory is controlled 
by the buffer manager. When a new buffer is needed in memory, the 
buffer manager uses one of the familiar replacement policies, such as least- 
recently-used, to decide which buffer is returned to disk. 

+ Coping With Variable Numbers of Buffers: Often, the number of main- 
memory buffers available to an operation cannot be predicted in advance. 
If so, the algorithm used to implement an operation needs to degrade 
gracefully as the number of available buffers shrinks. 

+ Multipass Algorithms: The two-pass algorithms based on sorting or hash- 
ing have natural recursive analogs that take three or more passes and will 
work for larger amounts of data. 

+ Parallel Machines: Today's parallel machines can be characterized as 
shared-memory, shared-disk, or shared-nothing. For database applica- 
tions, the shared-nothing architecture is generally the most cost-effective. 

+ Parallel Algorithms: The operations of relational algebra can generally 
be sped up on a parallel machine by a factor close to the number of 
processors. The preferred algorithms start by hashing the data to buckets 
that correspond to the processors, and shipping data to the appropriate 
processor. Each processor then performs the operation on its local data. 

15.11 References for Chapter 15 

Two surveys of query optimization are [6] and [2]. (81 is a survey of distributed 
query optimization. 

An early study of join methods is in 151. Buffer-pool management was ana- 
lyzed, surveyed, and improved by [3]. 

The use of sort-based techniques was pioneered by [I]. The advantage of 
hash-based algorithms for join was expressed by [7] and [4]; the latter is the 
origin of the hybrid hash-join. The use of hashing in parallel join and other 
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2. The parse tree is traxisformed into an es~ression tree of relational algebra 
(or a similar notation). \vhicli \ye tern1 a logecal query plan. 

I 
3. The logical query plan must be turned into a physical query plan,  which 

indicates not only the operations performed, but the order in which they 
are performed: the algorithm used to perform each step, and the Rays in 
n-hich stored data is obtained and data is passed from one operation to 
another. 

The first step, parsing, is the subject of Section 16.1. The result of this 
step is a parse tree for the query. The other two steps involve a number of 
choices. In picking a logical query plan, we have opportunities to apply many 
different algebraic operations, with the goal of producing the best logical query 
plan. Section 16.2 discusses the algebraic lan-s for relational algebra in the 
abstract. Then. Section 16.3 discusses the conversion of parse trees to initial 
logical query plans and s h o ~ s  how the algebraic laws from Section 16.2 can be 
used in strategies to improre the initial logical plan. 

IT'llen producing a physical query plan from a logical plan. 15-e must evaluate 
the predicted cost of each possible option. Cost estinlation is a science of its 
own. lx-hich we discuss in Section 16.4. \Ye show how to use cost estimates to 
evaluate plans in Section 16.5, and the special problems that come up when 
lve order the joins of several relations are tile subject of Section 16.6. Finally, 
Section 16.7. col-ers additional issues and strategies for selecting the physical 
query plan: algorithm choice and pipclining versus materialization. 



CHAPTER 16. THE QUERY COAIPILER 

16.1 Parsing 

The first stages of query compilation are illustrated in Fig. 16.1. The four boxes 
in that figure correspond to the first two stages of Fig. 15.2. We have isolated a 
"preprocessing" step, which we shall discuss in Section 16.1.3, between parsing 
and conversion to the initial logical query plan. 

Query 

Parser & \  
Section 16.1 

Section 16.3 

Preferred logical 
query plan 

Figure 16.1: From a query to a logical query plan 

In this section, we discuss parsing of SQL and give rudiments of a grammar 
that can be used for that language. Section 16.2 is a digression from the line 
of query-compilation steps, where we consider extensively the various laws or 
transformations that apply to expressions of relational algebra. In Section 16.3. 
we resume the query-compilation story. First, we consider horv a parse tree 
is turned into an expression of relational algebra, which becomes our initial 
logical query plan. Then, rve consider ways in which certain transformations 
of Section 16.2 can be applied in order to improve the query plan. rather rhan 
simply to change the plan into an equivalent plan of ambiguous merit. 

16.1.1 'Syntax Analysis and Parse Trees 

The job of the parser is to take test written in a language such as SQL and 
convert it to a pame tree, which is a tree n-hose 11odcs correspond to either: 

1 .  Atoms, which are lexical ele~nents such as keywords (e.g., SELECT). names 
of attributes or relations, constants, parentheses, operators such as + or 
<, and other schema elements. or 

2.  Syntactic categories, which are names for families of query subparts that 
all play a similar role in a query. 1i7e shall represent syntactic categories 

by triangular brackets around a descriptive name. For example, <SFW> 
will be used to represent any query in the common select-from-where form, 
and <Condition> will represent any expression that is a condition; i.e., 
it  can follow WHERE in SQL. 

If a node is an atom, then it has no children. Howel-er, if the node is a 
syntactic category, then its children are described by one of the rules of the 
grammar for the language. We shall present these ideas by example. The 
details of horv one designs grammars for a language, and how one "parses," i.e., 
turns a program or query into the correct parse tree, is properly the subject of 
a course on compiling.' 

16.1.2 A Grammar for a Simple Subset of SQL 

1Ve shall illustrate the parsing process by giving some rules that could be used 
for a query language that is a subset of SQL. \Ve shall include some remarks 
about ~vhat additional rules would be necessary to produce a complete grammar 
for SQL. 

Queries 

The syntactic category <Query> is intended to represent all well-formed queries 
of SQL. Some of its rules are: 

Sote that \ve use the symbol : := conventionally to mean %an be expressed 
as ... The first of these rules says that a query can be a select-from-where form; 
we shall see the rules that describe <SF\tT> next. The second rule says that 
a querv can be a pair of parentheses surrouilding another query. In a full SQL 
grammar. we lvould also nerd rules that allowed a query to be a single relation 
or an expression invol~ing relations and operations of various types, such as 
UNION and JOIN. 

Select-From-Where Forlns 

l i e  give the syntactic category <SF\f'> one rule: 

<SFW> ::= SELECT <SelList> FROM <FromList> WHERE <Condition> 

'Those unfamiliar with the subject may wish to examine A. V. Xho, R. Sethi, and J .  D. 
Ullman. Comptlers: Princtples, Technzpues, and Tools. Addison-\Vesley, Reading I'fA, 1986, 
although the examples of Section 16.1.2 should be sufficient to place parsing in the context 
of the query processor. 
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This rule allorvs a limited form of SQL query. It does not provide for the various 
optional clauses such as GROUP BY, HAVING, or ORDER BY, nor for options such 
as DISTINCT after SELECT. Remember that a real SQL grammar would hare a 
much more complex structure for select-from-where queries. 

Note our convention that keywords are capitalized. The syntactic categories 
<SelList> and <fiomList> represent lists that can follow SELECT and FROM, 
respecti\~ely. We shall describe limited forms of such lists shortly. The syntactic 
category <Condition> represents SQL conditions (expressions that are either 
true or false); we shall give some simplified rules for this category later. 

Select-Lists 

These two rules say that a select-list can be any comma-separated list of at- 
tributes: either a single attribute or an attribute, a comma, and any list of one 
or more attributes. Note that in a full SQL grammar we would also need provi- 
sion for expressions and aggregation functions in the select-list and for aliasing 
of attributes and expressions. 

From-Lists 

Here, a from-list is defined to be any comma-separated list of relations. For 
simplification, we omit the possibility that elements of a from-list can be ex- 
pressions, e.g., R JOIN S, or even a select-from-where expression. Likewise, a 
full SQL grammar would have to provide for aliasing of relations mentioned in 
the from-list; here, we do not allow a relation to be followed by the name of a 
tuple variable representing that relation. 

Conditions 

The rules we shall use are: 

<Condition> ::= <Condition> AND <Condition> 
<Condition> ::= <Tuple> I N  <Query> 
<Condition> ::= <Attribute> = <Attribute> 
<Condition> ::= <Attribute> LIKE <Pattern> 

Althougli we have listed more rules for conditions than for other categories. 
these rules only scratch the surface of the forms of conditions. i17e hare oinit- 
ted rules introducing operators OR, NOT, and EXISTS, comparisolis other than 
equality and LIKE, constant operands. and a number of other structures that 
are needed in a full SQL grammar. In addition, although there are several 

forms that a tuple may take, we shall introduce only the one rule for syntactic 
category <Tuple> that says a tuple can be a single attribute: 

Base  Syntactic Categories 

Syntactic categories <fittribute>, <Relation>, and <Pattern> are special, 
in that they are not defined by grammatical rules, but by rules about the 
atoms for which they can stand. For example, in a parse tree, the one child 
of <Attribute> can be any string of characters that identifies an attribute in 
whatever database schema the query is issued. Similarly, <Relation> can be 
replaced by any string of characters that makes sense as a relation in the current 
schema, and <Pattern> can be replaced by any quoted string that is a legal 
SQL pattern. 

Example 16.1 : Our study of the parsing and query rewriting phase will center 
around twx-o versions of a query about relations of the running movies example: 

StarsIn(movieTitle, movieyear, starName) 
MovieStar(name, address, gender, bir thdate) 

Both variations of the query ask for the titles of movies that have at  least one 
star born in 1960. n'e identify stars born in 1960 by asking if their birthdate 
(an SQL string) ends in '19602, using the LIKE operator. 

One way to ask this query is to construct the set of names of those stars 
born in 1960 as a subquery, and ask about each StarsIn  tuple whether the 
starName in that tuple is a member of the set returned by this subquery. The 
SQL for this variation of the query is sllo~vn in Fig. 16.2. 

SELECT movieTitle 
FROM StarsIn  
WHERE starName I N  ( 

SELECT name 
FROM Moviestar 
WHERE bir thdate  LIKE '%1960' 

1; 

Figure 16.2: Find the movies with stars born in 1960 

The parse tree for the query of Fig. 16.2, according to the grammar n-e have 
sketched, is shown in Fig. 16.3. At the root is the syntactic category <Query>, 
as must be the case for any parse tree of a query. Working down the tree, we 
see that this query is a select-from-ivhere form; the select-list consists of only 
the attribute t i t l e ,  and the from-list is only the one relation StarsIn.  
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SELECT m o v i e T i t l e  
FROM StarsIn, M o v i e S t a r  

<SFW> WHERE starName = name AND 

//\\ b i r t h d a t e  LIKE '%19601; 
SELECT <SelList> FROM <FromList> WHERE <Condition> 

/ / // \ Figure 16.4: .&nother way to ask for the movies with stars born in 1960 
<Attribute> <RelName> e u p l e >  IN <Query> 

I I I //\ 
movieTitle 

<SFW> 

starName < S W >  

//\ 
SELECT <SelList> FROM <FromLisu WHERE <Condition> 

/ / //\ 
m o v i e T i t l e  S t a r s I n  <RelName> 

name M o v i e s t a r  b i r t h d a t e  ' %19601 

Figure 16.3: The parse t,ree for Fig. 16.2 

The condition in the outer WHERE-clause is more complex. It has the form 
of tuple-IN-query, and the query itself is a parenthesized subquery, since all 
subqueries must be surrounded by parentheses in SQL. The subquery itself is 
another select-from-where form, with its own singleton select- and from-lists 
and a simple condition involving a LIKE operator. 

Example 16.2: Kow, let us consider another version of the query of Fig. 16.2. 
this time without using a subquery. We may instead equijoin thc relations 
StarsIn and n o v i e s t a r ,  using the condition starName = name, to require that 
the star mentioned in both relations be the same. Note that starName is an 
attribute of relation S t a r s I n ,  while name is an attribute of MovieStar .  This 
form of the query of Fig. 16.2 is shown in Fig. 16.4.' 

The parse tree for Fig. 16.1 is seen in Fig. 16.5. Many of the rules used in 
this parse tree are the same as in Fig. 16.3. However, notice how a from-list 
with Inore than one relation is expressed in the tree, and also observe holv a 
condition can be several smaller conditions connected by an operator. AND in 
this case. n 

<Attribute> = <Atmbute> <Attribute> LIKE <Pattern> 

I I I I 
starName name b i r t h d a t e  '%1960f  

Figure 16.5: The parse tree for Fig. 16.4 

16.1.3 The Preprocessor 

What 11-e termed the preprocessor in Fig. 16.1 has several important functions. 
If a relation used in the query is actually a view, then each use of this relation 
in the from-list must be replaced by a parse tree that describes the view. This 
parse tree is obtained from the definition of the viexv: which is essentially a 
query. 

The preprocessor is also responsible for semantic checking. El-en if the query 
is valid syntactically, it actually may violate one or more semantic rules on the 
use of names. For instance, the preprocessor must: 

1. Check relation uses. Every relati011 mentioned in a FROM-clause must be 
is a small difference between the t\vo queries in that Fig. 16.4 can produce duplicates 

if a has more than one star born in 1960. Strictly speaking, we should add DISTINCT 
a relation or view in the schema against which the query is executed. 

to Fig. 16.4, but our example grammar was simplified to the extent of omitting that option. For instance, the preprocessor applied to the parse tree of Fig. 16.3 d l  
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check that the t.wvo relations StarsIn  and Moviestar, mentioned in the 
two from-lists, are legitimate relations in the schema. 

2. Check and resolve attribute uses. Every attribute that is mentioned in 
the SELECT- or WHERE-clause must be an attribute of some relation in 
the current scope; if not, the parser must signal an error. For instance, 
attribute t i t l e  in the first select-list of Fig. 16.3 is in the scope of only 
relation StarsIn. Fortunately, t i t l e  is an attribute of StarsIn,  so the 
preprocessor validates this use of t i t l e .  The typical query processor 
would at  this point resolve each attribute by attaching to it the relation 
to which it refers, if that relation was not attached explicitly in the query 
(e.g., StarsIn.  t i t l e ) .  It would also check ambiguity, signaling an error 
if the attribute is in the scope of two or more relations with that attribute. 

3. Check types. A11 attributes must be of a type appropriate to their uses. 
For instance, b i r thdate  in Fig. 16.3 is used in a LIKE comparison, wvhich 
requires that b i r thdate  be a string or a type that can be coerced to 
a string. Since b i r thdate  is a date, and dates in SQL can normally be 
treated as strings, this use of an attribute is validated. Likewise, operators 
are checked to see that they apply to values of appropriate and compatible 
types. 

If the parse tree passes all these tests, then it is said to be valid, and the 
tree, modified by possible view expansion, and with attribute uses resolved, is 
given to the logical query-plan generator. If the parse tree is not valid, then an 
appropriate diagnostic is issued, and no further processing occurs. 

16.1.4 Exercises for Section 16.1 

Exercise 16.1.1: Add to or modify the rules for <SF\V> to include simple 
versions of the following features of SQL select-from-where expressions: 

* a) The abdity to produce a set with the DISTINCT keyword. 

b) -4 GROUP BY clause and a HAVING clause. 

c) Sorted output with the ORDER BY clause. 

d) .A query with no \I-here-clause. 

Exercise 16.1.2: Add to tlie rules for <Condition> to allolv the folio\\-ing 
features of SQL conditionals: 

* a) Logical operators OR and KOT 

b) Comparisons other than =. 

c) Parenthesized conditions. 
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d) EXISTS expressions. 

Exercise 16.1.3: Using the simple SQL grammar exhibited in this section, 
give parse trees for the following queries about relations R(a, b)  and S(b,c): 

a) SELECTa, c FROM R,  SWHERER.b=S.b; 

b) SELECT a FROM R WHERE b IN 
(SELECT a FROM R, S WERE R.b = S.b); 

16.2 Algebraic Laws for Improving Query Plans 

We resume our discussion of the query compiler in Section 16.3, where we first 
transform the parse tree into an expression that is wholly or mostly operators of 
the extended relational algebra from Sections 5.2 and 5.4. Also in Section 16.3, 
we see hoxv to apply heuristics that we hope will improve the algebraic expres- 
sion of the query, using some of the many algebraic laws that hold for relational 
algebra. -4s a preliminary. this section catalogs algebraic laws that turn one ex- 
pression tree into an equivalent expression tree that maJr have a more efficient 
physical query plan. 

The result of applying these algebraic transformations is the logical query 
plan that is the output of the query-relvrite phase. The logical query plan is 
then conr-erted to a physical query plan. as the optinlizer makes a series of 
decisions about implementation of operators. Physical query-plan gelleration is 
taken up starting wit11 Section 16.4. An alternative (not much used in practice) 
is for the query-rexvrite phase to generate several good logical plans, and for 
physical plans generated fro111 each of these to be considered when choosing the 
best overall physical plan. 

16.2.1 Commutative and Associative Laws 

The most common algebraic Iaxvs. used for simplifying expressions of all kinds. 
are commutati~e and associati\-e laws. X commutative law about an operator 
says that it does not matter in 11-hicll order you present the arguments of the 
operator: the result will be the same. For instance, + and x are commutatix~ 
operators of arithmetic. More ~recisely, x + y = y + x and x x y = y X.X for 
any numbers 1: and y.  On tlie other hand, - is not a commutative arithmetic 
operator: u - y # y - 2. 

.in assoclatit:e law about an operator says that Fve may group t ~ o  uses of the 
operator either from the left or the right. For instance. + and x are associative 
arithmetic operators. meaning that (.c + y) + z = .z f ( 9  + 2) and (x x y )  x t = 
x x (y x z ) .  On the other hand. - is not associative: (x - y) - z # x - (y - i ) .  

When an operator is both associative and commutative, then any number of 
operands connected by this operator can be grouped and ordered as we wish 
wit hour changing the result. For example, ((w + z) + Y) + t = (Y + x) + (Z  + W )  . 
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Several of the operators of relational algebra are both associative and com- 
mutative. Particularly: 

Note that these laws hold for both sets and bags. 
We shall not prove each of these laws, although we give one example of 

a proof, below. The general method for verifying an algebraic law involving 
relations is to check that every tuple produced by the expression on the left 
must also be produced by the expression on the right, and also that every tuple 
produced on the right is likewise produced on the left. 

Example 16.3: Let us verify the commutative law for w : R w S = S w R. 
First, suppose a tuple t is in the result of R  w S,  the expression on the left. 
Then there must be a tuple T in R and a tuple s in S that agree with t on every 
attribute that each shares with t. Thus, when we evaluate the espression on 
the right, S w R, the tuples s and r will again combine to form t. 

We might imagine that the order of components of t will be different on the 
left and right, but formally, tuples in relational algebra have no fixed order of 
attributes. Rather, we are free to reorder components, as long as ~ve carry the 
proper attributes along in the column headers, as was discussed in Section 3.1.5. 

We are not done yet with the proof. Since our relational algebra is an algebra 
of bags, not sets, we must also verify that if t appears n times on the left.-then 
it appears n times on the right, and vice-versa. Suppose t appears n times on 
the left. Then it must be that the tuple r from R that agrees with t appears 
some number of times nR, and the tuple s from S that agrees with t appears 
some ns times, where n ~ n s  = n. Then when we evaluate the expression S  w R 
011 the right, we find that s appears n s  times, and T appears nR times, so \re 
get nsnR copies oft ,  or n copies. 

We are still not done. We have finished the half of the proof that says 
everything on the left appears on the right, but Ive must show that everything. 
on the right appears on tlie left. Because of the obvious symmetry, tlie argument 
is essentially the same, and we shall not go through the details here. 

\Ve did not include the theta-join among the associative-commutatiw oper- 
ators. True, this operator is commutative: 

R ~ s = s ~ R .  

Sloreover, if the conditions involved make sense where they are positioned, then 
the theta-join is associative. However, there are examples, such as the follo~t-ing. 
n-here we cannot apply the associative law because the conditions do not apply 
to attributes of the relations being joined. 

I Laws for Bags and Sets Can Differ I 
We should be careful about trying to apply familiar laws about sets to 
relations that are bags. For instance, you may have learned set-theoretic 
laws such as A ns ( B  US C )  = ( A  ns B)  Us ( A  ns C), which is formally 
the "distributiye law of intersection over union." This law holds for sets, 
but not for bags. 

As an example, suppose bags A, B, and C were each {x). Then 
A n~ (B us C) = {x) ng {x,x) = {x). But ( A  ns B) UB (A  n~ C )  = 
{x) U b  {x) = {x, x), which differs from the left-hand-side, {x). 

Example  16.4 : Suppose we have three relations R(a, b) ,  S(b,c), and T(c,  d). 
The expression 

is transformed by a hypothetical associative law into: 

However, \ve cannot join S and T using tlie condition a < d, because a is an 
attribute of neither S nor T. Thus, the associative law for theta-join cannot be 
applied arbitrarily. 

16.2.2 Laws Involving Selection 

Selections are crucial operations from the point of view of query optimization. 
Since selections tend to reduce the size of relations markedly, one of the most 
important rules of efficient query processing is to move the selections down the 
tree as far as they ~i-ill go without changing what the expression does. Indeed 
early query optimizers used variants of this transformation as their primary 
strategy for selecting good logical query plans. .As we shall point out shortly, the 
transformation of .'push selections down the tree" is not quite general enough, 

1 but the idea of .'pushing selections" is still a major tool for the query optimizer. 
I In this section 11-e shall studv the l a w  involving the o operator. To start, 

~vhen the condition of a selection is complex (i.e., it involves conditions con- 
nccted by AND or OR). it helps to break the condition into its constituent parts. 
The motiration is that one part, involving felver attributes than the whole con- 
dition. ma)- be ma-ed to a convenient place that the entire condition cannot 
go. Thus; our first tiyo laws for cr are the splitting laws: 

oC1 AND C2 (R)  = UCl (ffc2 (R) ) .  



798 CHAPTER 16. THE QUERY CO,%fPILER 

However, the second law, for OR, works only if the relation R is a set. KO- 
tice that if R were a bag, the set-union would hase the effect of eliminating 
duplicates incorrectly. 

Notice that the order of C1 and Cz is flexible. For example, we could just as 
u-ell have written the first law above with C2 applied after CI, as a=, (uc, (R ) ) .  
In fact, more generally, we can swap the order of any sequence of a operators: 

gel (oc2 (R ) )  = 5c2 (ac, (R)) . 

Example 16.5 : Let R(a, b, c) be a relation. Then OR a=3) AND b<c (R)  can 
be split as aa=l OR .=3(17b<~(R)). We can then split this expression at the OR 
into (Ta=l ( u ~ < ~ ( R ) )  U ~a=3(ob<c(R)). In this case, because it is impossible for 
a tuple to satisfy both a = 1 and a = 3, this transformation holds regardless 
of whether or not R is a set, as long as U g  is used for the union. However, in 
general the splitting of an OR requires that the argument be a set and that Us 
be used. 

Alternatively, we could have started to split by making ob,, the outer op- 
eration, as UF,<~ ( 5 . ~ 1  OR a=3(R)). When me then split the OR, we \vould get 
U ~ < C ( U ~ = ~ ( R )  U oa=3(R)), an expression that is equivalent to, but somewhat 
different from the first expression we derived. 

The next family of laws involving o allow us to push selections through the 
binary operators: product, union, intersection, difference, and join. There are 
three types of laws, depending on whether it is optional or required to push the 
selection to each of the arguments: 

1. For a union, the selection must be pushed to both arguments. 

2. For a difference, the selection must be pushed to the first argument and 
optionally may be pushed to the second. 

3. For the other operators it is only required that the selection be pushed 
to one argument. For joins and products, it may not make sense to push 
the selection to both arguments, since an argument may or may not have 
the attributes that the selection requires. When it is possible to push to 
both, it may or may not improve the plan to do so; see Exercise 16.2.1. 

Thus, the law for union is: 

Here, it is mandatory to move the selection down both branches of the tree. 
For difference, one version of the law is: 

Ho~vever, it is also permissible to push the selection to both arguments, as: 
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The next laws allow the selection to be pushed to one or both arguments. 
If the selection is U C ,  then we can only push this selection to a relation that 
has all the attributes mentioned in C,  if there is one. \\'e shall show the laws 
below assuming that the relation R has all the attributes mentioned in C. 

oc ( R  w S )  = uc ( R )  w S. 

If C has only attributes of S ,  then we can instead write: 

and similarly for the other three operators w, [;;1, and n. Should relations R 
and S both happen to have all attributes of C, then we can use laws such as: 

Note that it is impossible for this variant to apply if the operator is x or z, 
since in those cases R and S have no shared attributes. On the other halld, for 
n the law always applies since the sche~nas of R and S must then be the same. 

Example 16.6 : Consider relations R(a, b) and S(b, c) and the expression 

The condition b < c can be applied to S alone, and the condition a = 1 OR a = 3 
can be applied to R alone. We thus begin by splitting the AND of the two 
conditions as we did in the first alternative of Example 16.5: 

Xest, we can push the selection a<, to S, giving us the expression: 

Lastly, we push the first condition to R. yielding: U.=I OR .=3(R) w ub<=(S). 
Optionally, \r.e can split the OR of txvo conditions as n e  did in Example 16.5. 
However, it may or may not be advantageous to do so. 
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Some Trivial Laws 

We are not going to state every true law for the relational algebra. The 
reader should be alert, in particular, for laws about extreme cases: a 
relation that is empty, a selection or theta-join whose condition is always 
true or always false, or a projection onto the list of all attributes, for 
example. A few of the many possible special-case laws: 

Any selection on an empty relation is empty. 

If C is an always-true condition (e.g., x > 10 OR x 5 10 on a relation 
that forbids x = NULL), then uc(R) = R. 

If R is empty, then R U S = S. 

L 

16.2.3 Pushing Selections 

As was illustrated in Example 6.52, pushing a selection down an expression 
tree - that is, replacing the left side of one of the rules in Section 16.2.2 by 
its right side - is one of the most powerful tools of the query optimizer. It 
was long assumed that we could optimize by applying the laws for u only in 
that direction. Horvcver, when systems that supported the use of viem became 
common, it was found that in some situations it was essential first to move a 
selection as far up the tree as it would go, and then push the selections down all 
possible branches. -4n example should illustrate the proper selection-pushing 
approach. 

Example 16.7: Suppose we have the relations 

S t a r s I n ( t i t l e ,  year,  starName) 
Movie(t i t le ,  year,  length,  incolor,  studioName, producerC#) 

Sote that we have altered the first two attributes of S tars In  from the usual 
movieTitle and movieyear to make this example simpler to follow. Define 
view MoviesDf 1996 by: 

CREATE VIEW MoviesOfl996 AS 
SELECT * 
FROM Movie 

,WHERE year = 1996; 

We can ask the query "which stars worked for which studios in 199G?" by the 
SQL query: 
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SELECT starName, studioName 
FROM MoviesOfl996 NATURAL JOIN S ta r s In ;  

The view MoviesOf 1996 is defined by the relational-algebra expression 

Thus, the query. which is the natural join of this expression with Stars In ,  
follo~ved by a projection onto attributes starName and studioName, has the 
expression, or '.logical query plan," shown in Fig. 16.6. 

OYeur= 1996 Sta r s In  

I 
Movie 

Figure 16.6: Logical query plan constructed from definition of a query and view 

In this expression. the one selection is already as far down the tree as it will 
go, so there is IIO 11-a\- to .Lpush selections don-n the tree." However, the rule 
uc(R w S )  = gc(R) w S can bc applied ,.back~~-ards." to bring the selection 
uy,,,=l99o above the join in Fig. 1G.6. Then. since year is an attribute of both 
Movie and Stars In .  we may push the selection doix-n to both children of the 
join node. The resulting logical query plan is shown in Fig. 16.7. I t  is likely to 
be an impro~ement. since we reduce the size of the relation S ta r s In  before rve 
join it with the molies of 1996. 

Movie Stars In  

Figure 16.7: Ilnprorillg the query plan by moving selections up and down the 
tree 
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16.2.4 Laws Involving Projection 

Projections, like selections, can be "pushed down" through many other opera- 
tors. Pushing projections differs from pushing selections in that when we push 
projections, it is quite usual for the projection also to remain where it is. Put 
another way, "pushing" projections really involves introducing a new projection 
somewhere below an existing projection. 

Pushing projections is useful, but generally less so than pushing selections. 
The reason is that while selections often reduce the size of a relation by a large 
factor, projection keeps the number of tuples the same and only reduces the 
length of tuples. In fact, the extended projection operator of Section 5.4.5 can 
actually increase the length of tuples. 

To describe the transformations of extended projection, we need to introduce 
some terminology. Consider a term E + x on the list for a projection, where 
E is an attribute or an expression involving attributes and constants. We say 
all attributes mentioned in E are input attributes of the projection, and x is an 
output attribute. If a term is a single attribute, then it is both an input and 
output attrihute. Note that it is not possible to have an expression other than 
a single attribute without an arrow and renaming, so we have covered all the 
cases. 

If a projection list consists only of attributes, with no renaming or expres- 
sions other than a single attribute, then 11-e say the projection is simple. In the 
classical relational algebra, all projections are simple. 

Example 16.8 : Projection T ~ , ~ , ~ ( R )  is simple; a, b, and c are both its input 
attributes and its output attributes. On the other hand, ra+b+=, J R )  is not 
simple. It has input attributes a, b, and c. and its output attributes are x and 
c. 

The principle behind laws for projection is that: 

We may introduce a projection anywhere in an expression tree, as long as 
it eliminates only attributes that are never used by any of the operators 
above, and are not in the result of the entire expression. 

In the most basic form of these laws, the introduced projections are alw-ays 
simple, although other projections, such as L below, need not be. 

xL(R w S )  = n~ (nnj(R) w n,v(S)). ~vhere d l  is the list of all attributes 
of R that are either join attributes (in the schema of both R ant1 S) or are 
input attributes of L, and iY is the list of attributes of S that are cither 
join attributes or input attributes of L. 

~ L ( R  S )  = ~L(wnf(R)  7 . i i ~ ( S ) ) .  \,-here A1 is the list of all attributes 
of R that are either join attributes (i.e., are mentioned in condition C) 
or are input attributes of L, and N is the list of attributes of S that are 
either join attributes or input attributes of L. 
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xt(R x S) = nt(nAf(R) x nN(S) ) ,  where hf and N are the lists of all 
attributes of R and S, respectively, that are input attributes of L. 

Example 16.9: Let R(a, b, c) and S(c, d ,  e) be two relations. Consider the 
expression x,+,,,, b+y(R w S).  The input attributes of the projection are a ,  
b, and e, and c is the only join attribute. We may apply the law for pushing 
projections belorv joins to get the equivalent expression: 

Sotice that the projection Z , , ~ , ~ ( R )  is trivial; it projects onto all the at- 
tributes of R. We may thus eliminate this projection and get a third equivalent 
expression: T=+~.+~,  b-+y ( R  w rC,,(S)). That is, the only change from the 
original is that we remove the attribute d from S before the join. 

In addition, we can perform a projection entirely before a bag union. That 
is: 

On the other hand, projections cannot be pushed below set unions or either the 
set or bag versions of intersection or difference at  all. 

Example 16.10 : Let R(a, b) consist of the one tuple ((1,211 and S(a, b)  
consist of the one tuple ((1.3)). Then na(R f l  S )  = ~ ~ ( 0 )  = 0. However, 
a a = 1 1  = 1 )  

If the projection involves some computations, and the input attributes of 
a term on the projection list belong entirely to one of the arguments of a join 
or product bclo~r- the projection; then we have the option, although not the 
obligation, to perform the computation directly on that argument. An example 
should help illustrate the point. 

Example 16.11 : Again let R(a, b. c) and S(c, d, e )  be relations, and consider 
the join and projection iio+b+x, d+c-+y(R w S) .  IVe can more the sum a + b 
and its renaming to .t. directly onto the relation R, and move the sum d + e to 
S similarly. The resulti~lg equivalent expression is 

One special case to handle is if r or y \r-ere c. Then. we could not rename 
a sun1 to c. because a relation cannot have two attributes named c. Thus. 

we ~ o u l d  have to invent a temporary name and do another renaming in the 
projection above the join. For example, ii,+~,+~, d+e.-ty(R w S )  could become 
ii:+c. y(~a+b-+:, c(R) rd+e+y. c (S) ) .  

It is also possible to push a projection below a selection. 
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m(nc(R))  = rr ,  ( U ~ ( ~ M ( R ) ) ) ,  where M is the list of all attributes that 
are either input attributes of L or mentioned in condition C. 

As in Example 16.11, we have the option of performing computations on the 
list L in the list 111 instead, provided the condition C does not need the input 
attributes of L that are involved in a computation. 

Often, we wish to push projections down expression trees, even if we have to 
leave another projection above, because projections tend to reduce the size of 
tuples and therefore to reduce the number of blocks occupied by an intermediate 
relation. However: we must be careful when doing so, because there are some 
common examples where pushing a projection down costs time. 

Example 16.12: Consider the query asking for those stars that worked in 
1996: 

SELECT starName 
FROM StarsIn 
WHERE year = 1996; 

about the relation StarsIn(movieTitle, movieyear, starName). The direct 
translation of this query to a logical query plan is shown in Fig. 16.8. 

starName 

I 
movieyear= 1996 

I 
StarsIn 

Figure 16.8: Logical query plan for the query of Example 16.12 

We can add below the selection a projection onto the attributes 

1. starName, because that attribute is needed in the result, and 

2. movieyear, because that attribute is needed for the selection condition. 

The result is shown in Fig. 16.9. 
If StarsIn were not a stored relation. but a relation that was constructed 

by another opmation. sucll as a join, then the plan of Fig. 16.9 makes sense. 
Ue can "pipeline" the projection (see Section 16.7.3) as tuples of the join are 
generated, by simply dropping the useless title attribute. 

However: in this case StarsIn is a stored relation. The lower projection in 
Fig. 16.9 could actually waste a lot of time, especially if there were an index 
on movieyear. Then a physical query plan based on the logical query plan of 
Fig. 16.8 would first use the index to get only those tuples of StarsIn that have 
movieyear equal to 1996, presumably a small fraction of the tuples. If we do 
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I 
' srarNarne, movieYear 

I 
StarsIn 

Figure 16.9: Result of introducing a projection 

the projection first, as in Fig. 16.9, then we have to read every tuple of StarsIn 
and project it. To make matters worse, the index on movieyear is probably 
useless in the projected relati011 ~ , ~ ~ , , ~ , , , , , ~ , , ~ ~ ~ ( ~ t a r s I n ) ,  SO the selection 
now involves a scan of all the tuples that result from the projection. 

16.2.5 Laws About Joins and Products 

l i e  saw in Section 16.2.1 many of the important laws involving joins and prod- 
ucts: their commutative and associative laws. However, there are a few addi- 
tional laws that follow directly from the definition of the join, as was mentioned 
in Section 5.2.10. 

R w S = z ~ ( u ~ ( R  x S ) ) ,  where C is the condition that equates each 
pair of attributes from R and S with the same name. and L is a list that 
includes one attribute from each equated pair and all the other attributes 
of R and S. 

In practice. we usually want to apply these rules from right to left. That is, a e  
identify a product followed by a selection as a join of some kind. The reason for 
doing so is that the algorithnls for computillg joins are generally much faster 
than algorithms that colnplite a product follo~vcd by a selection on the (rery 
large) result of the product. 

16.2.6 Laws Involving Duplicate Elimination 

The operator 6. \vhich elinli~lates duplicates from a bag. can be pushed through 
many. but not all operators. In general, moving a 6 down the tree reduces the 
size of intermediate relations and may therefore be beneficial. Sloreover, we 
can sometimes niol-e the d to a position where it can be eliminated altogether, 
because it is applied to a relation that is known not to possess duplicates: 

6(R) = R if R has no duplicates. Important cases of such a relation R 
include 
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a) A stored relation with a declared primary key, and 

b) A relation that is the result of a 7 operation, since grouping creates 
a relation with no duplicates. 

Several laws that "push" 6 through other operators are: 

We can also move the 6 to either or both of the arguments of an intersection: 

On the other hand, 6 cannot be moved across the operators U B ,  -8, or 7i in 
general. 

Example 16.13 : Let R have two copies of the tuple t and S have one copy of 
t. Then 6(R U g  S)  has one copy of t ,  while 6(R) U B  B(S) has two copies of t. 
Also, 6(R -B S) has one copy o f t ,  while 6(R) -B  6(S) has no copy oft. 

Xow, consider relation T(a .  b) with one copy each of the tuples (1,2) and 
(1,3), and no other tuples. Then 6(xir,(T)) has one copy of the tuple (I), while 
w, (S(T)) has tn-o copies of (1). 

Finally, note that commuting 6 with Us. fls, or -s makes no sense. Since 
producing a set is one way to guarantee there are no duplicates, Ive can eliminate 
the 6 instead. For example: 

- Sote, however, that a11 implementation of Us or the other set operators in- 
volves a duplicate-elimination process that is tantamount to applying 6; see 
Section 15.2.3, for example. 

16.2.7 Laws Involving Grouping and Aggregation 

IVllen we consiticr the operator y, we find that the applicability of many trans- 
formations depends on the details of the aggregate operators used. Thus. n-e 
cannot statc laws in the generality that Ive used for the other operators. One 
exception is the law, mentioned in Section 16.2.6, that a y absorbs a 6. Pre- 
cisely: 
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Another general rule is that we may project useless attributes from the ar- 
gument should ~ve wish, prior to applying the y operation. This law can he 
witten: 

Yt(R) = y ~ ( n ~ , ~ ( R ) )  if A6 is a list containing a t  least all those attributes 
of R that are mentioned in L. 

The reason that other transformations depend on the aggregation(s) in- 
rol\.ed in a y is that some aggregations - M I N  and MAX in particular - are not 
affected by the presence or absence of duplicates. The other aggregations - 
SUM, COUNT, and AVG - generally produce different values if duplicates are elim- 
inated prior to application of the aggregation. 

Thus, let us call an operator y~ duplicate-impervious if the only aggregations 
in L are M I N  and/or MAX. Then: 

yL(R) = yL (G(R)) provided y~ is duplicate-impervious. 

Example 16.14 : Suppose we have the relations 

MovieStar(name , addr , gender, b i r thda te )  
StarsIn(movieTitle, movieyear, s t a r ~ a m e )  

and we want to know for each year the birthdate of the youngest star to appear 
in a morie that year. lye can express this query as 

SELECT movieyear, movi birth date) 
FROM MovieStar, S tarsIn  
WHERE name = starName 
GROUP BY movieyear; 

Y aoricYear, MAX ( birthdate ) 

I 
plante = starh'orne 

I 
/"\ 

MovieStar StarsIn 

Figure 16.10: Initial logical query plan for the query of Esa~nple 16.11 

.in initial logical quely plan constructed directly from the query is sho~rn 
in Fig. 16.10. The FROM list is expressed by a product, and the WHERE clause 
by a selection abore it. The grouping and aggregation are expressed by the y 
operator above those. Some transformations that we could apply to Fig. 16.10 
if we nished are: 
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1. Combine the selection and product into an equijoin. 

2. Generate a 6 below the y, since the y is duplicate-impervious. 

3. Generate a T between the and the introduced 6 to project onto movie- 
Year and birthdate,  the only attributes relevant to the ?. 

The resulting plan is shown in Fig. 16.11. 

MovieStar StarsIn 

Figure 16.11: Another query plan for the query of Example 16.14 

We can now push the 6 belo\\, the w and introduce v's below that if n-e n-ish. 
This new query plan is shown in Fig. 16.12. If name is a key for MovieStar. the 
6 can be eliminated along the branch leading to that relation. 

MovieStar StarsIn 

Figure 16.12: X third query plan for Example 16.11 
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16.2.8 Exercises for Section 16.2 

* Exercise 16.2.1 : When it is possible to push a selection to  both arguments 
of a binary operator, we need to decide whether or not to do so. How would 
the existence of indexes on one of the arguments affect our choice? Consider, 
for instance, an expression oc(R n S), where there is an index on S. 

Exercise 16.2.2 : Give examples to show that: 

* a) Projection cannot be pushed below set union. 

b) Projection cannot be pushed below set or bag difference. 

c) Duplicate elimination (6) cannot be pushed below projection. 

d) Duplicate elimination cannot be pushed below bag union or difference. 

! Exercise 16.2.3 : Prove that we can always push a projection below both 
branches of a bag union. 

! Exercise 16.2.4: Some la~x-s that hold for sets hold for bags; others do not. 
For each of the laws below that are true for sets; tell whether or not it is true 
for bags. Either give a proof the law for bags is true, or give a counterexample. 

* a) R U R = R  (the idempotent law for union). 

b) R r l  R = R (the idempotent law for intersection). 

d) R u ( S  n T )  = ( R  IJ S )  17 (R  u T )  (distribution of union over intersec- 
tion). 

! Exercise 16.2.5: lye can define for bags by: R S if and only if for every 
element x. the number of times x appears in R is less than or equal to the 
number of times it appears in S. Tell rvhether the follolr-ing statements (which 
are all true for sets) are true for bags: give either a proof or a counterexample: 

a) If R E  S: then R U S =  S. 

c) If R E  S a n d  S  g R. then R =  S.  

Exercise 16.2.6 : Starting with an expressio~l i ~ r .  ( R ( a .  b. c )  w S(b: c: d, e)), 
push the projection down as far as it can go if L is: 
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! Exercise 16.2.7: We mentioned in Example 16.14 that none of the plans w 
showed is necessarily the best plan. Can you think of a better plan? 

! Exercise 16.2.8 : The following are possible equalities involving operations on 
a relation R(a, b). Tell whether or not they are true; give either a proof or a 
counterexample. 

!! Exercise 16.2.9: The join-like operators of Exercise 15.2.4 obey some of the 
familiar laws, and others do not. Tell whether each of the following is or is not 
true. Give either a proof that the law holds or a counterexample. 

C) uc(R &I, S)  = uc(R) AL S,  where C involves only attributes of R. 

d) uc(R At S) = R D F j L  uC(S), where C involves only attributes of 3. 

* f )  ( R &  S)  A T  = R  cfb (S DFj T). 

16.3 From Parse Trees to Logical Query Plans 

Ke now resume our discussion of the query compiler. Having constructed a 
parse tree for a query in Section 16.1, we nest need to turn the Darse tree 
into the preferred logical query plan. There are two steps, as was suggested in 
Fig. 16.1. 

The first step is to replace the nodes and structures of the parse tree. in 
appropriate groups, by an operator or operators of relational algebra. \Ye shall 
suggest some of these rules and leave some others for exercises. The second step 
is to take the relational-algebra expression produced by tlie first step and to 
turn it into an expression that we expect can be converted to the most efficient 
physical query plan. 
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16.3.1 Conversion to Relational Algebra 

We shall now describe informally some rules for transforming SQL parse trees to 
algebraic logical query plans. The first rule, perhaps the most important, allows 
us to convert all "simple" select-from-where constructs to relational algebra 
directly. Its informal statement: 

If I\-e have a <Query> that is a <SF&'> construct, and the <Condition> 
in this construct has no subqueries, then we may replace the entire con- 
struct - the select-list, from-list, and condition - by a relational-algebra 
expression consisting, from bottom to top, of: 

1. The product of all the  elations mentioned in the <FromList>, which 
is the argument of: 

2. A selection ac, where C is the <Condition> expression in the con- 
struct being replaced, which in turn is the argument of: 

3. A projection n-L,  where L is the list of attributes in the <SelList>. 

Example 16.15: Let us consider the parse tree of Fig. 16.5. The select- 
from-where transformation applies to the entire tree of Fig. 16.5. We take the 
product of the two relations StarsIn  and MovieStar of the from-list, select for 
the condition in the subtree rooted at <Condition>: and project onto the select- 
list, movieTitle. The resulting relational-algebra espression is Fig. 16.13. 

IT rrrovieTirle 

I 
(r s,or~allle = rlarne AVD birthdore LIKE ' $1960 ' 

I 

/"\ 
StarsIn Moviestar 

I Figure 16.13: Translation of a parse tree to an algebraic expression tree 

The same transformation does not apply to the outer query of Fig. 16.3. 
The reason is that the condition involves a subquery. \Ye shall discuss in Sec- 
tion 16.3.2 how to deal with conditions that have subqueries, and you should 
esanline the bos on '.Lin~itations on Sclection Conditions" for an esplanation 
of ~vhy 11-e make tlie distinction betwen conditions that h a ~ e  subqueries and 
those that do not. 

Hen-ever, a e  could apply the select-from-\vhere rule to the subquery in 
Fig. 16.3. The expression of relational algebra that Re get from the subquery 
is ~ n a r n e  (ubrr thdate LIKE 'Xi960' ( ~ o v i e ~ t a r ) ) .  
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Limitations on Selection Conditions 

One might wonder why we do not allow C, in a selection operator uc ,  to 
involve a subquery. It is conventional in relational algebra for the argu- 
ments of an operator - the elements that do not appear in subscripts - 
to be expressions that yield relations. On the other hand, parameters - 
the elements that appear in subscripts - have a type othcr than rela- 
tions. For instance, parameter C in uc is a boolean-valued condition, and 
parameter L in nL is a list of attributes or formulas. 

If we follow this convention, then whatever calculation is implied by a 
parameter can be applied to each tuple of the relation argument(s). That 
limitation on the use of parameters simplifies query optimization. Suppose, 
in contrast, that we allowed an operator like uc(R), where C involves a 
subquery. Then the application of C to each tuple of R involves computing 
the subquery. Do we compute it anew for every tuple of R? That ~ o u l d ,  
be unnecessarily expensive, unless the subquery were correlated, i.e., its 
value depends on something defined outside the query, as the subquery of 
Fig. 16.3 depends on the value of starName. Even correlated subqueries 
can be evaluated without recomputation for each tuple, in most cases, 
provided we organize the computation correctly. 

16.3.2 Removing Subqueries From Conditions 

For parse trees with a <Condition> that has a subquery, we shall introduce 
an intermediate form of operator, between the syntactic categories of the parse 
tree and the relational-algebra operators that apply to relations. This operator 
is often called two-argument selection. We shall represent a two-argument selec- 
tion in a transformed parse tree by a node labeled a ,  with no parameter. Beloiv 
this node is a left child that represents the relation R upon ~vhicli the selection 
is being performed, and a right child that is an expression for the condition 
applied to each tuple of R. Both arguments may be represented as parse trees. 
as expression trees, or as a mixture of the two. 

Example 16.16: In Fig. 16.14 is a rewriting of thc parse tree of Fig. 16.3 
that uses a two-argument selection. Several transformations have been made 
to construct Fig. 16.14 from Fig. 16.3: 

1. The subquery in Fig. 16.3 has been replaccd hy an expression of relational 
algebra, as discussed at the end of Example 16.15. 

2. The outer query has also been replaced. using the rule for select-from- 
where expressions from Section 16.3.1. However. we have expressed the 
necessary selection as a tn-o-argument selection, rather than by the con- 
ventional a operator of relational algebra. As a result, the upper node of 
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StarsIn <Condition> 

4ttribute> ' binkfote LIKE ' 9.1960' 

I I 
st arName Moviestar 

Figure 16.14: An expression using a two-argument a, midway between a parse 
tree and relational algebra 

the parse tree labeled <Condition> has not been replaced, but remains 
as an argument of the selection, with part of it.$ expression replaced by 
relational algebra, per point (1). 

This tree needs further transformation, which we discuss next. 0 

We need rules that allow us to replace a two-argument selection by a one- 
argument selection and other operators of relational algebra. Each form of 
condition may require its own rule. In common situations, it is possible to re- 
move the two-argument selection and reach an expression that is pure relational 
algebra. However, in extreme cases, the two-argument selectio~l can be left in 
place and considered part of the logical query plan. 

We shall give. as an example, the rule that lets us deal with the condition in 
Fig. 16.14 involving the IN operator. Note that the subquery in this condition is 
uncorrelated: that is, the subquery's relation can be computed once and for all, 
independent of the tuple being tested. The rule for eliminating such a condition 
is stated informally as follorvs: 

Suppose we have a two-argument selection in which the first argument 
represents some relation R and the second argument is a <Condition> of 
the form t I N  S. n-here expression S is an uncorrelated subquery: and t 
is a tuple co~nposed of (son~c) attributes of R. We transform the tree as 
follo~i-s: 

a) Replace the <Condition> by the tree that is the expression for S. If 
S may have duplicates, then it is necessary to include a 6 operation 
at  the root of the expression for S, so the expression being formed 
does not produce more copies of tuples than the original query does. 
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b) Replace the two-argument selection by a one-argument selection oc, 
where C is the condition that equates each component of the tuple 
t to the corresponding attribute of the relation S. 

c) Give oc an argument that is the product of R and S. 

Figure 16.15 illustrates this transformation. 

Figure 16.15: This rule handles a two-argument selection with a condition in- 
volving I N  

Example 16.17: Consider the tree of Fig. 16.14, to which we shall apply the 
rule for I N  conditions described above. In this figure, relation R is StarsIn,  
and relation S is the result of the relational-algebra expression consisting of 
the subtree rooted at T,,,,. The tuple t has one component, the attribute 
st arName. 

The two-argument selection is replaced by (TstarName=name; its condition C 
equates the one component of tuple t to the attribute of the result of query 
S. The child of the a node is a x node, and the arguments of the x node 
are the node labeled StarsIn  and the root of the expression for S. Sotice 
that, because name is the key for MovieStar, there is no need to introduce a 
duplicate-eliminating d in the expression for S. The new expression is shown 
in Fig. 16.16. It is completely in relational algebra, and is equivalent to the 
expression of Fig. 16.13, although its structure is quite different. 

The strategy for translating subqueries to relational algebra is more com- 
plex when the subquery is correlated. Since correlated subqueries involve un- 
known values defined outside themselves, they cannot be translated in isolation. 
Rather, we need to translate the subquery so that it produces a relation in n-hich 
certain extra attributes appear - the attributes that must later be compared 
~vith the esternally defined attributes. The conditions that relate attributes 
from the subquery to attributes outside are then applied to this relation. and 
the extra attributes that are no longer necessary can then be projected out. 
During this process, we must be careful about accidentally introducing dupli- 
cate tuples, if the query does not eliminate duplicates at  the end. The following 
example illustrates this technique. 
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IL movicTitle 

I 
W 

sarName = name 

StarsIn  nome 

I 
' binhdare L I K E  ' t1960' 

I 
MovieStar 

Figure 16.16: Applying the rule for I N  conditions 

SELECT DISTINCT ml.movieTitle, ml.movieYear 
FROM S ta r s In  m l  
WHERE ml.movieYear - 40 <= ( 

SELECT AVG (birthdate) 
FROM StarsIn  m2, MovieStar s 
WHERE m2.starName = s.name AND 

m1,movieTitle = m2,movieTitle AND 
ml.movieYear = m2.movieYear 

) ;  

Figure 16.17: Finding movies with high average star age 

Example 16.18: Figure 16.17 is an SQL rendition of the query: "find the 
movies where the average age of the stars was at most 40 when the movie was 
made.'' To simplify, we treat b i r thdate  as a birth year, so we can take its 
average and get a value that can be compared with the movieyear attribute of 
StarsIn.  We have also written the query so that each of the three references 
to relations has its own tuple variable. in order to help remind us where the 
various attributes come from. 

Fig. 16.18 sho\vs the result of parsing the query and performing a partial 
translation to relational algebra. During this initla1 translation, we split the 
WHERE-clause of the subquery in txvo. and used part of it to convert the product 
of relations to an equijoin. \Ye have retained the aliases ml, m2, and s in 
the nodes of this tree, in order to make clearer the origin of each attribute. 
Alternatively. we could have used projections to rename attributes and thus 
avoid conflicting attribute names. but the result would be harder to follo\v. 

111 order to remove the <Condition> node and eliminate the two-argument 
a, we need to create an expression that describes the relation in the right 
branch of the <Condition>. Holvever. because the subquery is correlated, there 
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StarsIn ml <Condition> 

m1 ' 40 ' m2.movieTitle = mI.mot~ieTitlc AND m2.movieYear = ml.nlovieYeor 

I 
Da 7~ 

StarsIn m2 Moviestar s 

Figure 16.18: Partially transformed parse tree for Fig. 16.17 

is no way to obtain the attributes ml.movieTitle or ml .movieyear froill the 
relations mentioned in the subquery, which are StarsIn (with alias m2) and 
MovieStar. Thus, we need to defer the selection 

until after the relation from the subquery is combined with the copy of StarsIn 
from the outer query (the copy aliased nl). To transform the logical quer>- plan 
in this way, we need to modify the y to group by the attributes m2. movieTitle 
and m2.movie'iear, so these attributes will be available when needed by the 
selection. The net effect is that we compute for the subquery a relation con- 
sisting of movies, each represented by its title and year, and the average star 
birth year for that movie. 

The inodified groupby operator appears in Fig. 16.19; in addition to the 
two grouping attributes, we need to rename the average abd (average birthdate) 
so we can refer to it later. Figure 16.19 also shows the complete translation to 
relational algebra. .&bola the y, the StarsIn from the outer query is joined n-ith 
the result of the subquery. The selection from the subquery is then applied to 
the product of Stars In and the result of the subquery; we show this selection as 
a theta-join, which it would become after normal application of algebraic laws. 
Above the theta-join is another selection, this one corresponding to the selection 
of the outer query, in which we compare the movie's year to the average birth 
year of its stars. The algebraic expression finishes at the top like the espression 
of Fig. 16.18, with the projection onto the desired attributes and the eli~nination 
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StarsIn ml Y m2,mnorieTirle, m2.mosieYear, AVG(s.birr11dare) - abd 

I 
W 

m2.sfarhrorne = arlarlle 

StarsIn m2 Moviestar s 

Figure 16.19: Translation of Fig. 16.18 to a logical query plan 

of duplicates. 
.is we shall see in Section 16.3.3, there is much more that a query opti- 

mizer can do to improve the query plan. This particular example satisfies three 
conditions that let us improve the plan considerably. Tlle conditions are: 

1. Duplicates are eliminated at the end, 

2. Star names from StarsIn ml are projected out, and 

3. The join betx-een StarsIn ml and the rest of the expression equates the 
title and year attributes from StarsIn ml and StarsIn m2. 

Because these conditions hold. we can replace all uses of ml .movieTitle and 
ml .movieyear by m2,movieTitle and m2 .movieyear, respectively. Thus, the 
upper join in Fig. 16.19 is unnecessary, as is the argument StarsIn ml. This 
logical query plan is shown in Fig. 16.20. 

16.3.3 Improving the Logical Query Plan 

IVhen we convert our query to relational algebra Ive obtain one possible logical 
query plan. The nest s t ~ p  is to rewrite the plan using the algebraic l a m  outlined 
in Section 16.2. .-iltc.rnativel~-. nr could generate more than one logical plan. 
representing different orders or con~binations of operators. But in this book I\-e 
shall assume that the query reivriter chooses a single logical query plan that it 
believes is -best." meaning that it is likely to result ultimately in the cheapest 
physical plan. 
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' m2.movieTitIe. m2.movieYear 

I 
CT m2.movieYear-40 < abd 

I 
- 

I 
W 

mn2.slarNarne = rname 

StarsIn m2 Moviestar s 

Figure 16.20: Simplification of Fig. 16.19 

We do, however, leave open the matter of what is known as 'Ijoin ordering," 
so a logical query plan that involves joining relations can be thought of as a 
family of plans, corresponding to t,he different ways a join could be ordered 
and grouped. We discuss choosing a join order in Section 16.6. Similarly. a 
query plan involving three or more relations that are arguments to the other 
associative and commutative operators, such as union, should be assumed to 
allow reordering and regrouping as we convert the logical plan to a physical plan. 
We begin discussing the issues regarding ordering and physical plan selection 
in Section 16.4. 

There are a number of algebraic laws from Section 16.2 that tend to impi-ove 
logical query plans. The following are most commonly used in optimizers: 

Selections can be pushed down the expression tree as far as they can go. If 
a selection condition is the AND of several conditions, then we can split the 
condition and push each piece down the tree separately. This strategy is 
probably the most effective improvement technique, but me should recall 
the discussion in Section 16.2.3, where we saw that in some circumstances 
it was necessary to push the selection up the tree first. 

Similarly, projections can be pushed donn the tree, or new projections 
can be added. As tvith selections. the pushing of projections should be 
done with care. as discussed in Section 16.2.4. 

Duplicate eli~ninations can sometimes be removed, or moved to a more 
convenient position in the tree, as discussed in Section 16.2.6. 

* Certain selectiorls can be combined with a product below to turu the pair 
of operations into an equijoin, which is generally much more efficient to 
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evaluate than are the two operations separately. We discussed these laws 
in Section 16.2.5. 

Example 16.19 : Let us consider the query af Fig. 16.13. First, we may split 
the two parts of the selection into a,tamNome=narne a d  cbrrthdate LIKE 1Y.1960*. 

The latter can be pushed down the tree, since the only attribute involved, 
birthdate, is from the relation Moviestar. The first condition involves at- 
tributes froni both sides of the product, but they are equated, so the product 
and selection is really an equijoin. The effect of these transformations is shown 
in Fig. 16.21. 

movieTit/e 

I 
W 

starNa~ne = name 

/ \  
' birtirdate LIKF ' %1960' 

I 
MovieStar 

Figure 16.21: The effect of query rewriting 

16.3.4 Grouping Associative/Commutative Operators 

Conventional parsers do not produce trees 1%-hose nodes can have an unlimited 
number of children. Thus, it is normal for operators to appear only in their 
unary or binary form. Horvever, associative and commutative operators may 
be thought of as having any number of operands. Moreover, thinking of an 
operator such as join as a multi~ray operator offers us opportunities to reorder 
the operands so that when the join is esecuted as a sequence of binary joins, 
they take less time than if n-e had esecuted the joins in the order implied by 
the parse tree. [Ye discuss ordering multi~vay joins in Section 16.6. 

Thus. we shall perform a last step before producing the final logical query 
plan: for each portion of the subtree that consists of nodes with the same 
associative and commutative operator. we group the nodes with these oper- 
ators into a single node with many children. Recall that the usual associa- 
ti.c~/corilniutative operators are natural join. union, and intersection. Satural 
joins and theta-joins can also be combined with each other under certain cir- 
c~nistances: 

1. \\e niust replace the natural joins ~vith theta-joins that equate the at- 
tributes of the same name. 

2. We must add a projection to eliminate duplicate copies of attributes in- 
\-olved in a natural join that has become a theta-join. 
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3. The theta-join conditions must be associative. Recall there are cases, as 
discussed in Section 16.2.1, where theta-joins are not associative. 

In addition, products can be considered as a special case of natural join and 
combined with joins if they are adjacent in the tree. Figure 16.22 illustrates 
this transformation in a situation where the logical query plan has a cluster of 
two union operators and a cluster of three natural join operators. Sote that 
the letters R through W stand for any expressions, not necessarily for stored 
relations. 

W 

/"\ / I  \\ 
W W 3 " U V W  

/ \  / \  u u v  W 
/ I \  
R S T  

/ \  
U 
/ \  
S T 

Figure 16.22: Final step in producing the logical query plan: group the asso- 
ciative and commutative operators 

16.3.5 Exercises for Section 16.3 

Exercise 16.3.1: Replace the natural joins in the following expressions by 
equivalent theta-joins and projections. Tell whether the resulting theta-joins 
form a commutative and associative group. 

Exercise 16.3.2 : Convert to relational algebra your parse trees from Eser- 
cise 16.1.3(a) and (b). For (b), show both the form with a two-argument selec- 
tion and its eventual conversion to a one-argument (conventional oc) selection. 

! Exercise 16.3.3: Give a rule for converting each of the follo~ving forms of 
<Condition> to relational algebra. All conditions may be assumed to be ap- 
plied (by a two-argument selection) to a relation R. You may assume that the 
subquery is not correlated with R. Be careful that you do not introduce or 
eliminate duplicates in opposition to the formal definition of SQL. 
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* a)  A condition of the form EXISTS(<QU~~~>) .  

b) .i\, condition of the form a = ANY <Query>, where a is an attribute of R. 

C) A condition of the form a = ALL <Query>, where a is an attribute of R. 

!! Exercise 16.3.4: Repeat Exercise 16.3.3, but allow the subquery to  be corol- 
lated with R. For simplicity, you may assume that the subquery has the simple 
form of select-from-where expression described in this section, with no further 
subqueries. 

!! Exercise 16.3.5 : From how many different expression trees could the grouped 
tree on the right of Fig. 16.22 have come? Remember that the order of chil- 
dren after grouping is not necessarily reflective of the ordering in the original 
expression tree. 

16.4 Estimating the Cost of Operations 

Suppose lye have parsed a query and transformed it into a logical query plan. 
Suppose further that whatever transformations we choose have been applied to 
construct the preferred logical query plan. \Ve must nest turn our logical plan 
into a physical plan. ifre normally do so by considering many different physical 
plans that are derived from the logical plan, and evaluating or estimating the 
cost of each. After this evaluation, often called cost-based enumeration, we 
pick the physical query plan with the least estimated cost; that plan is the 
one passed to the query-execution engine. When enumerating possible physical 
plans derivable from a given logical plan, we select for each pl~ysical plan: 

1. An order and grouping for associative-and-commutative operations like 
joins, unions, and intersections. 

2. An algorithm for each operator in the logical plan, for instance, deciding 
lvhether a nested-loop join or a hash-join should be used. 

3. Additional operators - scanning. sorting, and so on - that are needed 
for the physical plan but that were not present explicitly in the logical 
plan. 

4. The way in which arguments are passed from one operator to the nest. for 
instance, by storing the intermediate result on disk or by using iterators 
and passing an argument one tuple or one main-memort. buffer at  a time. 

\Ye shall consider each of these issues subsequently. Holyever. in order to an- 
swer the questions associated with each of these choices. we need to understand 
what the costs of the various physical plans are. \Ye cannot know these costs 
exactly without executing the plan. In almost all cases. the cost of executing a 
query plan is significantly greater than all the work done by the query compiler 
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Review of Notation 

Recall from Section 15.1.3 the conventions we use for representing sizes of 
relations: . B(R) is the number of blocks needed to hold all the tuples of relation 

R. 

T(R) is the number of tuples of relation R. . V(R,a) is the value count for attribute a of relation R, that is, 
the number of distinct values relation R has in attribute a. Also, 
V(R, [al, az, . . . ,a,]) is the number of distinct values R has when 
all of attributes al, az, . . . ,a, are considered together, that is, the 
number of tuples in 6(7r ,,,,,,...,,, (R)). 

in selecting a plan. As a consequence, we surely don't want to execute more 
than one plan for one query, and we are forced to estimate the cost of any plan 
without executing it. 

Preliminary to our discussion of physical plan enumeration, then, is a con- 
sideration of how to estimate costs of such plans accurately. Such estimates are 
based on parameters of the data (see the box on "Revietv of Notation") that 
must be either computed exactly from the data or estimated by a process of 
"statistics gathering" that we discuss in Section 16.5.1. Given values for these 
parameters, we may make a number of reasonable estimates of relation sizes 
that can be used to predict the cost of a complete physical plan. 

16.4.1 Estimating Sizes of Intermediate Relations 

The physical plan is selected to minimize the estimated cost of evaluating the 
query. No matter what method is used for executirlg query plans, and no matter 
how costs of query plans are estimated, the sizes of intermediate relations of the 
plan have a profound influence on costs. Ideally, we want rules for estimating 
the number of tuples in an intermediate relation so that the rules: 

1. Give accurate estimates. 

2. .Are easy to compute. 

3. -Are logically consistent; that is, the size estimate for an intermediate re- 
lation should not depend on how that relation is computed. For instance. 
the size estimate for a join of several relations should not depend on the 
order in which we join the relations. 
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There is no universally agreed-upon way to meet these three conditions. We 
shall give some simple rules that serve in most situations. Fortunately, the goal 
of size estimation is not to predict the exact size; it is to help select a physical 
query plan. Even an inaccurate size-estimation method will serve that purpose 
xell if it errs consistently, that is, if the size estimator assigns the least cost to 
the best physical query plan, even if the actual cost of that plan turns out to 
be different from what was predicted. 

16.4.2 Estimating the Size of a Projection 

The projection is different from the other operators, in that the size of the result 
cument is computable. Since a projection produces a result tuple for every ar, 

tuple, the only change in the output size is the change in the lengths of the 
tuples. Recall that the projection operator used here is a bag operator and does 
not eliminate duplicates; if we want to eliminate duplicates produced during a 
projection, we need to follow with the 6 operator. 

Kormally, tuples shrink during a projection, as some components are elimi- 
nated. However, the general form of projection we introduced in Section 5.4.5 
allolvs the creation of new components that are combinations of attributes, and 
so there are situatiolls where a 5; operator actually increases the size of the 
relation. 

Example 16.20 : Suppose R(a. b.  c) is a relation, where a and b are integers 
of four bytes each, and c is a string of 100 bytes. Let tuple headers require 12 
bytes. Then each tuple of R requires 120 bytes. Let blocks be 1021 bytes long, 
with block headers of 2-1 bytcs. 11% can thus fit 8 tuples in one block. Suppose 
T ( R )  = 10,000; i.e., there are 10.000 tuples in R. Then B(R) = 1250. 

Consider S = F,+~ ,~(R) :  that is. we replace a and b by their sum. Tuples 
of S require 116 bytes: 12 for header, 4 for the sum, and 100 for the string. 
Although tuples of S are slightly smaller than tuples of R, we can still fit only 
8 tuples in a block. Thus. T(S) = 10.000 and B(S) = 1250. 

Sow consider U = T ~ , ~ ( R ) .  \\-here we eliminate the string compo~ient. Tuples 
of U are only 20 bytes long. T ( C )  is still 10,000. However, we can now pack 
50 tuples of U into one block. so B(li) = 200. This projectioll thus shrinks the 
relation by a factor slightly more than 6. 

I 16.4.3 Estimating the Size of a Selection 

IVl1e11 \ye perforni a selection. \ye generally reduce the number of tuples. al- 
though the sizes of tuples reiilain the same. In the sitnplest kind of selection. 
where an attiibute is equated to a constant. there is an easy 11-ay to csti~nate the 
size of the result. provided 1,-e kno~v. or can esti~nate. the nu~nber of different 
values the attribute has. Let S = u.~=,(R). n-herc A is an attribute of R and c 
is a constant. Then we recommend as an estimate: I L 
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The rule above surely holds if all values of attribute A occur equally often in the 
database. However, as discussed in the box on "The Zipfian Distribution," the 
formula above is still the best estimate on the average, even if values of -4 are not 
uniformly distributed in the database, but all values of A are equally likely to 
appear in queries that specify the value of A. Better estimates can be obtained, 
however, if the DBMS maintains more detailed statistics ("histograms") on the 
data, as discussed in Section 16.5.1. 

The size estimate is more problen~atic when the selection involves an in- 
equality comparison, for instance, S = ( T ~ < ~ ~ ( R ) .  One might think that on the 
average, half the tuples would satisfy the comparison and half not, so T(R)/2 
would estimate the size of S. However, there is an intuition that queries involv- 
ing an inequality tend to retrieve a small fraction of the possible tuples3 Thus, 
we propose a rule that acknowledges this tendency, and assumes the typical 
inequality will return about one third of the tuples, rather than half the tuples. 
If S = u,<,(R), then our estimate for T(S) is: 

The case of a "not equals" comparison is rare. However, should we encounter 
a selection like S = uaflo(R), we recommend assuming that essentially all 
tuples will satisfy the condition. That is, take T(S) = T(R) as an estimate. 
Alternatively, we may use T(S) = T(R) (V(R, a) - l ) /V(R, a), which is slightly 
less, as an estimate, acknowledging that about fraction l/V(R,a) tuples of R 
will fail to meet the condition because their a-value does equal the constant. 

When the selection condition C is the AND of several equalities and inequal- 
ities, we can treat the selection uc(R) as a cascade of simple selections, each of 
which checks for one of the conditions. Note that the order in which we place 
these selections doesn't matter. The effect \vill be that the size estimate for the 
result is the size of the original relation multiplied by the seleetivzty factor for 
each condition. That factor is 113 for any inequality, 1 for #: and I/I'(R. -4) 
for any attribute A that is compared to a constarlt in the condition C. 

Example 16.21 : Let R(a, b.c) be a relation, and S = a,,lo AND 0<2~(R).  Also. 
let T(R) = 10,000, and V(R,a) = 50. Then our best estimate of T(S) is 
T(R)/(50 x 3), or 67. That is, 1150th of the tuples of R will survive the a = 10 
filter, and 1/3 of those will survive the b < 20 filter. 

An interesting special case where our analysis breaks down is when the 
condition is contradictory. For instance, ronsider S = a,,lo AND *>eo(R). .ic- 
cording to our rule, T(S)  = T(R)/31*(R.n). or 67 tuples. However. it should 
be clear that no tuple can have both a = 10 and n > 20. so the correct answer is 
T ( S )  = 0. IYhen reivriting the logical query plan. thr query optimizer can look 
for instances of many special-case rules. In the above instance, the optimizer 
can apply a rule that finds the selection condition logically equivalent to FALSE 
and replaces the expression for S by the empty set. 

3F'or instance. if you had data about faculty salaries. would jot, be more likely to query 
for those faculty who made less than $200,000 or tnow than S200.000? 
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The Zipfian Distribution 

When we assume that one out of V(R, a) tuples of R will satisfy a condition 
like a = 10, we appear to be making the tacit assumption that all values 
of attribute a are equally likely to appear in a given tuple of R. \Ire also 
assume that 10 is one of these values, but that is a reasonable assumption, 
since most of the time one looks in a database for things that actually 
exist. However, the assumption that values distribute equally is rarely 
upheld, even approximately. 

Many attributes have values whose occurrences follo~v a Zipfian dts- 
tnbution, where the frequencies of the ith most common values are in 
proportion to 114. For example, if the most common value appears 1000 
times, then the second most common value would be expected to appear 
about 1000/& times, or 707 times, and the third most common value 
mould appear about 1000/fi times, or 577 times. Originally postulated 
as a way to describe the relative frequencies of words in English sentences, 
this distribution has been found to appear in many sorts of data. For 
example, in the US, state populations follow an approximate Zipfian dis- 
tribution, with, say, the second most populous state, New York, having 
about 70% of the population of the most populous, California. Thus, if 
state rvere an attribute of a relation describing US people, say a list of 
magazine subscribers, we would expect the values of state to distribute 
in the Zipfian, rather than uniform manner. 

-4s long as the constant in the selection condition is chosen randomly, 
it doesn't matter whether the values of the attribute involved have a uni- 
form. Zipfian, or other distribution; the average size of the matching set 
will still be T(R)/Lf(R. a). Ho~ever, if the constants are also chosen with a 
Zipfian distribution, then we would expect the ayerage size of the selected 
set to be somewhat larger than T(R)/V(R,a). 

Khen a selection involves an OR of conditions, say S = ac, OR cn (R), then 
we have less certainty about the size of the result. One simple assumption 
is that no tuple %\-ill satisfy both conditions, so the size of the result is the 
sum of the number of tuples that satisfy each. That measure is generally an 
overestimate. and in fact can sometimes lead us to the absurd conclusion that 
there are more tuples in S than in the original relation R. Thus. another simple 
approach is to take the smaller of the size of R and the sum of the number of 
tuples satisfying Cl and those satisfying C2. 

A less simple. but possibly more accurate estimate of the size of 

S = UC, OR c2(R) 

is to assume that Cl and C2 are independent. Then, if R has n tuples, ml of 
which satisfy C1 and rn? of which satisfy C2, we would estimate the number of 
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In explanation, 1 - ml fn is the fraction of tuples that do not satisfy Cl,  and 
1 - m2/n is the fraction that do not satisfy C2. The product of these numbers 
is the fraction of R's tuples that are not in S ,  and 1 minus this product is the 
fraction that are in S. 

Example 16.22 : Suppose R(a, b) has T(R) = 10,000 tuples, and 

Let V ( R ,  a) = 50. Then the number of tuples that satisfy a = 10 we estimate at 
200, i.e., T(R)/V(R, a). The number of tuples that satisfy b < 20 we estimate 
at T(R)/3, or 3333. 

The simplest estimate for the size of S is the sum of these numbers, or 3533. 
The more complex estimate based on independence of the conditions a = 10 
and b < 20 gives 

or 3466. In this case, there is little difference between the two estimates, and 
it is very unlikely that choosing one over the other would change our estimate 
of the best physical query plan. 

The final operator that could appear in a selection condition is NOT. The 
estimated number of tuples of R that satisfy condition NOT C is T(R)  minus 
the estimated number that satisfy C. 

16.4.4 Estimating the Size of a Join 

We shall consider here only the natural join. Other joins can be handled ac- 
cording to the following outline: 

. 1. The number of tuples in the result of an equijoin can be computed exactly 
as for a natural join, after accounting for the change in variable names. 
Esample 16.24 will illustrate this point. 

2. Other theta-joins can be estimated as if they were a selection following a 
product, with the following additional observations: 

(a) The number of tuples in a product is the product of the number of 
tuples in the relations involved. 

(b) An equality comparison can be estimated using the techniques to be 
developed for natural joins. 

(c) An inequality comparison between two attributes, such as R.a < 
S.b, can be handled as for the inequality comparisons of the form 
R.a < 10, discussed in Section 16.4.3. That is, we can assume this 
condition has selectivity factor 113 (if you believe that queries tend 
to ask for relatively rare conditions) or 112 (if you do not make that 
assumption). 

We shall begin our study with the assumption that the natural join of two 
relations involves only the equality of two attributes. That is, we study the 
join R(X,Y) w S(Y, Z), but initially we assume that Y is a single attribute 
although X and Z can represent any set of attributes. 

The problem is that we don't know how the Y-values in R and S relate. For 
instance: 

1. The two relations could have disjoint sets of Y-values, in which case the 
join is empty and T(R w S) = 0. 

2. Y might be the key of S and a foreign key of R, so each tuple of R joins 
with exactly one tuple of S ,  and T(R  w S) = T(R). 

3. .Almost all the tuples of R and S could have the same Y-value, in which 
case T(R w S) is about T(R)T(S). 

To focus on the most common situations, we shall make two simplifying 
assun~ptions: 

Containment of Value Sets. If Y is an attribute appearing in several rela- 
tions, then each relation chooses its ~alues  from the front of a fixed list of 
values yl, y2, yg, . . . and has all the values in that prefix. As a consequence, 
if R and S are two relations with an attribute Y, and V(R, I-) 5 V(S, Y), 
then every Y-value of R will be a Y-value of S. 

Preservation of Value Sets. If we join a relation R with another relation, 
then an attribute .-I that is not a join attribute (i.e., not present in both 
relations) does not lose ~.alues from its set of possible values. Nore pre- 
cisely, if .4 is an attribute of R but not of S,  then V(R w S, -4) = V(R, '4). 
Sote that the order of joining R and S is not important, so we could just 
as vc-ell have said that V(S cu R. '4) = 1'(R, '4). 

Xssun~ption (I), containment of value sets, clearly might be violated, but it is 
satisfied \\-hen 1- is a key in S and a foreign key in R. It also is approxi~llately 
true in many other cases, since \\-e ~~+ou ld  intuitively expect that if S has many 
1'-values, then a given Y-value that appears in R has a good chance of appearing 
in S. 

Xssumption (2), preservation of value sets, also might be violated, but it 
is true when the join attribute(s) of R w S are a key for S and a foreign key 
for R. In fact. (2) can only be violated when there are "dangling tuples" in R. 
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that is, tuples of R that join with no tuple of S;  and even if there are dangling 
tuples in R, the assumption might still hold. 

Under these assumptions, we can estimate the size of R(X,Y) w S(I.; 2) 
as follows. Let V(R, Y) 5 V(S, Y). Then every tuple t of R has a chance 
l/V(S, Y) of joining with a given tuple of S. Since there are T(S) tuples in S, 
the expected number of tuples that t joins with is T(S)/V(S, Y). As there are 
T ( R )  tuples of R; tlle estimated size of R w S is T(R)T(S)/V(S,Y). If, on 
the other hand, V(R, Y) 2 V(S, Y), then a symmetric argument gives us the 
estimate T(R w S) = T(R)T(S)/V(R,Y). In general, we divide by whichever 
of V(R, Y) and V(S, Y) is larger. That is: 

Example 16.23: Let us consider the following three relations and their in]- 
portant statistics: 

Suppose we want to compute the natural join R w S w U .  One way is 
to group R and S first, a s  (R w S)  w U. Our estimate for T(R w S )  is 
T(R)T(S)/max(V(R, b), V(S, b)), which is 1000 x 2000/50, or 40,000. 

We then need to join R w S with U. Our estimate for the size of the 
result is T(R w S)T(U)/max(V(R w S,c),V(U,c)). By our assumption that 
value sets are preserved, V(R w S, c) is the same as tV(S, c),  or 100: that is 
no values of attribute c disappeared when we performed the join. In that case. 
we get as our estimate for the number of tuples in R w S w U tlle 1-alue 
40,000 x 5000/max(100,500), or 400,000. 

We could also start by joining S and U. If we do, then we get the estimate 
T(S w U )  = T(S )T (U) /  max(V(S, c), V(U, c)) = 2000 x 5000/500 = 20,000. 
By our assumption that value sets are preserved. V(S w U ,  b) = V(S. b) = 50. 
so the estimated size of the result is 

T(R)T(S w U)/max(V(R, b), V(S w U , b ) )  

It is no coincidence that in Esample 16.23 the estimate of the size of the 
join R w S w C is the same whether we start by joining R w S or by joining 
S w U. Recall that one of our desiderata of Section 16.4.1 is that the estimate 
for the result of an expression should not depend on order of evaluation. It 
can be shown that the two assumptions we have made - containnlent and 
preservation of value sets - guarantee that the estimate of any natural join is 
the same, regardless of how we order the joins. 
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16.4.5 Natural Joins With Multiple Join Attributes 

NOW, let us see what happens when Y represents several attributes in the 
join R(X,Y) w S(Y, Z). For a specific example, suppose we want to join 
R(z, y1, y2) w S(Yl, y2, z ) .  Consider a tuple r in R. The probability that r 
joins with a given tuple s of S can be calculated as follows. 

First, what is the probability that r and s agree on attribute yl? Suppose 
that V(R, yl) 2 V(S, yl). Then the yl-value of s is surely one of the yl values 
that appear in R, by the containment-of-value-sets assumption. Hence, the 
chance that r has the same yl-value as s is l/V(R, yl). Similarly, if V(R. yl) < 
V(S, yl), then the value of yl in r kill appear in S ,  and the probability is 
l /V(S, yl) that r and s will share the same yl-value. In general, we see that 
the probability of agreement on the yl value is 1/ max(V(R, yl), V(S, yl)). 

A similar argument about the probability of r and s agreeing on yz tells us 
this probability is l/ max(V(R. yz), V(S, Y2)). AS the values of yl and yz are 
independent, the probability that tuples will agree on both yl and yz is the 
product of these fractions. Thus, of the T(R)T(S) pairs of tuples from R and 
S ,  the expected number of pairs that match in both yl and yz is 

In general, the following rule can be used to estimate the size of a natural 
join when there are any number of attributes shared between the two relations. 

The estimate of the size of R w S is computed by multiplying T(R) by 
T(S)  and dividing by the larger of V(R7 y) and V(S, y) for each attribute 
y that is common to R and S. 

Example 16.24 : The follo\'ing example uses the rule above. It also illustrates 
that the analysis we have been doing for natural joins applies to any equijoin. 
Consider the join 

Suppose we have the following size parameters: 

11-e can think of this join as a natural join if we regard R.b and S.d as the 
same attribute and also regard R.c and S.e as the same attribute. Then the 
rule giren above tells us the estimate for the size of R w S is the product 
1000 x 2000 divided by the larger of 20 and 50 and also divided by the larger of 
100 and 30. Thus, the size estimate for the join is 1000 x 2000/(50 x 100) = 400 
tuples. 
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Numbers of Tuples is not Enough 

Although our analysis of relation sizes has focused on the number of tuples 
in the result, sometimes we also have to take into account the size of each 
tuple. For instance, joins of relations produce tuples that are longer than 
the tuples of either relation. As an example, joining two relations R w S; 
each with 1000 tuples, might yield a result that also has 1000 tuples. 
However, the result would occupy more blocks than either R or S. 

Example 16.24 is an interesting case in point. Although we can 
use natural-join techniques to estimate the number of tuples in a theta- 
join, as we did there, the tuples in a theta-join have more components 
than tuples of the corresponding natural join. Specifically, the theta-join 

W R(a, b, c )  R.ks AND R,c=S,e S(d, e ,  f )  produces tuples with six compo- 
nents, one each for a through f, while the natural join R(a, b, c) w S(b, c, d) 
produces the same number of tuples, but each tuple has only four compo- 
nents. 

Example 16.25: Let us reconsider Example 16.23, but consider the third 
possible order for the joins, where we first take R(a, b) w U(c,d). This join 
is actually a product, and the number of tuples in the result is T(R)T(U) = 
1000 x 5000 = 5,000,000. Note that the number of different b's in the product 
is V ( R ,  b)  = 20, and the number of different c's is V(U,c) = 500. 

When we join this product with S(b,c), we multiply tlie numbers of tu- 
ples and divide by both m a x ( V ( ~ ,  b), T7(S, b)) and  mas(^(^, c ) ,  I7(S. c ) ) .  This 
quantity is 2000 x 5,000,000/(50 x 500) = 100,000. Sote that tliis third way 
of joining gives the same estimate for the size of the result that we found in 
Example 16.23. 

16.4.6 Joins of Many Relations 

Finally, let us consider the general case of a natural join: 

Suppose that attribute A appears in k of the R,'s. and tlie numbrrs of its 
sets of values in these k relations - that is, the various values of 1-(R,. A) for 
i = 1,2,. . . . k - are vl <_ v2 <_ . - .  5 uk. in order from smallest to largest. 
Suppose we pick a tuple from each relation. What is tlie probability that all 
tuples selected agree on attribute .A? 

In answer, consider the tuple tl  chosen from the relation that has the small- 
est number of .A-values, vl. By the containment-of-value-sets assumption. each 
of these VI values is among the A-values found in the other relations that have 
attribute A. Consider the relation that has z., values in attribute -4. Its selected 
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tuple t, has probability l/vi of agreeing with tl on A. Since this claim is true 
for all i = 2,3,. . . , k, the probability that all k tuples agree on A is the product 
l/u2v3 - - -vk. This analysis gives us the rule for estimating the size of any join. 

Start with the product of the number of tuples in each relation. Then, 
for each attribute A appearing at  least twice, divide by all but the least 
of t.he V(R, A)'s. 

Likewise, we can estimate the number of values that will remain for attribute 
A after the join. By the preservation-of-value-sets assumption, it is the least of 
these V(R, A)'s. 

Example 16.26 : Consider the join R(a, b, c) w S(b, c, d) M U(b, e ) :  and sup- 
pose the important statistics are as given in Fig. 16.23. To estimate the size 
of tliis join, we begin by multiplying the relation sizes; 1000 x 2000 x 5000. 
Nest, we look at the attributes that appear more than once; these are b, which 
appears three times, and c, which appears twice. \Ire divide by the two largest 
of V(R, b), V(S, b), and V(U, b); these are 50 and 200. Finally, we divide by the 
larger of V(R, c) and V(S, c), which is 200. The resulting estimate is 

Figure 16.23: Parameters for Example 16.26 

We can also estimate the number of values for each of the attributes in the 
join. Each estimate is the least value count for the attribute among all the 
relations in which it appears. These numbers are: for a. b, c,d, e respectively: 
100, 20, 100,400, and 500. ' 

Based on the two assumptions rve have made - containment and preser- 
vation of value sets - we have a surprising and convenient property of the 
estimating rule given above. 

S o  matter how \ye group and order the terms in a natural join of n 
relations, the estimation rules, applied to each join individually; yield the 
same estimate for the size of the result. IIoreover. this estimate is the 
same that we get if Re apply the rule for the join of all n relations as a 
whole. 
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I Why is the Join Size Estimate Independent of Order? I 
A formal proof of this claim is by induction on the number of relations 
involved in the join. We shall not give this proof, but this box contains 
the intuition. Suppose we join some relations, and the final step is 

We may assume that no matter how the join of the R's was taken, the 
size estimate for this join is the product of the sizes of the R's divided by 
all but the smallest value count for each attribute that appears more than 
once among the R's. Further, the estimated value count for each attribute 
is the smallest of its value counts among the R's. Similar statements apply 
to the S's. 

&%en we apply the rule for estimating the size of the join of two 
relations (from Section 16.4.4) to the twvo relations that are the join of 
the R's and the join of the S's, the estimate will be the product of the 
two estimates, divided by the larger of the value counts for each attribute 
that appears among both the R's and S's. Thus, this estimate will surely 
have one factor that is the size of each relation R1,. . . , R,, S1,. . . , S,. In 
addition, the estimate will have a divisor for each attribute value count 
that is not the smallest for its attribute. Either that divisor is already 
present in the estimate for the R's or the S's, or it is introduced at the 
last step, because its attribute A appears among both the R's and S's, 
and it is the larger of the two value counts that are the snlallest of the 
V(Ri, d)'s and smallest of the V(Sj, -4)'s, respectively. 

Examples 16.23 and 16.25 form an illustration of this rule in action for the 
three groupings of a three-relation join, including the grouping where one of 
the "joins" is actually a product. 

16.4.7 Estimating Sizes for Other Operations 

n'e have seen two operations with an exact formula for the number of tuples in 
the result: 

1. Projections do not change the number of tuples in a relation. 

2. Products produce a result with a number of tuples equal to the product 
of the numbers of tuples in the argument relations. 

There are two other operations - selection and join - where we have developed 
reasonable estimating techniques. Hoxever, for the remaining operations, the 

I size of the result is not easy to determine. \T'e shall review the other relational- 
algebra operators and give some suggestions as to how this estimation could be 

I done. 

Union 

If the bag union is taken, then the size is exactly the sun] of the sizes of the 
arguments. A set union can be as large as the sum of the sizes or as small as 
the larger of the tivo arguments. We suggest that something in the middle be 
chosen, e.g., the average of the sum and the larger (which is the same as the 
larger plus half the smaller). 

I Intersection 

The result can have as few as 0 tuples or as many as the smaller of the two 
arguments, regardless of whether set- or bag-intersection is taken. One approach 
is to take the average of the extremes, which is half the smaller. 

Another approach is to recognize that the intersection is an extreme case of 
the natural join and use the formula of Section 16.4.4. When a set intersection 
is meant, this formula is guaranteed to produce a result that is no greater than 
the smaller of the two relations. However, in the case of a bag intersection, there 
can be some anomalies, n-here the estimate is larger than either argument. For 
instance. consider R(a,b) ns S(a, b), where R consists of twvo copies of tuple 
(0,l) and S consists of three copies of the same tuple. Then 

T ( R )  = 2, and T(S) = 3. The estimate is 2 x3/(mas(l. 1) xmas(1,l)) = 6 from 
the rule for joins, but clearly there can be no more than min(2-(R), T(s)) = 2 
tuples in the result. 

Difference 

When we compute R - S,  the result can have between T(R)  and T(R)  - T ( S )  
tuples. We suggest the average as an estimate: T(R) - ~ T ( S ) .  

I Duplicate E'lirnination 

If R(al,a;l.. . . .a,) is a relation, then l*(R. [nl. a?. . ... an]) is the size of 6(R). 
Hon-ever. often 11-e shall not have this statistic available. so it must be approxi- 
mated. In the extremes. the size of 6(R) could be the same as the size of R (no 
duplicates) or as small as 1 (all tuplcs in R are the same)." Another upper limit 
on the number of tuples in 6(R) is tlie maximum number of distinct tuples that 
could exist: the product of I'(R. a,) for i = 1,2.. . . . n. That number could be 

4Strjct1y speaking, if R is empty there are no tuples in either R or b(R) ,  so the lower 
bound is 0. Ho~ve~er. \\.e are rarely interested in this special case. 
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smaller than other estimates of T (6(R)) . There are several rules that could be 
used to estimate T(6(R)). One reasonable one is to take the smaller of $T(R) 
and the product of all the V(R, ai)'s. 

Grouping and  Aggregation 

Suppose we have an expression yL(R), the size of whose result we need to 
estimate. If the statistic V(R,  [gl, g2,. . . , gk] ) ,  where the gi's are the grouping 
attributes in L, is available, then that is our answer. However, that statistic 
may well not be obtainable, so we need another way to estimate the size of 
yL(R). The number of tuples in yL(R) is the same as the number of groups. 
There could be as few as one group in the result or as many groups as there 
are tuples in R. As with 6, we can also upper-bound the number of groups 
by a product of V(R,A)'s, but here attribute A ranges over only the grouping 
attributes of L. We again suggest an estimate that is the smaller of $T(R) and 
this product. 

16.4.8 Exercises for Section 16.4 

Exercise 16.4.1: Below are the vital statistics for four relations, 1V, X, Y, 
and Z: 

Estimate the sizes of relations that are the results of the following expressions: 

d) vc=20 (Y) w Z. 

h) Ua=l AND b>2(Ttr). 

i) X ,.Zv.e Y .  

* Exercise 16.4.2: Here are the statistics for four relations E, F, G, and H: 

16.5. IAiTRODUCTIOi\T TO COST-BASED PLAN SELECTION 

How rnany tuples does the join of these tuples have, using the techniques for 
estimation from this section? 

! Exercise 16.4.3: How would you estimate the size of a semijoin? 

!! Exercise 16.4.4 : Suppose we compute R(a, b) cu S(a,c), where R and S each 
have 1000 tuples. The a attribute of each relation has 100 different values, and 
they are the same 100 values. If the distribution of values was uniform; i.e., 
each a-value appeared in exactly 10 tuples of each relation, then there would be 
10,000 tuples in the join. Suppose instead that the 100 a-values have the same 
Zipfian distribution in each relation. Precisely, let the values be a l ,  az, . . . ,am). 
Then the number of tuples of both R and S that have a-value ai is proportional 
to 1/A. Under these circumstances, how many tuples does the join have? You 
should ignore the fact that the number of tuples with a given a-value may not 
be an integer. 

16.5 Introduction to Cost-Based Plan Selection 

Whether selecting a logical query plan or constructing a phydcal query plan 
from a logical plan, the query optimizer needs to estimate the cost of evaluating 
certain expressions. We study the issues involved in cost-based plan selection 
here, and in Section 16.6 lye consider in detail one of the most important and 
difficult problems in cost-based plan selection: the selection of a join order for 
several relations. 

-1s before, we shall assume that the "cost" of evaluating an expression is 
approximated well by the number of disk 110's performed. The number of disk 
I/O1s, in turn, is influenced by: 

1. The particular logical operators chosen to implement the query, a matter 
decided when we choose the logical query plan. 

2. The sizes of interlllediate results. whose estimation we discussed in Sec- 
tion 16.1. 

3. The physical operators used to implement logical operators. e.g.. the 
choice of a one-pass or tn-o-pass join, or the choice to sort or not sort 
a given relation; this matter is discussed in Section 16.7. 

4. The ordering of similar operations, especially joins as discussed in Sec- 
tion 16.6. 
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5. The method of passing argument,s from one physical operator to the next, 
which is also discussed in Section 16.7. 

Many issues need to be resolved in order to perform effective cost-based 
plan selection. In this section, we first consider how the size parameters, which 
were so essential for estimating relation sizes in Section 16.4, can be obtained 
from the database egciently. We then revisit the algebraic laws we introduced 
to find the preferred logical query plan. Cost-based analysis justifies the use 
of many of the common heuristics for transforming logical query plans, such as 
pushing selections down the tree. Finally, we consider the various approaches to 
enumerating all the physical query plans that can be deri~ed from the selected 
logical plan. Especially important are methods for reducing the number of plans 
that need to be evaluated, while making it likely that the least-cost plan is still 
considered. 

16.5.1 Obtaining Estimates for Size Parameters 

The formulas of Section 16.4 were predicated on knowing certain important 
parameters, especially T(R), the number of tuples in a relation R, and lr(R, a), 
the number of different values in the column of relation R for attribute a. .A 
modern DBNS generally allows the user or administrator explicitly to request 
the gathering of statistics, such as T(R) and V(R,a). These statistics are 
then used in subsequent query optimizations to estimate the cost of operations. 
Changes in values for the statistics due to subsequent database modifications 
are considered only after the nest statistics-gathering command. 

By scanning an entire relation R, it is straightforward to count the number of 
tuples T(R) and also to discover the number of different values V(R. a) for each 
attribute a. The number of blocks in ~ h i c h  R can fit, B(R), can be estimated 
either by counting the actual number of blocks used (if R is clustered), or by 
dividing T(R) by the number of tuples per block (or by the average number of 
tuples per block if tuples are of varying length). Note that these two estimates of 
B(R) may not be the same, but they are usually "close enough" for comparisons 
of costs, as long as rve consistently choose one approach or the other. 

In addition, a DBMS may compute a histogram of the values for a given 
attribute. If V(R, A) is not too large. then the histogram may consist of the 
number (or fraction) of the tuples having each of the values of attribute -4. If 
there are a great many values of this attribute, then only the most frequent 
values may be recorded individually. ~vhile other values are counted in groups. 
The most common tvpes of histograms are: 

1. Equal-wrdth. .\ width w is chosen! along with a constant z.o Counts are 
provided of the number of tuples with values v in the ranges t.0 < v < 
vo + w,  2)0 + w 5 v < uo + 2w, and so on. The value vo may be the lo~vest 
possible value or a lower bound on values seen so far. In the latter case, 
should a new, lower value be seen, n-e can lower the value of vo by w and 
add a new count to the histogram. 
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2. Eqz~al-height. These are the common "percentiles." We pick some fraction 
p, and list the lowest value, the value that is fraction p from the lowest, 
the fraction 2p from the lowest, and so on, up to the highest value. 

3. A4ost-frequent-values. We may list the most common values and their 
numbers of occurrences. This information may be provided along with a 
count of occurrences for all the other values as a group, or rve may record 
frequent values in addition to an equal-width or equal-height histogram 
for the other values. 

One advantage of keeping a histogram is that the sizes of joins can be es- 
timated more accurately than by the simplified methods of Section 16.4. In 
particular, if a value of the join attribute appears explicitly in the histograms 
of both relations being joined, then we know exactly how many tuples of the 
result will have this value. For those values of the join attribute that do not ap- 
pear explicitly in the histogram of one or both relations, we estimate their effect 
on the join as in Section 16.4. However, if we use an equal-width histogram, 
with the same bands for the join attributes of both relations, then we can es- 
timate the size of the joins of corresponding bands, and sum those estimates. 
The result will be a good estimate, because only tuples in corresponding bands 
can join. The following examples will suggest how to carry out histogram-based 
estimation: we shall not use histogranls in estimates subsequently. 

Example  16.27: Consider histograms that mention the three most frequent 
values and their counts. and group the remai~lillg values. Suppose we want to 
compute thr join R(a, b) w S(b, c). Let the histogram for R.b be: 

1: 200, 0: 150, 5 :  100, others: 550 

That is. of the 1000 tuples in R. 200 of than have b-value 1, 150 have b-value 
0, and 100 have b-value 5. In addition, 550 tuples have b-values other than 0 ,  
1, or 5. and none of these other values appears more than 100 times. 

Let the histogram for S.b be: 

0: 100, 1: 80, 2: 70. others: 250 

Suppose also that V(R. b) = 14 and I.'(S, b) = 13. That is, the 550 tuples of R 
~vith unkno~-n b-values are divided among elel-en values: for an average of 50 
tuples each. and the 250 tuples of S n-ith unknon-n 6-values are divided among 
ten \-alucs. ear11 with an average of 25 tuples each. 

1-alucs 0 and 1 appear explicitly in both histograms. so n-e can calculate 
that thc 130 tuples of R ~vith b = 0 join \~itI l  the 100 tuples of S having the 
sanze b-\.alue. to ~ i r l d  15.000 tuples in tlic result. Likewise. the 200 tuples of R 
~vith b = 1 join rr-it11 the PO tuples of S having b = 1 to yield 16,000 more tuples 
in thc result. 

The estimate of the effect of the relnainillg tuples is more complex. \Ye shall 
continue to make the assumption that every value appearing in the relation with 
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the smaller set of values (S in this case) will also appear in the set of values of 
the other relation. Thus, among the eleven remaining bvalues of S, we know 
one of those values is 2, and we shall assume another of the values is 5 ,  since 
that is one of the most frequent values in R. We estimate that 2 appears 50 
times in R, and 5 appears 25 times in S.  These estimates are each obtained by 
assuming that the value is one of the "other" values for its relation's histogram. 
The number of additional tuples from b-value 2 is thus 70 x 50 = 3500, and the 
number of additional tuples from b-value 5 is 100 x 25 = 2500. 

Finally, there are nine other b-values that appear in both relations, and we 
estimate that each of them appears in 50 tuples of R and 25 tuples of S. Each 
of the nine values thus contributes 50 x 25 = 1250 tuples to the result. The 
estimate of the output size is thus: 

or 48,250 tuples. Note that the simpler estimate from Section 16.4 would be ' 

1000 x 500114, or 35,714, based on the assumptions of equal numbers of occur- 
rences of each value in each relation. 

Example 16.28 : In this example, we shall assume an equal-width histogram, 
and we shall demonstrate how knowing that values of two relations are almost 
disjoint can impact the estimate of a join size. Our relations are: 

Jan(day , temp) 
July (day, temp) 

and the query is: 

SELECT Jan.day, July.day 
FROM Jan, July 
WHERE Jan.temp = July.temp; 

That is, find pairs of days in January and July that had the same temperature. 
The query plan is to equijoin Jan and July on the temperature, and project 
onto the two day attributes. 

Suppose the histogram of temperatures for the telations Jan and July are 
as given in the table of Fig. 16.24.' In general, if both join attributes have 
equal-width histograms with the same set of bands (perhaps with some bands 
empty for one of the relations), then we can estimate the size of the join by 
estimating the size of the join of each pair of corresponding bands and summing. 

If two corresponding bands have Tl and T2 tuples, respectively. and the 
number of values in a band is V ,  then the estimate for the number of tuples 
in the join of those bands is T l T 2 / V ,  following the principles laid out in Sec- 
tion 16.1.4. For the histograms of Fig. 16.24, many of these products are 0. 
because one or the other of TI and T2 is 0. The only bands for ~vhich neither 

friends south of the equator should reverse the columns for January and July. 
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Range 
0--9 

10-19 
20-29 
30-39 
40-49 
50-59 
60-69 
70-79 
80-89 
90-99 

Jan - 
40 
60 
80 
50 
10 
5 
0 
0 
0 
0 

July - 
0 
0 
0 
0 
5 

20 
50 

100 
60 

Figure 16.24: Histograms of temperature 

Different Kinds of Cost Estimates 

We have suggested estimating disk 110's as a good way to predict the 
true cost of a query. Sometimes estimating disk 1/0's may turn out to 
be too complex or error-prone, or may be impossible if we are estimating 
the cost of a logical (rather than physical) plan. In such cases, simply 
considering intermediate result sizes as discussed in Section 16.4 may be an 
effective approach to cost estimation. Remember that the query optimizer 
needs only to compare query plans, not to predict exact execution time. 
On the other hand, sometimes disk I/O's may be too coarse a predictor. 
A more detailed cost estimate would consider CPU time, and still more 
detailed ~vould consider the motion of the disk head, taking into account 
the possible locality of blocks accessed on the disk. 

is 0 are 40-49 and 30-39. Since V = 10 is the width of a band, the 40-49 
band contributes 10 x 5/10 = 5 tuples, and the the 50-59 band contributes 
5 x 20110 = 10 tuples. 

Thus our estimate for the size of this join is 5 + 10 = 15 tuples. If tvc! 
had no histogram, and knew only that each relation had 245 tuples distributcd 
among 100 values from 0 to 99. then our estinlate of the join size would he 
245 x 245/100 = 600 tuples. C1 

16.5.2 Computation of Statistics 

Periodic recomputatioll of statistics is the norm in most DBMS's. for several 
reasons. First. statistics tend not to change radically in a short time. Second. 
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even somewhat inaccurate statistics are useful as long as they are applied con- 
sistently to all the plans. Third, the alternative of keeping statistics up-to-date 
can make the statistics themselves into a "hot-spot" in the database; because 
statistics are read frequently, we prefer not to update them frequently too. 

The recomputation of statistics might be triggered automatically after some 
period of time, or after some number of updates. However, a database admin- 
istrator noticing, that poor-performing query plans are being selected by the 
query optimizer on a regular basis, might request the recomputation of statistics 
in an attempt to rectify the problem. 

Computing statistics for an entire relation R can be very expensive, partic- 
ularly if we compute V(R, a) for each attribute a in the relation (or even worse, 
compute histograms for each a). One common approach is to compute approx- 
imate statistics by sampling only a fraction of the data. For example, let us 
suppose we want to sample a small fraction of the tuples to obtain an estimate 
for V(R, a). A statistically reliable caIculation can be complex, depending on a 
number of assumptions, such as whether values for a are distributed uniformly, 
according to a Zipfian distribution, or according to some other distribution. 
However, the intuition is as follows. If we look at  a small sample of R, say 1% 
of its tuples, and nre find that most of the a-values we see are different, then 
it is likely that V(R,a) is close to T(R). If we find that the sample has very 
few different values of a, then it is likely that we have seen most of the a-values 
that exist in the current relation. 

16.5.3 Heuristics for Reducing the Cost of Logical Query 
Plans 

One important use of cost estimates for queries or subqueries is in the appli- 
cation of heuristic transformations of the query. We have already observed in 
Section 16.3.3 how certain heuristics applied independent of cost estimates can 
be expected almost certainly to improve the cost of a logical query plan. Push- 
ing selections down the tree is the canonical example of such a transformation. 

However, there are other points in the query optimization process where es- 
timating the cost both before and after a transformation will allow us to apply 
a transformation where it appears to reduce cost and avoid the transformation 
otherwise. In particular, when the preferred logical query plan is being gen- 
erated. we may consider a number of optional transformations and the costs 
before and after. Because rve are estimating the cost of a logical query plan. so 
1-e have not yet made decisions about the physical operators that will be used 
to implement the operators of relational algebra. our cost estimate cannot be 
based on disk I/09s. Rather, we estimate the sizes of all intermediate results 
using the techniques of Section 16.1, and their sum is our heuristic estimate 
for the cost of the entire logical plan. One example will serve to illustrate the 
issues and process. 

Example 16.29: Consider the initial logical query plan of Fig. 16.25, and let 
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i" 
O a  = l o  

I 
W 
/ \ -  

R S 

Figure 16.25: Logical query plan for Example 16.29 

the statistics for the relations R and S be as. follows: 

To generate a final logical query plan from Fig. 16.25, we shall insist that the 
selection be pushed down as far as possible. Ho\$-ever, we are not sure whether 
it makes sense to push the 6 below the join or not. Thus, we generate from 
Fig. 16.25 the two query plans shown in Fig. 16.26; they differ in whether we 
have chosen to eliminate duplicates before or after the join. Xotice that in 
plan (a) the 6 is pushed down both branches of the tree. If R and/or S is 
known to have no duplicates, then the S along its branch could be eliminated. 

Figure 16.26: T\vo candidates for the best logical query plan 

\Ire know how to estimate the size of the result of the selections, from Sec- 
tion 16.4.3; we divide T(R) by V(R,a) = 50. We also know how to estimate 
the size of the joins; we multiply the sizes of the arguments and divide by 
max(V(R, b ) .  V ( S ,  b)), which is 200. What we don't know is how to estimate 
the size of the relations xvith duplicates elinlinated. 
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I Estimates for Result Sizes Need Not Be the Same I 
Notice that in Fig. 16.26 the estimates at the roots of the two trees are 
different: 250 in one case and 500 in the other. Because estimation is 
an inexact science, these sorts of anomalies will occur. In fact, it is the 
exception when we can offer a guarantee of consistency, as we did in Section 
16.4.6. 

Intuitively, the estimate for plan (b) is higher because if there are 
duplicates in both R and S, these duplicates will be multiplied in the join: 
e.g., for tuples that appear 3 times in R and twice in S, their join will 
appear six times in R w S. Our sixnple formula for estimating the size of 
the result of a 6 does not take into account the possibility that the effect 
of duplicates has been amplified by previous operations. 

First, consider the size estimate for 6(a,,lo(R)). Since ua=lo(R) has only 
one value for a and up to 100 values for b, and there are an estimated 100 
tuples in this relation, the rule from Section 16.4.7 tells us that the product 
of the value counts for each of the attributes is not a limiting factor. Thus. 
we estimate the size of the result of 6 as half the tuples in U ~ = ~ ~ ( R ) .  Thus. 
Fig. 16.26(a) shows an estimate of 50 tuples for G(a,,lo(R)). 

Now, consider the estimate of the result of the 6 in Fig. 16.26(b). The join 
has one value for a ,  an estimated min(17(R, b), V(S ,  b)) = 100 values for b, and 
an estimated V(S,c) = 100 values for c. Thus again the product of the value 
counts does not limit how big the result of the 6 can be. We estimate this result 
as 500 tuples, or half the number of tuples in the join. 

To conipare the two plans of Fig. 16.26, a e  add the estimated sizes for all the 
nodes except the root and the leaves. We exclude the root and leayes, because 
these sizes are not dependent on the plan chosen. For plan (a) this cost. the 
sum of the estimated sizes of the interior nodes, is 100 + 50 + 1000 = 1150. 
while for plan (b) the sum is 100 + 1000 = 1100. Thus, by a small margin we 
conclude that deferring the duplicate elimination to the end is a better plan. 
n'e would come to the opposite conclusion if, say, R or S had fewer b-values. 
Then the join size would be greater. making the cost of plan (b) greater. 0 

16.5.4 Approaches to Enumerating Physical Plans 
Soti-. let 11s consider the use of cost estimates in the conversion of a logical 
query plan to a physical query plan. The baseline approach, called e.zl>au.ct~ve. 
is to consider all combinations of choices for each of tlie issues outlined at tlie 
beginning of Section 16.4 (order of joins, physical implementation of operators. 
and so on). Each possible physical plan is assigned an estimated cost. and the 
one with the smallest cost is selected. 

Ho~vever, there are a number of other approaches to selection of a pliysical 
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plan. In this section, we shall outline various approaches that have been used, 
while Section 16.6 illustrates the major ideas in the context of the important 
probleni of selecting a join order. Before proceeding, let us comment that there 
are two broad approaches to exploring the space of possible physical plans: 

Top-down: Here, we work down the tree of the logical query plan from 
the root. For each possible implementation of the operation at  the root, 
we consider each possible way to evaluate its argument(s), and compute 
the cost of each combination, taking the best.6 

Bottorn-up: For each subexpression of the logical-query-plan tree, we com- 
pute the costs of all possible ways to compute that subexprmsion. The 
possibilities and costs for a subexpression E are computed by consider- 
ing the options for the subexpressions for E, and combining them in all 
possible ways with implementations for the root operator of E. 

There is actually not much difference between the two approaches in their 
broadest interpretations, since either way, all possible combinations of ways to 
implement each operator in the query tree are considered. When limiting the 
search, a top-down approach may allow us to eliminate certain options that 
could not be eliminated bottom-up. However. bottom-up strategies that limit 
choices effectil-ely have also been developed, so we shall concentrate on bottom- 
up methods in what follows. 

You may. in fact, have noticed that there is an apparent simplification of the 
bottorn-up method. where \ye consider only the best plan for each subespression 
\\-lien we compute the plans for a larger subespression. This approach, called 
dyncc1ni.c PI-ogramming in the list of methods below, is not guaranteed to yield 
the best plan. although often it does. The approach called Selinger-style (or 
Systenz-R-style) optimization, also listed belolv, exploits additional properties 
that some of the plans for a subexpression may have, in order to produce optilnal 
overall plans from plans that are not optimal for certain subespressions. 

Heuristic Selection 

One option is to use the same approach to selecting a physical plan that is 
generally used for selecting a logical plan: make a sequence of choices based 
on heuristics. In Section 16.6.6, vie shall discuss a .'greedy2 heuristic for join 
ordering.  here we start by joining tlie pair of relations whose result has the 
smallt~st estimated size. then repeat the process for the result of that join and 
the other relations in the set to be joined. There are many other heuristics that 
may be applied: heie are some of the most commonly used ones: 

'Remember from Section 16.3.4 that a single node of the logical-query-plan tree may 
represent many uses of a single commutative and associati\.e operator, such as join. Thus, 
the consideration of all possible plans for a single node may itself involve enumeration of very 
many choices. 
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1. If the logical plan calls for a selection uA,,(R), and stored relation R has Dynamic Programming 
an index on attribute A, then perform an index-scan (as in Section 15.1.1) In this \-ariation of the general bottom-UP strategy, we keep for each subexpres- 
to obtain only the tuples of R with A-value equal to c. sion only the plan of least cost. -is we work UP the tree, we consider possible 

implementations of each node, assuming the best plan for each subexpression 
2. &,fore generally, if the selection involves one condition like = c above, is also used. We examine this approach extensively in Section 16.6. 

and other conditions as well, we can implement the selection by an index- 
scan folh+-ed by a further selection on the tuples, which we shall represent 
by the ~IVsical operator filter. This matter is discussed further in Set- Selinger-Style Optimization 
tion 16.7.1.  hi^ approach improves upon the dynamic-programming approach by keeping 

for each subexpression not only the plan of least cost, but certain plans 
3. If an argument of a join has an index on the join attribute(s), then use that have higher cost, yet produce a result that is sorted in an that may 

an index-join with that relation in the inner loop. 
be useful higher up in the expression tree. Examples of such interesting 

4. If one argument of a join is sorted on the join a t t r i b ~ t e ( ~ ) ,  then prefer a are when the result of the subexpression is sorted On One 

sort-join to a hash-join, although not necessarily to an index-join if one is 
possible. 1. The attribute(s) specified in a sort (7) operator at the 

2. The grouping attribute(s) of a later group-by (7) Operator. 
5- When computing the union or intersection of three or more relations: 

group the smallest relations first. 3. The join attribute(s) of a later Join, 

~f ,ve take the cost of a plan to be the sum of the sizes of the intermediate 
Branch-and-Bound P lan  Enumeration relations: then there appears to be no advantage to hal'ing an argument 

This approach, often used in practice, begins by using heuristics to filld a good H ~ ~ , - ~ \ - ~ ~ .  if Ive use the more accurate measure, disk I/O's, as the cost, then the 

physical plan for the entire logical query plan. Let the cost of this plan be C. adx,antage of having an argument sorted becomes clear if \\-e can use one of the 
Then as consider other plans for subquerics, tve can elimirlate any plan for sort-based algorithms of section 15.1, and save the xvork of the first pass for 

a subquery that has a cost greater than C, since that plan for the subquerv the argunlent that is sorted already. 
possibly participate in a plan for the complete query that is better 

than what we already know. Likewise, if we construct a plan for the complete 16.5.5 Exercises for Section 16.5 
query that has cost less than C, we replace C by the cost of this better plan in 
subsequent explorat,ion of the space of physical query plans. ~~~~~i~~ 16.5.1 : Estimate the size of the join R(Q, b) w S(b,c) using his- 

An important advantage of this approach is that we can choose d e n  to cut tograms for R.b and S.b. Assume I/(& b) = V(S,b) = 20, and the histograms 

for both attributes give the frequency of the four most common as tab- 
off the search and take the best plan found so far. For inst,ance, if rile cost c 
is small, then even if there are much better pla1ls to be found, tile time spent . ulated belotv: 

finding them may exceed C, so it does not make sense to continue the search. 0 1 2 3 1 others 
Hol~ever, if C is large, then investing time in the hope of finding a faster plall R.b 5 6 4 5 32 
is wise. S.b 10 8 5 7 48 

Hill Climbing H~~ does this estimate compare with the simpler estimate, assuming that 

20 values are likely to occur, ~ i t h  T ( R )  = 52 and T(S)  = '8' 
This approach, in which we really search for a ",-alleyn in the space of physical 
plans and their costs; starts with a heuristically selected physical p]all. \ye can * ~~~~~i~~ 16.5.2 : Estimate the size of the join R(a, b )  w S(b:c) if n-e have the 

makesmall changes to the plan, e.g., replacing one method for an operator follou-ing histogram information: 
by another, or reordering joins by using the associative andlor conlnlutative 
laws, to find "nearby" plans that have lower cost. When m7e find a plall such 
that no slnall modification yields a plan of lower cost, we make tllat plan our 
chosen physical query plan. 
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! Exercise 16.5.3: In Example 16.29 we suggested that reducing the number 
of values that either attribute named b had could make plan (a) better than 
plan (b) of Fig. 16.26. For what values of: 

will plan (a) have a lower estimated cost than plan (b)? 

! Exercise 16.5.4 : Consider four relations R, S ,  T,  and V. Respectively, they 
have 200, 300, 400, and 500 tuples, chosen randomly and independently from 
the same pool of 1000 tuples (e.g., the probabilities of a given tuple being in R 
is 115, in S is 3/10, and in both is 3/50). 

* a) What is the expected size of R LJ S U T u V? 

b) What is the expected size of R n S n T n V? 

* c) What order of unions gives the least cost (estimated sum of the sizes of 
the intermediate relations)? 

d) What order of intersections gives the least cost (estimated sum of the sizes 
of the intermediate relations)? 

! Exercise 16.5.5: Repeat Exercise 16.5.4 if all four relations have 300 of the 
1000 tuples, at r a n d ~ m . ~  

!! Exercise 16.5.6 : Suppose we wish to conlpute the expression 

(R(a, b) w S(b, c) w T(c, d)) 

That is, we join the three relations and produce the result sorted on attribute 
b. Let us make the simpiifying assumptions: 

i. I r e  shall not "join" R and T first, because that is a product. 

ii. Any other join can be performed with a two-pass sort-join or hash-join. 
but in no other way. 

i i i .  Any relation; or the result of any expression, can be sorted by a tn-o-phase. 
multirvay merge-sort, but in no other way. 

iv. The result of the first join will be passed as an argument to the last join 
one block at  a time and not stored temporarily on disk. 

v. Each relation occupies 1000 blocks, and the result of either join of two 
relations occupies 5000 blocks. 

'Solutions to corresponding parts of this exercise are not published on the \\.eb. 
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Answer the following based on these assumptions: 

* a) What are all the subexpressions and orders that a Selinger-style optimiza- 
tion would consider? 

b) Which query plan uses the fewest disk I/O's?' 

!! Exercise 16.5.7: Give an example of a logical query plan of the form E w F, 
for some expressions E and F (which you may choose), where using the best 
plans to evaluate E and F does not allow any choice of algorithm for the final 
join that minimizes the total cost of evaluating the entire expression. Make 
whatever assumptions you wish about the number of available main-memory 
buffers and the sizes of relations ~nentioned in E and F. 

16.6 Choosing an Order for Joins 

In this section we focus on a critical problem in cost-based optimization: se- 
lecting an order for the (natural) join of three or more relations. Similar ideas 
can be applied to other binary operations like union or intersection, but these 
operations are less important in practice, because they typically take less time 
to execute than joins; and they more rarely appear in clusters of three or more. 

16.6.1 Significance of Left and Right Join Arguments 

When ordering a join. n-e should remember that many of the join methods 
discussed in Chapter 15 are asymmetric. That is. the roles played by the two 
argument relations are different, and the cost of the join depends on which 
relation plays which role. Perhaps most important. the one-pass join of Sec- 
tion 15.2.3 reads one relation - preferably the smaller - into main memory, 
creating a structure such as a hash table to facilitate matching of tuples from 
the other relation. It then reads the other relation, one block at  a time, to  join 
its tuples with the tuples stored in memory. 

For instance. suppose that when we select a physical plan we decide to use 
a one-pass join. Then we shall assume the left argument of the join is the 
smaller relation and store it in a main-memory data structure. This relation 
is called the build relation. The right argument of the join. called the probe 
relation, is read a block at  a time and its tuples are matched in main memory 
a i th  those of the build relation. Other join algorithms that distinguish between 
their arguments include: 

1. Sested-loop join. where we assume the left argument is the relation of the 
outer loop. 

2. Index-join, where we assume the right argument has the index. 

'Sotice that, because we have made some very specific assumptions about the join methods 
to be used, we can estimate disk I/OYs, instead of relying on the simpler, but less accurate. 
counts of tuples as our cost measure. 
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16.6.2 Join Trees 

When we have the join of two relations, we need to order the arguments. We 
shall conventionally select the one whose estimated size is the smaller as the 
left argument. Notice that the algorithms mentioned above - one-pass, nested- 
loop, and indexed - each work best if the left.argument is the smaller. More 
precisely, one-pass and nested-loop joins each assign a special role to the smaller 
relation (build relation, or outer loop), and index-joins typically are reasonable 
choices only if one relation is small and the other has an index. It is quite 
common for there to be a significant and discernible difference in the sizes of 
arguments, because a query involving joins very often also involves a selection 
on at  least one attribute, and that selection reduces the estimated size of one 
of the relations greatly. 

Example 16.30 : Recall the query 

SELECT movieTitle 
FROM StarsIn, MovieStar 
WHERE starName = name AND 

birthdate LIKE '%19601;  

from Fig. 16.4, which leads to the preferred logical query plan of Fig. 16.21, in 
which we take the join of relation StarsIn and the result of a selection on rela- 
tion MovieStar. We have not given estimates for the sizes of relations StarsIn 
or MovieStar, but we can assume that selecting for stars born in a single year 
will produce about 1150th of the tuples in MovieStar. Since there are generally 
several stars per movie, we expect StarsIn to be larger than MovieStar to begin 
with, so the second argument of the join, abirthdnte LIKE ,~1960~ (Moviestar), is 
much smaller than the first argument StarsIn. We conclude that the order of 
arguments in Fig. 16.21 should be reversed, so that the selection on MovieStar 
is the left argument.. 

There are only two choices for a join tree when there are two relations - 
take either of the two relations to he the left argument. When the join involves 
more than two relations, the number of possible join trees grows rapidly. For 
example, Fig. 16.27 shows three of the five shapes of trees in which four relations 
R, S, T, and U ,  are joined. However, each of these trees has the four relations 
in alphabetical order from the left. Since order of arguments matters, and there 
are n! ways to order n things, each tree represents 4! = 24 different trccs when 
the possible labelings of the leaves are considered. 

16.6.3 Left-Deep Join Trees 

Figure 16.27(a) is an example of what is caIled a left-deep tree. In general, 
a binary tree is left-deep if all right children are leavcs. Similarly, a tree like 
Fig. 16.27(c), all of whose left children are leaves, is called a right-deep tree. A 
tree like Fig. 16.27(b) that is neither left-deep nor right-deep is called bushy. 
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Figure 16.27: lITays to join four relations 

We shall argue below that there is a two-fold advantage to considering only 
left-deep trees as possible join orders. 

1. The nulnber of possible left-deep trees with a given number of leaves is 
large, but not nearly as large as the number of all trees. Thus, searches 
for query plans can be used for larger queries if we limit the search to 
left-deep trees. 

2. Left-deep trees for joins interact well with common join algorithms - 
nested-loop joills and one-pass joins in particular. Query plal~s based on 
left-deep trees plus these algorithms will tend to be more efficient than 
the same algorithms used wit11 non-left-deep trees. 

The -leaves'. ill a left- or right-deep join tree can actually be interior nodes, 
~vith operators other than a join. Thus, for instance, Fig. 16.21 is technically a 
left-deep join tree with one join operator. The fact that a selection is applied 
to the right operand of the join does not take the tree out of the left-deep join 
class. 

The number of left-deep trees does not grow nearly as fast as the number of 
all trees for the multi\\-ay join of a given number of relations. For n relations, 
there is only one left-deep tree shape, to which we map assign the relations in n! 
ways. There are the same number of right-deep trees for n relations. However, 
the total number of tree shapes T ( n )  for n relations is given by the recurrence: 

The esplanation for the second equation is that Ive may pick any number i 
between 1 and n  - 1 to be the number of leaves in the left subtree of the root. 
and those leaves may be arranged in any of the T ( i )  ways that trees tvith i leaves 
can be arranged. Similarly. the remaining n - i leaves in the right subtree can 
be arranged in any of T(11 - i )  ways. 
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I Role of the Buffer Manager I 
The reader may notice a difference between our approach in the series of 
examples such as Example 15.4 and 15.7, where we assumed that there 
was a fixed limit on the number of main-memory buffers available for a 
join, and the more flexible assumption taken here, where we assume that 
as many buffers as necessary are available, but we try not to use ''too 
many." Recall from Section 15.7 that the buffer manager has significant 
flexibility to allocate buffers to operations. However, if too many buffers 
are allocated at once, there will be thrashing, thus degrading the assumed 
performance of the algorithm being used. 

The first few values of T(n) are T ( l )  = 1, T(2) = 1, T(3)  = 2, T(4) = 5 ,  
T(5)  = 14, and T(6) = 42. To get the total number of trees once relations are 
assigned to the leaves, we multiply T(n)  by n!. Thus, for instance, the number 
of leaf-labeled trees of 6 leaves is 42 x G! or 30,240, of which 6!, or 720, are 
left-deep trees and another 720 are right-deep trees. 

Now, let us consider the second advantage mentioned for left-deep join trees: 
their tendency to produce efficient plans. We shall give two examples: 

1. If one-pass joins are used, and the build relation is on the left, then the 
amount of memory needed at any one time tends to be smaller than if \ye 
used a right-deep tree or a bushy tree for the same relations. 

2. If we use nested-loop joins, with the relation of the outer loop on the left. 
then we avoid constructing any intermediate relation more than once. 

Example 16.31 : Consider the left-deep tree in Fig. 16.27(a), and suppose 
that we use a simple one-pass join for each of the three w operators. As ah-ays. 
the left argument is the build relation; i.c., it will be held in main memory. 
To compute R w S, we need to keep R in main memory, and as we compute 
R w S we need to keep the result in main memory as well. Thus, we need 
B(R) + B(R w S)  main-memory buffers. If we pick R to be the smallest of the 
relations, and a selection has made R be rather small, then there is likely to be 
no problem making this number of buffers available. 

Having computed R w S, we must join this relation with T. However. the 
buffers used for R arc no longer needed and can be reused to hold (son~e of) 
tlie result of (R w S) w T. Similarly. when we join this relation ~vith C'. thc 
relation R w S is no longer needed, and its buffers can be reused for tlie result 
of the final join. In general, a left-deep join tree that is computed by one-pass 
joins requires main-memory space for at  most two of the temporary relations 
any time. 
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since left arguments are always the build relation. Then, we need to construct 
S w (T w U) and use that as the probe relation for the join a t  the root. To 
compute S w (T w U) we need to bring S into buffers and then compute 
T w U as the probe relation for S. But T w Ci requires that we first bring 
T into buffers. Now we have all three of R, S, and T in memory at  the same 
time. In general, if we try to compute a right-deep join tree with n leaves, we 
shall have to bring n - 1 relations into memory simultaneously. 

Of course it is possible that the total size B(R) + B(S) f B(T)  is less 
than the amount of space we need at either of the two intermediate stages 
of the computation of the left-deep tree, which are B(R) + B(R w S) and 
B(R w S) + B( (R  w S )  w T ) ,  respectively.g However, as we pointed out in 
Example 16.30, queries with several joins often will have a small relation with 
which we can start as the leftmost argument in a left-deep tree. If R is small, 
are might expect R w S to be significantly smaller than S and (R w S)  w T to 
be smaller than T, further justifying the use of a left-deep tree. 0 

Example 16.32: Now, let us suppose we are going to implement the four- 
way join of Fig. 16.27 by nested-loop joins, and that we use an iterator (as in 
Section 15.1.6) for each of the three joins involved. Also, assume for simplicity 
that each of the relations R,  S, T,  and CT are stored relations, rather than 
expressions. If we use the left-deep tree of Fig. 16.27(a), then the iterator at 
the root gets a main-memory-sized chunk of its left argument (R w S) w T. It 
then joins the chunk with all of C', but as long as Cr is a stored relation, it is 
only necessary to scan U .  not to construct it. \Vlien the nest chunk of the left 
argument is obtained and put in memory. U &-ill be read again, but nested-loop 
join requires that repetition. which cannot be avoided if both alguments are 
large. 

Similarly, to get a chunk of (R w S)  w T. me get a chunk of R w S into 
memory and scan T. Several scans of T may eventually be necessar; but cannot 
be avoided. Finally, to get a chunk of R w S requires reading a chunk of R and 
comparing it with S, perhaps several times. However, in all this action, only 
stored relations are read multiple times, and this repeated reading is an artifact 
of the way nested-loop join ii-orks ~vhcn the main memory is insufficiel~t to hold 
an entire relation. 

Sow, compare the behavior of iterators on the left-deep tree with the be- 
havior of iterators on the right-deep tree of Fig. 16.2i(c). The iterator at  the 
root starts by reading a chunk of R. It must then construct the entire rela- 
tion S w (T w C) and compare it 1,-ith that chunk of R. When we read the 
nest chunk of R into rnemorx. S w (T w C) must be constructed again. Each 
subsequent chunk of R likewise requires constructing this same relation. 

Of course. \re could construct S w (T w G) once and store it, either in 
memory or on disk. If we store it on disk. we are using estra disk I/07s compared 
with the left-deep tree's plan, and if R-e store it in memory, then we run into 

Xow, let us consider a similar irnplcmentation of the right-deep tree of Fig. I 9yote that as al\says do not count the cost of storing the result of an expression tree 
16.27(c). The first thing we need to do is load R into main-memory buffers. when measuring costs. 
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the same problem with overuse of memory that we discussed in Example 16.31. 

16.6.4 Dynamic Programming to Select a Join Order and 
Grouping 

To pick an order for the join of many relations we have three choices: 

1. Consider them all. 

2. Consider a subset. 

3. Use a heuristic to pick one. 

\Ire shall here consider a sensible approach to enumeration called dynamic pro- 
gramming. It can be used either to consider all orders, or to consider certain 
subsets only, such as orders restricted to left-deep trees. In Section 16.6.6 I\-e 
consider a reasonable heuristic for selecting a single ordering. Dynamic pro- 
gramming is a common algorithmic paradigm.10 The idea behind dynamic 
programming is that we fill in a table of costs, remembering only the minimum 
information we need to proceed to a conclusion. 

Suppose we want to join R1 w Rz w . .. w R,. In a dynamic programming 
algorithm, we construct a table with an entry for each subset of one or more of 
the n relations. In that table we put: 

1. The estimated size of the join of these relations. For this quantity we may 
use the formula of Section 16.4.6. 

2. The least cost of computing the join of these relations. \ \e  shall use in our 
examples the sum of the sizes of the intermediate relations (not including 
the Ri7s themselves or the join of tlie full set of relations associated with 
this table entry). Recall that the sizes of intermediate relations is the 
simplest measure we can usc to estimate the true cost of disk I/O's. CPU 
utilization, or other factors. However, other, more colnples estimates. 
such as total disk I/O's, could be used if we were willing and able to do 
the extra calculation involved. If we use disk I/O's or another measure of 
running time, then we also have to consider the algorithm used for the join 
in question. since different algorithms will have different costs. \re shall 
discuss these issues after learning the basics of dynamic programming. 

3. Thc expression that yields the least cost. This expressio~i joins the set 
of relations in question, v-ith some grouping. We can optionally restrict 
ourselves to left-deep expressions, in which case the expression is just an 
ordering of the relations. 

"See Aho, Hopcroft and Ullman, Data Structures ond Algorithms, .\ddison-\\.esle>: 1984. 
for a general treatment of dynamic programming. 
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The construction of this table is an induction on the subset size. There are two 
variations, depending on whether we wish to consider all possible tree shapes 
or only left-deep trees. We explain the difference when a-e discuss the inductive 
step of table construction. 

BASIS: The entry for a single relation R  consists of the size of R, a cost of 0, 
and an expression that is just R itself. The entry for a pair of relations { R , ,  R,) 
is also easy to compute. The cost is 0, since there are no intermediate relations 
involved, and the size estimate is given by the rule of Section 16.4.6; it is the 
product of the sizes of R, and R j  divided by the larger value-set size for each 
attribute shared by R, and R,, if any. The expression is either Ri w R, or 
Rj w R,. Following the idea introduced in Section 16.6.1, we pick the smaller 
of Ri and R, as the left argument. 

INDUCTION: Now, we can build the table, computing entries for all subsets 
of size 3, 4, and so on, until we get an entry for the one subset of size n. That 
entry tells us the best way to compute the join of all the relations; it also gives 
us the estimated cost of that method, which is needed as we compute later 
entries. \TTe need to see how to compute the entry for a set of k relations R. 

If wve wish to consider only left-deep trees, then for each of the k relations 
R in R we consider the possibility that we compute the join for R by first 
computing the join of R - {R} and then joining it ~ i t h  R. The cost of the join 
for R is the cost of R - { R )  plus the size of the latter join. i f re  pick whichever 
R yields the least cost. The expression for 'R has the best join expression for 
R - {R) as the left argument of a final join, and R as the right argument. The 
size for R is whatever the formula from Section 16.4.6 gives. 

If we wish to consider all trees, then computing the entry for a set of relations 
R is somewhat more complex. \Ve need to consider all ways to partition R into 
disjoint sets R1 and R2. For each such subset. we consider the sun1 of: 

1. The best costs of R1 and Rz. 

2. The sizes of R1 and Rz. 

For ~vhichever partition gives the best cost. \ye use this sum as tlie cost for R ,  
and the expression for R is the join of the best join orders for R1 and Rz. 

Example 16.33: Consider the join of four relations R, S. T, and U .  For 
simplicity. we shall assume they each have 1000 tuples. Their attributes and the 
estimated sizes of values sets for the attributes in each relation are summarized 
in Fig. 16.28. 

For the singleton sets. the sizes. costs and best plans are as in the table of 
Fig. 16.29. That is, for each single relation, the size is as given. 1000 for each. 
the cost is 0 since there are no intermediate relations needed, and the best (and 
only) expression is the relation itself. 

Sow, consider the pairs of relations. The cost for each is 0; since there are 
still no intermediate relations in a join of two. There are t\\-o possible plans. 
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Figure 16.28: Parameters for Example 16.33 

Size 
I { R )  I {S) I {TI I IU) 
I 1000 I 1000 I I000 I 1000 

Figure 16.29: The table for singleton sets 

since either of the two relations can be the left argument, but since the sizes 
happen to be the same for each relation R-e have no basis on which to choose 
between the plans. We shall take the first, in alphabetical order, to be tlie left 
argument in each case. The sizes of the resulting relations are computed by the 
usual formula. The results are summarized in Fig. 16.30. Note that 111 stands 
for 1,000,000, the size of those "joins" that are actually a product. 

1 {R, S) I {R,T) I { R ,  c )  I {S, T )  I {S,U) I {T,C-) 
Size 1 5000 1 111 1 10.000 1 2000 I 1RI I 1000 
Cost I 0 )  0 1  ' 0 1  0 1  0 1  0 1  
BestPlan R w S  R w T  R w U  S w T  S w G  T w C  

Figure 16.30: The table for pairs of relations 

Sow, consider the table for joins of three out of the four relations. The only 
\yay to compute a join of three relations is to pick two to join first. The size 
estimate for the result is computed by the standard formula, and Ive onlit the 
details of this calculation; remember that we'll get the san~c size rrgardless of 
which way we compute the join. 

The cost estimate for each triple of relations is the size of the one intcwne- 
diate relation - the join of the first two chosen. Since R.C isant this cost to he 
as small as possible, we consider each pair of two out of the three relatioiis and 
take the pair with the smallest size. 

For the expression, we group the two chosen relations first, but these could 
be either the left or right argument. Let us suppose that we are on11 interested 
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in left-deep trees, so we always use the join of the first two relations as the left 
argument. Since in all cases the estimated size for the join of two of our relations 
is at least 1000 (the size of each individual relation), were 1%-e to allow non-left- 
deep trees we would always select the single relation as the left a r ~ m e n t  in 
this example. The summary table for the triples is shown in Fig. 16.31. 

IR: S ,T)  I {R,S,U) I { K T ,  U) I {ST, U) 
Size 10,000 I 50,000 I 10,000 1 2,000 
Cost I 
Bestplan 1 ( T M U ) P I R  11000 I ( T M D ~ ) M S  lsOOo I 

Figure 16.31: The table for triples of relations 

Let us consider {R, S, T) as an example of the calculation. We must consider 
each of the three pairs in turn. If we start with R w S, then the cost is the 
size of this relation. n-hich is 5000, as we learned from the table for the pairs in 
Fig. 16.30. Starting with R w T gives us a cost of 1,000,000 for the intermediate 
relation, and starting with S w T has a cost of 2000. Since the latter is the 
smallest cost of the three options, we choose that plan. The choice is reflected 
not only in the cost entry of the {R, S, T )  column, but in the best-plan row, 
where the plan that groups S and T first appears. 

Sol\-. we must consider the situation for the join of all four relations. The 
size estimate for this relation is 100 tuples, so the true cost is essentially all in 
the construction of intermediate relations. However. recall that Ke never charge 
for the size of the result anyway when comparing plans. 

There are two general ways we can compute the join of all four: 

1. Pick three to join in the best possible way, and then join in the fourth. 

2.. Divide the four relations into txso pairs of t ~ o .  join the pairs and then 
join the results. 

Of course, if x\-e only consider left-deep trees then the second type of plan is 
excluded. because it yields bushy trees. The table of Fig. 16.32 sunlinari~es the 
seven possible ways to group the joins, based on the preferred groupings from 
Figs. 16.30 and 16.31. 

For instance. consider t'he first expression in Fig. 16.32. It represents joining 
R. S. and T first. and then joining that result with G. From Fig. 16.31, n-e 
kno~i- that the best 1i-a~- to join R, S, and T is to join S and T first. nb have 
used the left-deep for111 of this expression. and joined C on the right to continue 
the left-deep fo~m.  If we consider only left-deep trees. then this espression and 
relation order is the only option. If we allowed bushy trees. we would join C 
on the left, since it is smaller than the join of the other three. The cost of this 
join is 12,000, which is the sum of the cost and size of ( S  w T) w R, which are 
2000 and 10,000. respectively. 
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Figure 16.32: Join groupings and their costs 

The last three expressions in Fig. 16.32 represent additional options if n-e 
include bushy trees. These are formed by joining relations first in two pairs. 
For example, the last line represents the strategy of joining R MI U and S w T:  
and then joining the result. The cost of this expression is the sum of the sizes 
and costs of the two pairs. The costs are 0, as must be the case for any pair, and 
the sizes are 10,000 and 2000, respectively. Since we generally select the smaller 
relation to be the left argument, we show the expression as (S w T) w (R w U). 

In this example, we see that the least of all costs is associated IT-ith the 
fourth expression: ((T w U) w S )  w R. This expression is the one we select 
for computing the join; its cost is 3000. Since it is a left-deep tree. it is tlie 
selected logical query plan regardless of whether our dynamic-programming 
strategy considers all plans or just left-deep plans. 

16.6.5 Dynamic Programming With More Detailed Cost 
Functions 

Lsing relation sizes as the cost estimate simplifies the calculations in a dynamic- 
programming algorithm. However, a disadvantage of this simplification is that 
it does not involve the actual costs of the joins in the calculation. As an estreuie 
example, if one possible join R(a,b) w S(b. c) involves a relation R 15-it11 one 
tuple and another relation S that has an index on the join attribute 6. then the 
join takes almost no time. On the other hand, if S has no index, then we I T I U S ~  

scan it, taking B(S) disk I/O's, even when R is a singleton. -4 cost measure 
that only involved the sizes of R, S, and R w S cannot distinguish these tn-o 
cases, so the cost of using R w S in the grouping will be either o~erestimated 
or underestimated. 

However, modifying the dynamic programming algorithm to take join algo- 
rithms into account is not hard. First, the cost measure we use becomes disk 
I/O's, or whatever running-time units we prefer. When computing the cost of 
'IZi w R2, we sum the cost of R1, the cost of RZ, and the least cost of joining 
these two relations using the best available algorithm. Since the latter cost 
usually depends on the sizes of R1 and R2,  we must also compute estililates for 
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these sizes as we did in Example 16.33. 
An even more powerful version of dynamic programming is based on the 

Selinger-style optimization mentioned in Section 16.5.4. Now, for each set of 
relations that might be joined, we keep not only one cost, but several costs. 
Recall that Selinger-style optimization considers not only the least cost of pro- 
ducing the result of the join, but also the least cost of producing that relation 
sorted in any of a number of "interesting" orders. These interesting sorts in- 
clude any that might be used to advantage in a later sort-join or that could be 
used to produce the output of the entire query in the sorted order desired by 
the user. When sorted relations must be produced, the use of sort-join, either 
one-pass or multipass, must be considered as an option, while without consid- 
ering the value of sorting a result, hash-joins are always at least a s  good as the 
corresponding sort-join. 

. L 16.6.6 A Greedy Algorithm for Selecting a Join Order 

As Example 16.33 suggests, even the carefully limited search of dynamic pro- 
gramming leads to a number of calculations that is exponential in the number 
of relations joined. It is reasonable to use an exhaustive method like dynamic 
programming or branch-and-bound search to find optimal join orders of five or 
six relations. However, when the number of joins grows beyond that, or if we 
choose not to invest the time necessary for an exhaustive search, then we can 
use a join-order heuristic in our query optimizer. 

The most common choice of heuristic is a greedy algorithm, where we make 
one decision at a time about the order of joins and never backtrack or reconsider 
decisio~~s once made. IVe shall consider a greedy algorithm that only selects a 
left-deep tree. The .'greediness" is based on the idea that we want to keep the 
intermediate relations as small as possible at  each level of the tree. 

BASIS: Start with the pair of relations whose estimated join size is smallest. 
The join of these relations becomes the current tree. 

INDUCTION: Find. among all those relations not yet included in the current 
tree, the relation that, when joined with the current tree, yields the relation of 
smallest estimated size. The new current tree has the old current tree as its left 
argument and the selected relation as its right argument. 

Example 16.34 : Let us apply the greedy algorithm to the relations of Exam- 
ple 16.33. The basis step is to find the pair of relations that have the smallest 
join. Consultillg Fig. 16.30. we see that this honor goes to the join T w U, with 
a cost of 1000. Thus. T w C' is the .'current tree." 

11-e nolv consider whether to join R or S into the tree next. Thus rve compare 
the sizes of (T w L') w R and (T w C-) w S. Figure 16.31 tells us that the 
latter, xith a size of 2000 is better than the former, with a size of 10.000. Thus. 
we pick as the neR- current tree (T w C )  w S .  

Sow there is no choice; we must join R at  the last step, leaving us with 
a total cost of 3000, the sum of the sizes of the two intermediate relations. 
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Join Selectivity 

A useful way to view heuristics such as the greedy algorithm for selecting 
a left-deep join tree is that each relation R, when joined with the current 
tree, has a selectivity, which is the ratio 

size of the join result 
size of the current tree's result 

Since we usually do not have the exact sizes of either relation, we estimate 
these sizes as we have done previously. A greedy approach to join ordering 
is to pick that relation with the smallest selectivity. 

For example, if a join attribute is a key for R, then the selectivity 
is at most 1, which is usually a favorable situation. Notice that, judging 
from the statistics of Fig. 16.28, attribute d is a key for U, and there are 
no keys for other relations, which suggests why joining T with I: is the 
best way to start the join. 

Sote that the tree resulting from the greedy algorithm is the same as that 
selected by the dynamic-programming algorithm in Example 16.33. HOT-ever, 
there are examples where the greedy algorithm fails to find the best solution. 
while the dynamic-programming algorithm guarantees to find the best; see Ex- 
ercise 16.6.4. 

16.6.7 Exercises for Section 16.6 

Exercise 16.6.1 : For the relations of Exercise 16.4.1, give the dynamic-pro- 
gramming table entries that evaluates all possible join orders allowing: a) -411 
trees b) Left-deep trees only. What is the best choice in each case? 

Exercise 16.6.2 : Repeat Exercise 16.6.1 with the following modifications: 

i. The schema for Z is changed to Z(d, a). 

ii. V ( Z ,  a)  = 100. 

Exercise 16.6.3 : Repeat Exercise 16.6.1 with the relations of Exercise 16.4.2. 

* Exercise 16.6.4: Consider the join of relations R(a, b), S(b.c). T(c .d ) .  and 
C-(a,d), n-here R and U each have 1000 tuples, while S and T each have 100 
tuples. Further, there are 100 values of all attributes of all relations, escept for 
attribute c, where V(S ,c )  = C7(T, c )  = 10. 

a) What is the order selected by the greedy algorithm? What is its cost? 

b) What is the optimum join ordering and its cost? 
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Exercise 16.6.5 : How many trees are there for the join of: *a) seven b) eight 
relations? How many of these are neither left-deep nor right-deep? 

! Exercise 16.6.6: Suppose we wish to join the relations R, S, T, and U in 
one of the tree structures of Fig. 16.27, and we want to keep all intermedi- 
ate relations in memory until they are no longer needed. Following our usual 
assumption, the result of the join of all four will be consumed by some other 
process as it is generated, so no memory is needed for that relation. In terms 
of the number of blocks required for the stored relations and the intermediate 
relations [e.g., B(R) or B(R w S)], give a lower bound on A l ,  the number of 
blocks of memory needed, for: 

* a) The left-deep tree of Fig. 16.27(a). 

b) The bushy tree of Fig. 16.27(b). 

c) The right-deep of Fig. 16.27(c). 

What assumptions let us conclude that one tree is certain to use less memory 
than another? 

*! Exercise 16.6.7: If we use dynamic programming to select an order for the 
join of k relations, how many entries of the table do we have to fill'? 

16.7 Completing the Physical-Query-Plan 

We have parsed the query, converted it to an initial logical query plan, and 
improved that logical query plan with transformations described in Section 16.3. 
Part of the process of selecting the physical query plan is enumeration and cost- 
estimation for all of our options, which we discussed in Section 16.5. Section 16.6 
focused on the question of enumeration, cost estimation, and ordering for joins 
of several relations. By extension, we can use similar techniques to order groups 
of unions, intersections, or any associative/commutative operation. 

There are still several steps needed to turn the logical plan into a complete 
physical query plan. The principal issues that we must yet cover are: 

1. Selection of algorithms to implement the operations of the query plan, 
xvhen algorithm-selection was not done as part of some earlier step such 
as selection of a join order by dynamic programming. 

2. Decisions regarding when intermediate results will be materialized (cre- 
ated 11-hole and stored on disk), and when they will be pipelined (created 
only in main memory, and not necessarily kept in their entirety at an)- 
one time). 

3. Notation for physical-query-plan operators, which must include details 
regarding access methods for stored relations and algorithms for imple- 
mentation of relational-algebra operators. 



8% CHAPTER 16. THE QUERY COAIPILER 

We shall not discuss the subject of selection of algorithms for operators 
in its entirety. Rather, we sample the issues b j ~  discussing two of the most 
important operators: selection in Section 16.7.1 and joins in Section 16.7.2. 
 hen, we consider the choice between pipelining and materialization in Sec- 
tions 16.7.3 through 16.7.5. A notation for physical query plans is presented in 
Section 16.7.6. 

16.7.1 Choosing a Selection Method 

One of the important steps in choosing a physical query plan is to pick algo- 
rithms for each selection operator. In Section 15.2.1 ive mentioned the obvious 
implementation of a uc(R) operator, where we access the entire relation R and 
see which tuples satisfy condition C. Then in Section 15.6.2 we considered the 
possibility that C was of the form "attribute equals constant," and we had an 
index on that attribute. If so, then we can find the tuples that satisfy condition 
C without looking at all of R. Now, let us consider the generalization of this 
problem, where we have a selection condition that is the AND of several con- 
ditions, some of which are of the form "attribute equals constant" or another 
comparison, such as <, between an attribute and a constant. 

Assuming there are no multidimensional indexes on several of the attributes, 
then each physical plan uses some number of attributes that each: 

a) Have an index, and 

b) Are conipared to a constant in one of the terms of the selection. 

We then use these indexes to identify the sets of tuples that satisfy each of the 
conditions. Sections 13.2.3 and 14.1.5 discussed how we could use pointers ob- 
tained from these indexes to find only the tuples that satisfied all the conditions 
before we read these tuples from disk. 

For simplicity, we shall not consider the use of several indexes in this way. 
Rather, 1%-e limit; our discussion to physical plans that: 

1. Use one comparison of the form rlec, where .4 is an attribute with an 
indes, c is a constant, and 0 is a comparison operator such as = or <. 

2. Retrieve all tuples that satisfy the comparison from (I),  using the index- 
scan physical operator discussed in Section 15.1.1. 

3. Consider each tuple selected in (2) to decide xvhetlicr it satisfies the rest 
of the selection condition. We shall call the physical operator that per- 
forms this step F i l t e r ;  it takes the condition used to select tuples as a 
parameter, much as the a operator of relational algebra docs. 

In addition to physical plans of this form, we must also consider the plan that 
uses no indes but reads the entire relation (using the table-scan physical oper- 
ator) and passes each tuple to the F i l t e r  operator to check for satisfaction of 
the selection condition. 
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We decide among the physical plans with which to implement a given selec-' 
tion by estimating the cost of reading data for each possible option. To compare 
costs of alternative plans we cannot continue using the simplified cost estimate 
of intermediate-relation size. The reason is that we are now considering imple- 
mentations of a single step of the logical query plan, and intermediate relations 
are independent of implementation. 

Thus, we shall refocus our attention and resume counting disk I/O's, as we 
did when we discussed algorithms and their costs in Chapter 15. TO simplify 
as before, we shall count only the cost of accessing the data blocks, not the 
index blocks. Recall that the number of index blocks needed is generally much 
smaller than the number of data blocks needed, so this approximation to disk 
I /O cost is usually accurate enough. 

The following is an outline of how costs for the various plans are estimated. 
We assume that the operation is uc(R), where condition C is the AND of one or 
more terms. We use the example terms a = 10 and b < 20 to represent equality 
conditions and inequality conditions, respectively. 

1. The cost of the table-scan algorithm coupled with a filter step is: 

(a) B(R) if R is clustered, and 

(b) T(R) if R is not clustered. 

2. The cost of a plan that picks an equality term such as a = 10 for which an 
index on attribute a exists. uses index-scan to find the matching tuples, 
and then filters the retrieved tuples to see if they satisfy the full condition 
C is: 

(a) B(R)/Tf(R, a)  if the index is clustering, and 

(b) T(R)/t7(R, a)  if the index is not clustering. 

3. The cost of a plan that picks an inequality term such as b < 20 for which 
an index on attribute b esists, uses index-scan to retrie~e the matching 
tuples, and then filters the retrieved tuples to see if they satisfy the full 
condition C is: 

(a) B(R)/3 if the index is clustering." and 

(b) T(R)/3 if the index is not clustering. 

Example 16.35 : Consider selectioll o,=~ AND y=2 AND :<5(R), where R(x,?I, 2) 
has the follo~ving parameters: T(R)  = 5000. B(R) = 200, \'(R.z) = 100, and 
\-(R. y)  = 500. Further, suppose R is clustered, and there are indeses on all of 
r. y. and 2, but only the index on t is clustering. The follo~ving are the optiolls 
for implementing this selection: 

"Recall that we assume the typical inequality retrieves only 113 the tuples, for reasons 
discussed in Section 16.4.3. 
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1. Table-scan followed by filter. The cost is B(R), or 200 disk 1/O1s, since 
R is clustered. 

2. Use the index on x and the index-scan operator to find those tuples with 
x = 1, then use the filter operator to check that y = 2 and z < 5. Since 
there are about T(R)/V(R,x) = 50 tuples with x = 1, and the index is 
not clustering, we require about 50 disk 110's. 

3. Use the index on y and index-scan to find those tuples with y = 2, then 
filter these tuples to see that x = 1 and z < 5. The cost for using this 
nonclustering index is about T(R)/V(R, y), or 10 disk I/O's. 

4. Use the clustering index on z and index-scan to find those tuples with 
z < 5 ,  then filter these tuples to see that x = 1 and y = 2. The number 
of disk I/O1s is about B(R)/3 = 67. 

We see that the least cost plan is the third, with an  estimated cost of 10 disk . 
I/O's. Thus, the preferred physical plan for this selection retrieves all tuples 
with y = 2 and then filters for the other two conditions. 

16.7.2 Choosing a Join Method 

We saw in Chapter 15 the costs associated with the various join algorithms. On 
the assumption that we know (or can estimate) how many buffers are available 
to perform the join, we can apply the formulas in Section 15.4.8 for sort-joins, 
Section 15.5.7 for hash-joins, and Sections 15.6.3 and 15.6.4 for indexed joins. 

However, if we are not sure of, or cannot know, the number of buffers that 
will be available during the execution of this query (because we do not know 
what else the DBMS is doing at the same time), or if we do not have estimates 
of important size parameters such as the V(R, a)'s, then there are still some 
principles we can apply to choosing a join method. Similar ideas apply to other 
binary operations such as unions, and to the full-relation, unary operators, y 
and 6. 

One approach is to call for the one-pass join, hoping that the buffer man- 
ager can devote enough buffers to the join, or that the buffer manager 
can come close, so thrashing is not a major cost. An alternat,ive (for joins 
only, not for other binary operators) is to choose a nested-loop join, hop- 
ing that if the left argument cannot be granted enough buffers to fit in 
memory at once, then that argument mill not have to be divided into too 
many pieces, and the resulting join will still be reasonably efficient. 

A sort-join is a good choice when either: 

1. One or both arguments are already sorted on their join attribute(s), 
or 
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I Materialization in  erno or^ 1 
One might imagine that there is an intermediate approach, between 
pipelining and materialization, where the entire result of one operation 
is stored in main-memory buffers (not on disk) before being pwsed to 
the consuming operation. \Ire regard this possible mode of operation as 
pipelining, where the first thing that the consuming operation does is or- 
ganize the entire relation, or a large portion of it, in memory. An example 
of this sort of behavior is a selection, whose result is pipelined as the left 
(build) argument to one of several join algorithms, including the simple 
one-pass join, ~nultipass hash-join, or sort-join. 

2. There are two or more joins on the same attribute, such as 

(R(a. b) w S(% c)) w T(a ,  d)  

where sorting R and S on a will cause the result of R w S to be 
sorted on a and used directly in a second sort-join. 

If there is an index opportunity such as a join R(a, b) w S(b,c), where R 
is expected to be small (perhaps the result of a selection on a key that 
must yield only one tuple), and there is an index on the join attribute 
S.b. then we should choose an index-join. 

If there is no opportunity to use already-sorted relations or indexes, and 
a nrultipass join is needed, then hashing is probably the best choice, be- 
cause the number of passes it requires depends on the size of the smaller 
argument rather than on both arguments. 

I 16.7.3 Pipelining Versus Materialization 

The last major issue m-e shall discuss in connection with choice of a physical 
query plan is pipelining of results. The naive way to esecute a query plan is 
to order the operations appropriately (so an operation is not performed until 
the argument(s) below it have been performed), and store the result of each 
operation on disk until it is needed by another operation. This strategy is 
called nlnterializatzon. since each intermediate relation is materialized on disk. 

-1 more subtle. and generall? more efficient. \Yay to esecute a query plan 
is to interleave the esecution of several operations. The tuples produced by 
one operation are passed directly to the operation that uses it. without erer 
storing the intermediate tuples on disk. This approach is called pipelining. and 
it typically is implemented by a network of iterators (see Section 15.1.6), whose 
functions call each other at appropriate times. Since it saves disk I/O's. there 
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is an obvious advantage to pipelining, but there is a corresponding disadvan- 
tage. Since several operations must share main memory at any time, there is a 
chance that algorithms with higher disk-110 requirements must be chosen, or 
thrashing will occur, thus giving back all the disk-110 savings that were gained 
by pipelining, and possibly more. 

16.7.4 Pipelining Unary Operations 

Unary operations - selection and projection - are excellent candidates for 
pipelining. Since these operations are tuple-at-a-time, we never need to have 
more than one block for input, and one block for the output. This mode of 
operation was suggested by Fig. 15.5. 

We may implement a pipelined unary operation by iterators, as discussed in 
Section 15.1.6. The consumer of the pipelined result calls GetNext 0 each time 
another tuple is needed. In the case of a projection, it is only necessary to call 
GetNext 0 once on the source of tuples, project that tuple appropriately, and 
return the result to the consumer. For a selection ac (technically, the physical 
operator Filter(C)), it may be necessary to call GetNext 0 several times at 
the source, until one tuple that satisfies condition C is found. Figure 16.33 
illustrates this process. 

Consumer 

Tuple that 
satisfies C 

Test for C 

GetNext 
repeated 

Figure 16.33: Execution of a pipelined selection using iterators 

16.7.5 Pipelining Binary Operations 

The results of binary operations can also be pipelined. We use one buffer to 
pass the result to its consumer, one block at a time. Horvex-er, the mm~ber of 
other buffers needed to compute the result and to consume the result varies. 
depending on the size of the result and the sizes of other relations involved in 
the query. We shall use an extended example to illustrate the tradeoffs and 
opportunities. 

Example 16.36 : Let us consider physical query plans for the expression 

(R(w,z) w S(X>Y)) W U(Y, 2) 
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We make the following assumptions: 

1. R occupies 5000 blocks; S and U each occupy 10,000 blocks. 

2. The intermediate result R w S occupies k blocks for some k. We can 
estimate k, based on the number of x-values in R and S and the size of 
(w; x, y)  tuples compared to the (w, x) tuples of R and the (x, y) tuples 
of S. However, we want to see what happens as k varies, so we leave this 
constant open. 

3. Both joins will be implemented as hash-joins, either one-pass or two-pass, 
depending on k. 

4. There are 101 buffers available. This number, as usual, is set artificially 
low. 

A sketch of the expression with key parameters is in Fig. 16.34. 

k blocks /w\ 
V(az ) 

/"\ 10,ooo 
R (W,X ) S ( ~ 3 )  

blocks 

5000 10,000 
blocks blocks 

Figure 16.34: Logical query plan and parameters for Example 16.36 

First, consider the join R w S. Seither relation fits in main memory, so 
we need a two-pass hash-join. If the smaller relation R is partitioned into 
the maximum-possible 100 buckets on the first pass, then each bucket for R 
occupies 30 blocks.12 If R's buckets have 50 blocks, then the second pass of the 
hash-join R w S uses 51 buffers, leaving 50 buffers to use for the join of the 
result of R w S with U .  

i\'o~v, suppose that k 5 49; that is, the result of R w S occupies a t  most 49 
blocks. Then we can pipeline the result of R w S into 19 buffers, organize them 
for lookup as a hash table. and we have one buffer left to read each block of 
U in turn. We may thus execute the second join as a one-pass join. The total 
number of disk 110's is: 

a) 431000 to perform the two-pass hash join of R and S. 

"IVe shall assume for convenience that all buckets wind up with exactly their fair share of 
tuples. If there are variations, as there surely will be, then some extra buffers will be needed 
occasionally, and Tve rely on the buffer manager to make them axnilable, perhaps by moving 
some buffers to swap space on disk. temporarily. IVe do not: however, consider the additional 
cost of disk 110's for swapping, as we can expect that cost to be a small fraction of the total 
cost. 
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b) 10,000 to read U in the one-pass hash-join of (R w S) w U .  

The total is 55,000 disk 110's. 
Now, suppose k > 49, but k 5 5000. We can still pipeline the result of 

R w S, but we need to use another strategy, in which this relation is joined 
with U in a 50-bucket, two-pass hash-join. 

1. Before we start on R MI S, we hash U into 50 buckets of 200 blocks each. 

2. Next, we perform a two-pass hash join of R and S using 51 buckets as 
before, but as each tuple of R w S is generated, we place it in one of the 
50 remaining buffers that is used to help form the 50 buckets for the join 
of R w S with U .  These buffers are written to disk when they get full: as 
is normal for a two-pass hash-join. 

3. Finally, we join R w S with U bucket by bucket. Since k 5 5000, the 
buckets of R w S will be of size at most 100 blocks, so this join is feasible. . The fact that buckets of U are of size 200 blocks is not a problem, since 
we are using buckets of R w S as the build relation and buckets of U as 
the probe relation in the one-pass joins of buckets. 

The number of disk I/O's for this pipelined join is: 

a) 20,000 to read U and write its tuples into buckets. 

b) 45,000 to perform the two-pass hash-join R w S. 

c) k to write out the buckets of R w S.  

d) k + 10,000 to read the buckets of R w S and U in the final join. 

The total cost is thus 75,000 + 2k. Note that there is an apparent discontinuity 
as k grows from 49 to 50, since we had to change the final join from one-pass 
to two-pass. In practice, the cost would not change so precipitously, since \ye 
could use the one-pass join even if there were not enough buffers and a small 
amount of thrashing occurred. 

Last, let us consider what happens when k > 5000. Now, we cannot perform 
a two-pass join in the 50 buffers available if the result of R w S is pipelined. 
\Ye could use a three-pass join, but that would require an extra 2 disk I/O's per 
block of either argument, or 20,000 + 2k more disk I/O's. Ke can do better if 
n-e instead decline to pipeline R w S. Sow, an outline of the computation of 
the joins is: 

1. Compute R w S using a two-pass hash join and store the result on disk. 

2. Join R w S with U ,  also using a two-pass hash-join. Note that since 
B(U) = 10,000, we can perform a twc-pass hash-join using 100 buckets, 
regardless of how large k is. Technically, U should appear as the left 
argument of its join in Fig. 16.34 if we decide to make U the build relation 
for the hash join. 
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The number of disk I/07s for this plan is: 

a) 45,000 for the two-pass join of R and S. 

b) k to store R w S on disk. 

c) 30,000 + 3k for the tn-o-pass hash-join of U with R MI S. 

The total cost is thus 75,000 + 4k, which is lpss than the cost of going to a 
three-pass join a t  the final step. The three complete plans are summarized in 
the table of Fig. 16.35. 

Range I/O1s 

two-pass 

Figure 16.35: Costs of physical plans as a function of the size of R w S 

16.7.6 Notation for Physical Query Plans 

\Ye have seen many esalllplcs of the operators that can be used to form a physi- 
cal query plan. In general, each operator of the logical plan becomes one or more 
operators of the physical plan, and leaves (stored relations) of the logical plan 
become. in the physical plan. one of the scan operators applied to that relation. 
In addition, materialization would be indicated by a Store operator applied to 
the intermediate result that is to be materialized, followed by a suitable scan op- 
erator (usually Tablescan. since there is no index on the internlediatc relation 
unless one is constructed explicitly) when the materialized result is accessed by 
its consumer. However. for simplicity. in our physical-query-plan trees we shall 
indicat'e that a certain intermediate relation is materialized by a double line 
crossing the edge between that relation and its consumer. -111 other edges are 
assumed to represent pipelining bctn-fen the supplier and consumer of tuples. 

Ke shall non- catalog the various opprators that are typically found in physi- 
cal query plans. L-nlike the relational algebra. whose notation is fairly standard. 
each DBMS will use its own internal notation for physical query plans. 

Operators for Leaves 

Each relation R that is a leaf operand of the logical-query-plan tree will be 
replaced by a scan operator. The options are: 
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1. TableScan(R1: All blocks holding tuples of R are read in arbitrary order. 

2. Sortscan (R, L): Tuples of R are read in order, sorted according to the 
attribube(s) on list L. 

3. IndexScan(R,C): Here, C is a condition of the form A&, where A is an 
attribute of R, B is a comparison such as = or <, and c is a constant. Tu- 
ples of R are accessed through an index on attribute A. If the comparison 
f l is not =, then the index must be one, such as a B-tree, that supports 
range queries. 

4. IndexScan(R,A): Here A is an attribute of R. The entire relation R is 
retrieved via an index on R.A. This operator behaves like TableScan, 
but may be more efficient in certain circumstances, if R is not clustered 
and/or its blocks are not easily found. 

Physical Operators for Selection 

A logical operator ac(R) is often combined, or partially combined, with the 
access method for relation R, when R is a stored relation. Other selections, 
where the argument is not a stored relation or an appropriate index is not 
available, will be replaced by the corresponding physical operator we have called 
Fi l ter .  Recall the strategy for choosing a selection implementation, which Ise 
discussed in Section 16.7.1. The notation we shall use for the various selection 
implementations are: 

1. We may simply replace oc(R) by the operator Filter(C1. This choice 
makes sense if there is no index on R, or no index on an attribute that 
condition C mentions. If R, the argument of the selection, is actually an 
intermediate relation being pipelined to the selection, then no other op- 
erator besides F i l t e r  is needed. If R is a stored or materialized relation, 
then we must use an operator, TableScan or perhaps SortScan(R,L), to 
access R. We might prefer sort-scan if the result of uc(R) will later be 
passed to an operator that requires its argument sorted. 

2. If condition C can be expressed as AOc AND D for some other condition 
D, and there is an index on R.A, then we may: 

(a) Use the operator IndexScan(R,AOc) to access R, and 

(b) Use F i l t e r  (D) in place of the selection ac(R). 

Physical Sort Operators 

Sorting of a relation can occur at  any point in the physical query plan. We have 
already introduced the SortScan(R,L) operator, which reads a stored relation 
R and produces it sorted according to the list of attributes L. When we apply a 
sort-based algorithm for operations such as join or grouping, there is an initial 

i: 
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phase in which we sort the argument according to some list of attributes. It is 
common to use an explicit physical operator ~ o r t ( L )  to perform this sort on 
an operand relation that is not stored. This operator can also be used at the 
top of the physical-query-plan tree if the result needs to be sorted because of 
an ORDER BY clause in the original query, thus playing the same role as the T 

operator of Section 5.4.6. 

Other  Relational-Algebra Operations 

A11 other operations are replaced by a suitable physical operator. These oper- 
ators can be given designations that indicate: 

1. The operation being performed, e.g., join or grouping. 

2. Necessary parameters, e.g., the condition in a theta-join or the list of 
elements in a grouping. 

3. .A general strategy for the algorithm: sort-based, hash-based, or in some 
joins, index-based. 

4. h decision about the number of passes to be used: one-pass, two-pass, or 
nlultipass (recursive, using as many passes as necessary for the data at  
hand). .llternati~-ely, this choice may be left until run-time. 

5 .  An afiticipated number of buffers the operation will require. 

two-pass 
hash-join 
101 buffers 

Tablescan( U) 

101 buffers 

Figure 16.36: .\ physical plan from Example 16.36 

Example  16.37: Figure 16.36 s h o ~ ~ s  the physical plan developed in Exam- 
ple 16.36 for the casc k > 5000. In this plan, we access each of the three 
relations by a table-scan. \Ye use a two-pass hash-join for the first join, rnate- 
rialize it. and use a two-pass hash-join for the second join. By implication of 
the double-line symbol for materialization. the left argument of the top join is 
also obtained by a table-scan. and the result of the first join is stored using the 
Store  operator. 
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Figure 16.37: Another physical plan for the case where R w S is expected to 
be very small 

In contrast, if k 5 49, then the physical plan developed in Example 16.36 is 
that shown in Fig. 16.37. Notice that the second join uses a different number 
of passes, a different number of buffers, and a left argument that is pipelined, 
not materialized. U 

Filter(x=l AND 2<5) 

Indexscan (R, y=2) 

Figure 16.38: Annotating a selection to use the most appropriate index 

Example 16.38 : Consider the selection operation in Example 16.35, n-here we 
decided that the best of options was to use the index on y to find those tuples 
IT-ith y = 2, then check these tuples for the other conditions x = 1 and z < 5 .  
Figure 16.38 shows the physical query plan. The leaf indicates that R ~viI1 be 
accessed through its index on y,  retrieving only those tuples with y = '2. The 
filter operator says that we complete the selection by further selecting those of 
the retrieved tuples that have both x = 1 and z < 5. IJ 

16.7.7 Ordering of Physical Operations 

Our final topic regarding physical query plans is the matter of order of oper- 
ations. The physical query plan is generally represented as a tree, and trees 
imply something about order of operations, since data must flow up the tree. 
However, since bushy trees may have interior nodes that are neither ancestors 
nor descendants of one another, the order of evaluation of interior nodes rnay 

not always be clear. Moreover, since iterators can be used to implement opera- 
tions in a pipelined manner, it is possible that the times of execution for various 
nodes overlap, and the notion of "ordering" nodes makes no sense. 

If materialization is implemented in the obvious store-and-later-retrieve way, 
and pipelining is implemented by iterators, then we may establish a fixed se- 
quence of events ~i.liereby each operation of a physical query plan is executed. 
The following rules summarize the ordering of events implicit in a physical- 
query-plan tree: 

1. Break the tree into subtrees at each edge that represents materialization. 
The subtrees mill be executed one-at-a-time. 

2. Order the execution of the subtrees in a bottom-up, left-to-right manner. 
To be precise, perform a preorder traversal of the entire tree. Order 
the subtrees in the order in which the preorder traversal exits from the 
subtrees. 

3. Execute all nodes of each subtree using a network of iterators. Thus, all 
the nodes in one subtree are exec~lted simultaleously, with GetNext calls 
among their operators determining the exact order of events. 

Follo~ving this strategy, the query optimizer can now generate executable code, 
perhaps a sequence of function calls, for the query. 

16.7.8 Exercises for Section 16.7 

Exercise 16.7.1 : Consider a relation R(a, h, c, d) that has a clustering index 
on u and nonclustering indeses on each of the other attributes. The relevant 
parameters are: B(R) = 1000. T(R) = 5000, V(R,a) = 20, V(R,h) = 1000, 
I'(R,c) = 5000, and V ( R , d )  = .j00. Give the best query plan (index-scan 
or table-scan follo~ved by a filter step) and the disk-1/0 cost for each of the 
following selections: . 

b) Fa=1 AND b=2 AND c>_3(R). 

c) a,=l AND 6 5 2  AND c>3(R). 

! Exercise 16.7.2: In terms of B(R). T ( R ) ,  It*(R,x), and I7(R, y), express the 
follo~~ing conditions about the cost of implementing a selection on R: 

* a) It is better to use index-scan ~vith a nonclustering index on x and a term 
that equates x to a constant than a nonclustering index on y and a term 
that equates y to a constant. 

b) It is better to use index-scan with a nonclustering index on x and a term 
that equates z to a constant than a clustering index on y and a term that 
equates y to a constant. 



872 CHAPTER 16. THE QUERY CObIPILER 

c) It is better to use index-scan with a nonclustering index on 2 and a term 
that equates x to a constant than a clustering index on y and a term of 
the form y > C for some constant C. 

Exercise 16.7.3: How would the conclusions about when to pipeline in Ex- 
ample 16.36 change if the size of relation R were not 5000 blocks, but: 

a) 2000 blocks. 

! b) 10,000 blocks. 

! c) 100 blocks. 

! Exercise 16.7.4: Suppose we want to compute (R(a, b) w S(a, c)) w T(a, d) 
in the order indicated. We have M = 101 main-memory buffers, and B(R) = 
B(S) = 2000. Because the join attribute a is the same for both joins, we decide 
to implement the first join R w S by a two-pass sort-join, and we shall use 
the appropriate number of passes for the second join, first dividing T into some 
number of sublists sorted on a, and merging them with the sorted and pipelined 
stream of tuples from the join R w S. For what values of B(T) should we choose 
for the join of T with R w S: 

* a) A one-pass join; i.e., we read T into memory, and compare its tuples with 
the tuples of R w S as t.hey are generated. 

b) A two-pass join; i.e., we create sorted sublists for T and keep one buffer 
in memory for each sorted sublist, while we generate tuples of R w S. 

16.8 Summary of Chapter 16 

+ Compilation of Queries: Compilation turns a query into a physical query 
plan, which is a sequence of operations that can be implemented by tlie 
query-execution engine. The principal steps of query compilation are 
parsing, semantic checking, selection of the preferred logical query plan 
(algebraic expression), and generation from that of the best physical plan. 

+ The Parser: The first step in processing an SQL query is to parse it. as 
one would for code in any programming language. The result of parsing 
is a parse tree with nodes corresponding to SQL constructs. 

+ Semantic Checking: A preprocessor examines the parse tree. checks that 
the attributes, relation names, and types make sense. and resolves at- 
tribute references. 

+ Conversion to  a Logical Query Plan: The query processor must convert 
the semantically checked parse tree to an algebraic expression. Much 
of the conversion to relational algebra is straightforward, but subqueries 

16.8. SUhIA4,1ARY OF CHAPTER 16 

present a problem. One approach is to introduce a two-argument selection 
that puts the subquery in the condition of the selection, and then apply 
appropriate transformations for the common special cases. 

+ Algebraic Tmnsfomations: There are many ways that a logical query plan 
can be transformed to a better plan by using algebraic transformations. 
Section 16.2 enumerates the principal ones. 

+ Choosing a Logical Query Plan: The query processor must select that 
query plan that is most likely to lead to an efficient physical plan. In 
addition to applying algebraic transformations, it is useful to group asso- 
ciative and commutative operators, especially joins, so the physical query 
plan can choose the best order and grouping for these operations. 

+ Estimating Sizes of Relations: When selecting the best logical plan, or 
when ordering joins or other associative-commutative operations, we use 
the estimated size of intermediate relations as a surrogate for the true 
running time. Knowing, or estimating, both the size (number of tuples) 
of relations and the number of distinct values for each attribute of each 
relation helps us get good estimates of the sizes of intermediate relations. 

+ Histograms: Some systems keep histograms of the values for a given 
attribute. This information can be used to obtain better estimates of 
intermediate-relation sizes than the simple methods stressed here. 

+ Cost-Based Optimization: \Vhen selecting the best physical plan, we need 
to estimate the cost of each possible plan. Various strategies are used to 
generate all or some of the possible physical plans that implement a given 
logical plan. 

+ Plan-Enumeration Strategies: The common approaches to searching the 
space of physical plans for the best include dynamic programming (tab- 
ularizing the best plan for each subexpression of the given logical plan), 
Selinger-style dynamic programming (which includes the sort-order of re- 
sults as part of the table, giving best plans for each sort-order and for an 
unsorted result), greedy approaches (making a series of locally optimal 
decisions, given the choices for the physical plan that have been made so 
far). and branch-and-bound (enumerating only plans that are not imme- 
diately known to be worse than the best plan found so far). 

+ Left-Deep Join Trees: U-hen picking a grouping and order for the join 
of several relations, it is comnlon to restrict the search to left-deep trees. 
which are binary trees with a single spine down the left edge, with only 
leaves as right children. This form of join expression tends to yield efficient 
plans and also limits significantly the number of physical plans that need 
to be considered. 
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+ Physical Plans for Selection: If possible, a selection should be broken into 
an index-scan of the relation to which the selection is applied (typically 
using a condition in which the indexed attribute is equated to a constant), 
followed by a filter operation. The filter examines the tuples retrieved by 
the index-scan and passes through only those that meet the portions of 
the selection condition other than that on which the index scan is based. 

+ Pipelining Versus Materialization: Ideally, the result of each physical op- 
erator is consumed by another operator, with the result being passed be- 
tween the two in main memory ("pipelining"), perhaps using an iterator to 
control the flow of data from one to the other. However, sometimes there 
is an advantage to storing ("materializing") the result of one operator 
to save space in main memory for other operators. Thus, the physical- 
query-plan generator should consider both pipelining and materialization 
of intermediates. 

16.9 References for Chapter 16 

The surveys mentioned in the bibliographic notes to Chapter 15 also contain 
material relevant to query compilation. In addition, we recommend the survey 
[I], which contains material on the query optimizers of commercial systems. 

Three of the earliest studies of query optimization are [4], [5], and [3]. Pa- 
per [6], another early study, incorporates the idea of pushing selections down 
the tree with the greedy algorithm for join-order choice. [2] is the source for 
"Selinger-style optimization" as well as describing the System R optimizer, 
which was one of the most ambitious attempts at  query optimization of its 
day. 
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Chapter 17 

Coping With System 
Failures 

Starting with this chapter, we focus our attention on those parts of a DBMS 
that control access to data. There are two major issues to address: 

1. Data must be protected in the face of a system failure. This chapter deals 
with techniques for supporting the goal of resilience, that is, integrity of 
the data when the system fails in some way. 

2. Data must not be corrupted simply because several error-free queries or 
database modifications are being done at  once. This matter is addressed 
in Chapters 18 and 19. 

The principal technique for supporting resilience is a log, which records se- 
curely the history of database changes. nTe shall discuss three different styles 
of logging, called ..undo," .'redo," and "undo/redo." We also discuss recovery, 
the process whereby the log is used to reconstruct what has happened to the 
database when there has been a failure. An important aspect of logging and 
recovery is avoidance of the situation where the log must be examined into the 
distant past. Thus. ive shall learn the important technique called "checkpoint- 
ing," ivhich limits the length of log that must be examined during reco\?ery. 

In a final section. wve discuss iiarchi~ing,.' which allows the database to 
surrive not only temporary system failures. but situations where the entire 
database is lost. Then, \ve must rely on a recent copy of the database (the 
archive) plus whatever log information survives. to reconstruct the database as 
it existed at some point in the recent past. 

17.1 Issues and Models for Resilient Operation 

We begin our discussion of coping with failures by reviewing the kinds of things 
that can go wrong, and what a DB5IS can and should do about them. We 
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initially focus on "system failures" or "crashes," the kinds of errors that the 
logging and recovery methods are designed to fix. We also introduce in Sec- 
tion 17.1.4 the model for buffer management that underlies all discussions of 
recovery from system errors. The same model is needed in the next chapter as 
we discuss concurrent access to the database by several transactions. 

17.1.1 Failure Modes 

There are many things that can go wrong as a database is queried and modified. 
Problems range from the keyboard entry of incorrect data to an explosion in the 
room where the database is stored on disk. The following items are a catalog 
of the most important failure modes and what the DBMS can do about them. 

Erroneous D a t a  Entry  

Some data errors are impossible to detect. For example, if a clerk mistypes one 
digit of your phone number, the data will still look like a phone number that 
could be yours. On the other hand, if the clerk omits a digit from your phone 
number, then the data is evidently in error, since it does not have the form of 
a phone number. 

A modern DBMS provides a number of software mechanisms for catching 
those data-entry errors that are detectable. For example, the SQL standard. as 
well as all popular implementations of SQL, include a way for the database de- 
signer to introduce into the database schema constraints such as key constraints. 
foreign key constraints, and constraints on values (e.g., a phone number must 
be 10 digits long). Triggers, which are programs that execute whenever a mod- 
ification of a certain type (e.g., insertion of a tuple into relation R) occurs. are 
used to check that the data just entered meets any constraint that the database 
designer believes it should satisfy. 

Media Failures 

A local failure of a disk, one that changes only a bit or a few bits, can normally 
be detected by parity checks associated with the sectors of the disk, as we 
discussed in Section 11.3.5. 3,lajor failures of a disk, principally head crashes. 
where the entire disk becomes unreadable, are generally handled by one or both 
of the following approaches: 

1. Use one of the RAID schemes discussed in Section 11.7, so the lost disk 
can be restored. 

2. Maintain an archive, a copy of the database on a medium such as tape 
or optical disk. The archive is periodically created, either fully or incre- 
mentally, and stored at  a safe distance from the database itself. We shall 
discuss archiving in Section 17.5. 
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3. Instead of an archive, one could keep redundant copies of the database 
on-line, distributed among several sites. These copies are kept consistent 
by mechanisms we shall discuss in Section 19.6. 

Catastrophic Failure 

In this category are a number of situations in which the media holding the 
database is completely destroyed. Examples include explosions, fires, or van- 
dalism a t  the site of the database. RAID will not help, since all the data disks 
and their parity check disks become useless simultaneously. However, the other 
approaches that can be used to protect against media failure - archiving and 
redundant, distributed copies - will also protect against a catastrophic failure. 

System Failures 

The processes that query and modify the database are called transactions. A 
transaction; like any program, executes a number of steps in sequence; often, 
several of these steps will modify the database. Each transaction has a state, 
which represents what has happened so far in the transaction. The state in- 
cludes the current place in the transaction's code being executed and the values 
of any local variables of the transaction that will be needed later on. 

System fatlures are problems that cause the state of a transaction to be lost. 
Typical system failures are power loss and software errors. To see why problems 
such as power outages cause loss of state. observe that, like any program, the 
steps of a transaction initially occur in main memory. Unlike disk, main memory 
is .'volatile." as we discussed in Section 11.2.6. That is, a power failure will 
cause the contents of main mernory to disappear. while a disk's (nonvolatile) 
data remains intact. Similarly, a software error may overwrite part of main 
memory. possibly including values that \-ere part of the state of the program. 

When main memory is lost. the transaction state is lost; that is, we can no 
longer tell xx-llat parts of the transaction. including its database modifications, 
were made. Running the transaction again may not fix the problem. For 
example. if the transaction must add 1 to a value in the database, we do not 
know whether to repeat the addition of 1 or not. The principal remedy for the 
problems that arise due to a system error is logging of all database changes in 
a separate. non~olatile log. coupled ~vith recovery when necessary. However, 
the mechanisms ,,-hereby such logging can be done in a fail-safe manner are 
surprisingly intricate. as we shall sce starting in Section 17.2. 

17.1.2 More About Transactions 

Ke introduced the idea of transactions from the point of view of the SQL pro- 
grammer in Section 8.6. Before proceeding to our study of database resilience 
and recovery from failures, we need to discuss the fundamental notion of a 
transaction in more detail. 
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The transaction is the unit of execution of database operations. For exam- Finally, we show in Fig. 17.1 the role of the recovery manager. When there 
ple, if we are issuing ad-hoc commands to an SQL system, then each query or is a crash, the recoyery manager is activated. It examines the log and uses it to 
database modification statement (plus any resulting trigger actions) is a trans- repair the data, if necessary. -is always, access to the disk is through the buffer 
action. When using an embedded SQL interface, the programmer controls the manager. 
extent of a transaction, which may include several queries or modifications. 
as well as operations performed in the host language. In the typical embed- 
ded SQL system, transactions begin as soon as operations on the database are 17.1.3 Correct Execution of Transactions 
executed and end with an explicit COMMIT or ROLLBACK ("abort") command. Before we can deal with correcting system errors, we need to understand what 

As ure shall discuss in Section 17.1.3, a transaction must execute atomicall!; it means for a transaction to be executed "correctly." To begin, we assume that 
that is, all-or-nothing and as if it were executed at  an instant in time. Assuring the database is composed of "elements." We shall not specify precisely what 
that transactions are executed correctly is the job of a transaction manager, a an "elelnent" is, except to say it has a value and can be accessed or modified 
subsystem that performs several functions, including: by transactions. Different database systems use different notions of elements, 

but they are usually chosen from one or more of the following: 
1. Issuing signals to the log manager (described below) so that necessary 

information in the form of "log records" can be stored on the log. 1. Relations, or their object-oriented equivalent: the extent of a class. 

2. Assuring that concurrently executing transactions do not interfere ~vith 2. Disk blocks or pages. 
each other in ways that introduce errors ("scheduling"; see Section 18.1). 

3. Individual tuples of a relation, or their object-oriented equivalent: objects. 

In examples to follolv, one can imagine that database elements are tuples, 
Query 

processor 
Transaction 
manager 

1 / In this may, buffer-contents become single elements, allowing us to avoid some 
serious problems with logging and transactions that we shall explore periodically 
as we learn various techniques. .Avoiding database elements that are bigger than 

Log 
manager 

- or in many examples, simply integers. However, there are several good reasons 
in practice to use choice (2) - disk blocks or pages - as the database element. 

disk blocks also prevents a situation where part but not all of an element has 
Buffer - 

manager 
Recovery 
manager 

been placed in nonvolatile storage when a crash occurs. 
.A database has a state, which is a value for each of its elements.' Intuitively, 

we regard certain states as consistent, and others as inconsistent. Consistent 
states satisfy all constraints of the database schema. such as key constraints 

Data and constraints on values. However. consistent states must also satisfy implicit 

constraints that are in the mind of the database designer. The implicit con- . Log, straints may be maintained by triggers that are part of the database schema, 
but they might also be maintained only by policy statements concerning the 

Figure 17.1: The log manager and transaction manager database, or warnings associated with the user interface through which updates 
are made. 

The transaction manager and its interactions are suggested by Fig. 17.1 .\ fundamental assumption about transactions is: The transaction manager will send messages about actions of transactions to 
the log rnanager. to the buffer manager about when it is possible or necessary to . The Colrectness Principle: If a transaction cxecutes in the absence of any 
copy the buffer back to disk, and to the query processor to execute the queries other transactions or system errors. and it starts with the database in a 
and other database operations that comprise the transaction. consistellt state. then the database is also in a consistent state when the 

The log manager maintains the log. It must deal with the buffer manager. transaction ends. 
since space for the log initially appears in main-memory buffers, and at certain 
times these buffers must be copied to disk. The log, as well as the data, occupies 

live should not the database state with the state of a transaction; the latter is 
space on the disk, as we suggest in Fig. 17.1. \slues for the transaction's local variables, not database elements. 
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- 

IS the Correctness Principle Believable? 

Given that a database transaction could be an ad-hoc modification com- 
mand issued a t  a terminal, perhaps by someone who doesn't understand 
the implicit constraints in the mind of the database designer, is it plausible 
to assume all transactions take the database from a consistent state to an- 
other consistent state? Explicit constraints are enforced by the database, 
so any transaction that violates them will be rejected by the system and 
not change the database at  all. As for implicit constraints, one cannot 
characterize them exactly under any circumstances. Our position, justi- 
fying the correctness principle, is that if someone is given authority to 
modify the database, then they also have the authority to judge what the 
implicit constraints are. 

The buffer may or may not be copied to disk immediately; that decision is 
the responsibility of the buffer manager in general. As we shall soon see, one 
of the principal steps of using a log to assure resilience in the face of system 
errors is forcing the buffer manager to write the block in a buffer back to disk 
at appropriate times. However, in order to reduce the number of disk 1/O's, 
database systems can and will allow a change to exist only in volatile main- 
memory storage, at  least for certain periods of time and under the proper set 
of conditions. 

In order to study the details of logging algorithms and other transaction- 
management algorithms, nre need a notation that describes all the operations 
that molre data between address spaces. The primitives we shall use are: 

1. INPUT (X) : Copy the disk block containing database element X to a mem- 
ory buffer. 

2. READ (X , t ) : Copy the database element X to the transaction's local vari- 
There is a converse to the correctness principle that forms the motivation able t .  llore precisely, if the block containing database element X is not 

for both the logging techniques discussed in this chapter and the concurrency in a memory buffer then first execute INPUT(X). Kext, assign the value of 
control mechanisms discussed in Chapter 18. This converse involves two points: X to local variable t. 

1. A transaction is atornzc; that is, it must be executed as a whole or not 3. WRITE(X, t) : Copy the value of local variabIe t to database element X in 
at  all. If only part of a transaction executes, then there is a good chance a memory buffer. XIore precisely. if the block containing database element 
that the resulting database state will not be consistent. IY is not in a memory buffer then execute INPUT(X). Next, copy the value 

2. Transactions that execute simultaneously are likely to lead to an incon- of t to X in the buffer. 
sistent state unless we take steps to control their interactions, as we shall 
in Chapter 18. 4. OUTPUT(X): Copy the block containing .I' from its buffer to disk. 

The above operations make sense as long as database elements reside wlthin 17.1.4 The Primitive Operations of Transactions 
a single disk block, and therefore within a single buffer. That would be the 

Let us now consider in detail how transactions interact with the database. There case for database elements that are blocks. It would also be true for database 
are three address spaces that interact in important ways: elements that are tuples, as long as the relation schema does not allow tuples 

that are bigger than the space available in oue block. If database elements 
1. The space of disk blocks holding the database elements. occupy several blocks, then we shall imagine that each block-sized portion of 

the element is an element by itself. The logging mechanism to be used will assure 
2. The virtual or main memory address space that is managed by the buffer that the transaction cannot complete 5i.ithout the w i t e  of S being atomic; i.e., manager. either all blocks of S are written to disk. or none are. Thus, we shall assume 

3. The local address space of the transaction. for the entire discussion of logging that 

For a transaction to read a database element. that element must first be .a database element is no larger than a single block. 
brought to a main-memory buffer or buffers, if it is not already there. Then. 

the contents of the buffer(s) can be read by the transaction into its own address It is important to observe that different DBAIS components issue the various 
space. Writing of a new value for a database element by a transaction follows colnmands lve just introduced. READ and WRITE are issued by transactions. 
the reverse route. The new value is first created by the transaction in its olvn INPUT and OUTPUT are issued by the buffer manager, although OUTPUT can also 
space. Then, this value is copied to the appropriate buffer(s). be initiated by the log manager under ce~tain conditions, as we shall see. 
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Buffers in Query Processing and in Transactions 

If you got used to the analysis of buffer utilization in the chapters on 
query processing, you may notice a change in viewpoint here. In Chapters 
15 and 16  we were interested in buffers principally as they were used 
to compute temporary relations during the evaluation of a query. That 
is one important use of buffers, but there is never a need to preserve 
a temporary value, so these buffers do not generally have their values 
logged. On 'the other hand, those buffers that hold data retrieved from 
the database do need to have those values preserved, especially when the 
transaction updates them. 

Example 17.1 : To see how the above primitive operations relate to what a , 
transaction might do, let us consider a database that has two elements, A and 
B, with the constraint that they must be equal in all consistent states.2 

Transaction T consists logically of the following two steps: 

Notice that if the only consistency requirement for the database is that A = 
3, and if T starts in a consistent state and completes its activities ~vithout 
interference from another transaction or system error, then the final state must 
also be consistent. That is, T doubles two equal elements to get new, equal 
elements. 

Execution of T involves reading A and B from disk: performing arithmetic 
in the local address space of T, and writing the new values of A and B to their 
buffers. \Ire could express T as the sequence of six relevant steps: 

In addition, the buffer manager will eventually execute the OUTPUT steps to 
write these buffers back to disk. Figure 17.2 shows the primitive steps of T. 
followed by the two OUTPUT commands fro111 the buffer manager. IIk assunle 
that initially '4 = B = 8. The values of the memory and disk copies of .-1 and 
B and the local variable t in the address space of transaction T are indicated 
for each step. 

- 

2 0 n e  reasonably might ask why we should bother to have tno different elements that are 
constrained to  be equal, rather than maintaining only one element. However, this simple 
numerical constraint captures the spirit of many more realistic constraints, e.g.. the number 
of seats sold on a flight must not exceed the number of seats on the plane by more than 10%. 
or the sum of the loan balances at a bank must equal the total debt of the bank. 
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Figure 17.2: Steps of a transaction and its effect on memory and disk 

.4t the first step, T reads A, which generates an INPUT(A) command for the 
buffer manager if A's block is not already in a buffer. The value of A is also 
copied by the READ command into local variable t of T's address space. The 
second step doubles t ;  it has no affect on A, either in a buffer or on disk. The 

qk. The next third step writes t into d of the buffer; it does not affect A on di.. 
three steps do the same for B, and the last two steps copy A and B to disk. 

Observe that as long as all these steps execute, consistency of the database 
is preserved. If a system error occurs before OUTPUT(A1 is executed, then there 
is no effect to the database stored on disk; it is as if T never ran, and consistency 
is preserved. Ha\$-ever, if there is a system error after OUTPUT(A) but before 
OUTPUT(B) , then the database is left in an inconsistent state. 1% cannot prevent 
this situation from ever occurring, but me can arrange that when it does occur, 
the problem can be repaired - either both -4 and B \$-ill be reset to 8, or both 
will be advanced to 16. 

17.1.5 Exercises for Section 17.1 

Exercise 17.1.1: Suppose that the consistency constraint on the database is 
0 5 -4 5 B. Tell whether each of the following transactio~ls preserves consis- 
tency. 

Exercise 17.1.2 : For each of the transactiolls of Esercise 17.1.1, add the 
read- and write-actions to the computation and s l l o ~  the effect of the steps on 
main memory and disk. Assume that initially -4 = 5 and B = 10. .$lso, tell 
whether it is possible. with the appropriate order of OUTPUT actions, to assure 
that consistency is preserved even if there is a crash n-hile the transactio~l is 
executing. 
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17.2 Undo Logging 

\$re shall now begin our study of logging as a way to assure that transactions 
are atomic - they appear to the database either to have executed in their 
entirety or not to have executed at  all. A log is a sequence of log records, each 
telling something about what some transaction has done. The actions of several 
transactions can L'interleave," so that a step of one transaction may be executed 
and its effect logged, then the same happens for a step of another transaction, 
then for a second step of the first transaction or a step of a third transaction, and 
so on. This interleaving of transactions complicates logging; it is not sufficient 
simply to log the entire story of a transaction after that transaction completes. 

If there is a system crash, the log is consulted to reconstruct what trans- 
actions were doing when the crash occurred. The log also may be used, in 
conjunction with an archive, if there is a media failure of a disk that does not 
store the log. Generally, to repair the effect of the crash, some transactions will 
have their work done again, and the new values they wrote into the database 
are written again. Other transactions will have their work undone, and the 
database restored so that it appears that they never executed. 

Our first style of logging, which is called vndo logging, makes only repairs of 
the second type. If it is not absolutely certain that the effects of a transaction 
have been completed and stored on disk, then any database changes that the 
transaction may have made to the database are undone, and the database state 
is restored to what existed prior to the transaction. 

In this section we shall introduce the basic idea of log records, including 
the commit (successful completion of a transaction) action and its effect on the 
database state and log. We shall also consider how the log itself is created 
in main memory and copied to disk by a "flush-log" operation. Finally, \ve 
examine the undo log specifically, and learn how to use it in recovery from a 
crash. In order to avoid having to examine the entire log during recovery. we 
introduce the idea of "checkpointing," which allows old portions of the log to be 
thrown away. The checkpointing method for an undo log is considered explicitly 
in this section. 

17.2.1 Log Records 

Imagine the log as a file opened for appending only. As transactions execute. 
the log manager has the job of recording in the log each important event. One 
block of the log at  a time is filled with log records. each representing one of 
these events. Log blocks are initially created in main memory and are allocated 
by the buffer manager like any other blocks that the DBMS needs. The log 
blocks are written to nonl-olatile storage on disk as soon as is feasible: \ve shall 
have more to say about this matter in Section 17.2.2. 

There are several forms of log record that are used with each of the types 
of logging a-e discuss in this chapter. These are: 

1. <START T>: This record indicates that transaction T has begun. 
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1 Why Might a Transaction Abort? I 
One might wonder why a transaction would abort rather than commit. 
There are actually several reasons. The simplest is when there is some 
error condition in the code of the transaction itself, for example an at- 
tempted division by zero that is handled by "canceling" the transaction. 
The DBMS may also need to abort a transaction for one of several reasons. 
For instance, a transaction may be involved in a deadlock, where it and 
one or more other transactions each hold some resource (e.g., the privilege 
to write a new value of some database element) that the other wants. We 
shall see in Section 19.3 that in such a situation one or more transactions 
must be forced by the system to abort. 

2. <COMMIT T>: Transaction T has completed successfully and will make no 
more changes to database elements. Any changes to the database made by 
T should appear on disk. However, because we cannot control when the 
buffer manager chooses to copy blocks from memory to disk, u.e cannot 
in general be sure that the changes are already on disk when we see the 
<COMMIT T> log record. If we insist that the changes already be on disk, 
this requirement must be enforced by the log manager (as is the case for 
undo logging). 

3. <ABORT T>. Transaction T could not complete successfully. If transac- 
tion T aborts, no changes it made can have been copied to disk, and it is 
the job of the transaction manager to make sure that s u d ~  changes never 
appear on disk, or that their effect on disk is caricelled if they do. We 
shall discuss the matter of repairing the effect of aborted transactions in 
Section 19.1.1. 

For an undo log, the only other kind of log record we need is an update 
record. xi-hicll is a triple <T, S. L'>. The meaning of this record is: transaction 
T has clxanged database elenlent S. and its former value was v. The change 
reflected by an update record nornlally occurs in memory, not disk; i.e., the log 
record is a response to a WRITE action. not an OUTPUT action (see Section 17.1.4 
to recall the distinction between these operations). Sotice also that an undo 
log does not record the ne\v value of a database element. only the old value. 
As we shall see. should recovery be necessary in a system using undo logging. 
the only thing thr rccovrry managrr will do is cancel the possible effect of a 
transaction on disk by restoiing the old value. 

I 17.2.2 The Undo-Logging Rules 

There are two rules that transactions must obey in order that an undo log allo\vs 
us to recover from a system failure. These rules affect what the buffer rnanager 
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How Big Is an Update Record? 

If database elements are disk blocks, and an update record includes the 
old value of a database element (or both the old and new values of the 
database element as we shall see in Section 17.4 for undolredo logging), 
then it appears that a log record can be bigger than a block. That is not 
necessarily a problem, since like any conventional file, we may think of a 
log as a sequence of disk blocks, with bytes covering blocks without any 
concern for block boundaries. However, there are ways to compress the 
log. For instance, under some circumstances, we can log only the change, 
e.g., the name of the attribute of some tuple that has been changed by the 
transaction, and its old value. The matter of "logical logging" of changes 
is discussed in Section 19.1.7. 

can do and also requires that certain actions be taken whenever a transaction 
commits. We summarize them here. 

U1: If transaction T modifies database element X, then the log record of the 
form <T, X, v >  must be written to disk before the new value of X is 
written to disk. 

LT2: If a transaction commits, then its COMMIT log record must be witten to 
disk only after all database elements changed by the transaction have 
been written to disk, but as soon thereafter as possible. 

To sumnlarize rules Ul and Uz, material associated with one transaction must 
be written to disk in the following order: 

a) The log records indicating changed database elements. 

b) The changed database elements themselves. 

c) The COMMIT log record. 

However, the order of (a) and (b) applies to each database element individually. 
not to the group of update records for a transaction as a whole. 

In order to force log records to disk. the log manager needs a flush-log 
command that tells the buffer manager to copy to disk any log blocks that have 
not previously been copied to disk or that have been changed since they xvere 
last copied. In sequences of actions, we shall show FLUSH LOG esplicitly. The 
transaction manager also needs to have a way to tell the buffer manager to 
perform an OUTPUT action on a database element. We shall continue to shon- 
the OUTPUT action in sequences of transaction steps. 

I Preview of Other Logging Methods I 
In "redo logging" (Section 17.3), on recovery we redo any transaction that 
has a COMMIT record, and we ignore all others. Rules for redo logging as- 
sure that we may ignore transactions whose COMMIT records never reached 
the log. "Undo/redo logging" (Section 17.4) will, on recovery, undo any 
transaction that has not committed, and will redo those transactions that 
have committed. Again, log-management and buffering rules will assure 
that these steps successfully repair any damage to the database. 

Example 17.2 : Let us reconsider the transaction of Example 17.1 in the light 
of undo logging. Figure 17.3 expands on Fig. 17.2 to show the log entries and 
flush-log actions that have to take place along with the actions of the transaction 
T. Note we have shortened the headers to ILI-A for "the copy of A in a memory 
buffer" or D-B for "the copy of B on disk," and so on. 

I Figure 17.3: Actions and their log entries 

In line (1) of Fig. 17.3. transaction T begins. The first thing that happens is 
that the <START T> record is written to the log. Line (2) represents the read 
of -4 by T. Line (3) is the local change to t ,  which affects neither the database 
stored on disk nor any portion of the database in a memory buffer. Seither 
lines (2) nor (3) require any log entry, since they have no affect on the database. 

Line (4) is the write of the new value of -4 to the buffer. This modificatioll 
to -4 is reflected by the log entry <T. .-I7 8> lvhich says that A 11-as changed by 
T and its former value was 8. Note that the new value, 16, is not mentioned in 
an undo log. 

Log 
<START T >  

<T,A,8> 

<T,B,8> 

<COMMIT T >  

D-B 

S 
8 
8 
8 
8 
8 

8 
16 

D-.4 

8 
8 
8 
8 
8 
8 

16 
16 

M-B 

8 
S 

16 

16 
16 

bf-A 

8 
8 

16 
16 
16 
16 

16 
16 

t 

8 
16 
16 
8 

16 
16 

16 
16 

Step 
1) 
2) 
3) 
4) 
5 )  
6) 
7) 
8) 
9) 

lo) 
11) 
12) 

Action 

READ(A,~) 
t : = t * 2  
WRITE(A,t) 
READ(B,~) 
t : = t * 2  
WRITE(B,~) 
FLUSH LOG 
OUTPUT(A) 
OUTPUT(B) 

FLUSH LOG 
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I Background Activity Affects the Log and Buffers I 
As we look at  a sequence of actions and log entries like Fig. 17.3, it is tempt- 
ing to imagine that these actions occur in isolation. However, the DBMS 
may be processing many transactions simultaneously. Thus, the four log 
records for transaction T may be interleaved on the log with records for 
other transactions. Moreover, if one of these transactions flushes the log, 
then the log records from T may appear on disk earlier than is implied by 
the flush-log actions of Fig. 17.3. There is no harm if log records reflecting 
a database modification appear earlier than necessary. The essential pol- 
icy for undo logging is that we don't write the <COMMIT T> record until 
the OUTPUT actions for T are completed. 

A trickier situation occurs if two database elements A and B share a 
block. Then, writing one of them to disk writes the other as well. In the 
worst case, we can violate rule UI by writing one of these elements pre- 
maturely. It may be necessary to adopt additional constraints on transac- 
tions in order to make undo logging work. For instance, we might use a 
locking scheme where database elements are disk blocks, as described in 
Section 18.3, to prevent two transactions from accessing the same block 
at the same time. This and other problems that appear when database 
elements are fractions of a block motivate our suggestion that blocks be 
the database elements. 

Lines ( 5 )  through (7) perform the same three steps with B instead of A. 
.kt this point, T has conipleted and must commit. It would like the changed -4 
and B to migrate to disk, but in order to follow the two rules for undo logging, 
there is a fixed sequence of events that must happen. 

First. A and B cannot be copied to disk until the log records for the changes 
are on disk. Thus, a t  step (8) the log is flushed, assuring that these records 
appear on disk. Then, steps (9) and (10) copy -4 and B to disk. The transaction 
manager requests these steps from the buffer manager in order to commit T. 

Now, it is possible to commit T. and the <COMMIT T> record is written to 
the log, which is step (11). Finally. we must flush the log again at step (12) 
to make sure that the <COMMIT T> record of the log appears on disk. Sotice 
that without n-riting this record to disk. we could hal-e a situation where a 
transaction has committed, but for a long time a review of the log does not 
tell us that it has committed. That situation could cause strange behavior if 
there were a crash, because, as we shall see in Section 17.2.3, a transaction that 
appeared to the user to have committed and written its changes to disk would 
then be utldone and effectively aborted. 
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17.2.3 Recovery Using Undo Logging 
Suppose now that a system failure occurs. It is possible that certain database 
changes made by a given transaction may have been written to disk, while 
other changes made by the same transaction never reached the disk. If so, 
the transaction was not executed ato~nically, and there may be an inconsistent 
database state. It is t ie  job of the recovery manager to use the log to restore 
the database state to some consistent state. 

In this section we consider only the simplest form of recovery manager, one 
that looks at the entire log, no matter how long, and makes database changes 
as a result of its examination. In Section 17.2.4 we consider a more sensible 
approach, where the log is periodically "checkpointed," to limit the distance 
back in history that the recovery manager must go. 

The first task of the recovery manager is to divide the transactions into 
committed and uncommitted transactions. If there is a log record <COMMIT T>, 
then by undo rule Uz all changes made by transaction T were previously written 
to disk. Thus, T by itself could not have left the database in an inconsistent 
state when the system failure occurred. 

However, suppose that find a <START T> record on the log but no 
<COMMIT T> record. Then there could have been some changes to the database 
made by T that got written to disk before the crash, while other changes by 
T either were not made, even in the main-memory buffers, or were made in 
the buffers but not copied to disk. In this case, T is an incomplete transactton 
and must be undone. That is, whatever changes T made must be reset to their 
previous ~alue .  Fortunately, rule Ul assures us that if T changed .Y on disk 
before the crash, then there will be a <T, X ,  v >  record on the log, and that 
record will have been copied to disk before the crash. Thus, during the recovery, 
we must write the value v for database element -Y. Note that this rule begs the 
question whether X had value v in the database anyway; we don't even bother 
to check. 

Since there may be several uncommitted transactions in the log, and there 
may even be se\-era1 uncommitted transactions that modified X ,  we have to 
be systematic about the order in which we restore values. Thus, the recovery 
manager must scan the log from the end (i.e., from the most recently written 
record to the earliest written). As it travels, it remembers all thosc transactions 
T for which it has seen a <COMMIT T> record or an <ABORT T> record. Also 
as it tral-els back~vard, if it sees a record <T,.Y, v>, then: 

1. If T is a transaction whose COMMIT record has been seen. then do nothing. 
T is committed and must not be undone. 

2. Otherwise, T is an incomplete transaction, or an aborted transaction. 
The recovery manager n~ust  change the value of X in the database to v, 
in case X had been altered just before the crash. 

After making these changes, the recovery manager must write a log record 
<ABORT T> for each incomplete transaction T that was not previously aborted. 
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and then flush the log. Now, normal operation of the database may resume; 
and new transactions may begin executing. 

Example 17.3: Let us consider the sequence of actions from Fig. 17.3 and 
Example 17.2. There are several different times that the system crash could 
have occurred; let us consider each significantly different one. 

1. The crash occurs after step (12). Then we know the <COMMIT T> record 
got to disk before the crash. When we recover, we do not undo the 
results of T ,  and all log records concerning T are ignored by the recovery 
manager. 

2. The crash occurs between steps (11) and (12). It is possible that the 
log record containing the COMMIT got flushed to disk; for instance, the 
buffer manager may have needed the buffer containing the end of the log 
for another transaction, or some other transaction may have asked for 
a log flush. If so, then the recovery is the same as in case (I) as far 
as T is concerned. However, if the COMMIT record never reached disk, 
then the recovery manager considers T incomplete. IVhen it scans the log 
backward, it comes first to the record <T, B, 8>. It therefore stores 8 as 
the value of B on disk. It then comes to the record <T, A, 8> and makes 
-4 have value 8 on disk. Finally, the record <ABORT T> is written to the 
log, and the log is flushed. 

3. The crash occurs between steps (10) and (11). NOTY, the COMMIT record 
surely was not written, so T is incomplete and is undone as in case (2). 

4. The crash occurs between steps (8) and (10). Again as in case (3). T is 
undone. The only difference is that now the change to -4 and/or B may 
not have reached disk. Nevertheless, the proper value, 8. is stored for each 
of these database elements. 

5. The crash occurs prior to step (8). Yow, it is not certain whether any 
of the log records concerning T have reached disk. Hen-ever, it doesn't 
matter, because we know by rule that if the change to -4 and/or B 
reached disk, then the corresponding log record reached disk, and tliere- 
fore if there were changes to -4 and/or B made on disk by T, then the 
corresponding log record will cause the recor-ery manager to undo those 
changes. 

17.2.4 Checkpointing 

As we observed, recovery requires that the entire log be examined, in principle. 
When logging follows the undo style, once a transaction has its COMMIT log 
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Crashes During Recovery 

Suppose the system again crashes while we are recovering from a previous 
crash. Because of the way undo-log records are designed, giving the old 
value rather than, say. the change in the value of a database element, 
the recovery steps are idempotent; that is, repeating them many times 
has exactly the same effect as performing them once. We have already 
observed that if we find a record <T, X ;  v>, i t  does not matter whether 
the value of .Y is already v - we may write v for X regardless. Similarly, 
if xve have to repeat the recovery process, it will not matter whether the 
first, incomplete recovery restored some old values; we simply restore them 
again. Incidentally, the same reasoning holds for the other logging methods 
we discuss in this chapter. Since the reco17ery operations are idempotent, 

I Ive can recover a second time without worrying about changes made the 
1 first time. 

record written to disk, the log records of that transaction are no longer needed 
during recovery. We might iniagiile that we could delete the log prior to a 
COMMIT, but sometimes rve cannot. The reason is that often many transactions 
execute at once. If xve truncated the log after one transaction committed, log 
records pertaining to some other active transaction T might be lost and could 
not be used to undo T if recovery lvere necessary. 

The simplest way to untangle potential problems is to checkpoint the log 
periodically. In a simple checkpoint, n-e: 

1. Stop accepting nelv transactions. 

2. \\'sit ulltil all currently active transactiolls commit or abort and have 
written a COMMIT or ABORT record on the log. 

3. Flush the log to disk. 

4. Write a log record <CKPT>, and flush the log again. 

5 .  Resume accepting transactions. 

Ally trailsaction that executed prior to the checkpoirlt will have finished, 
arid by rule its cllallges \rill have reached the disk. Thus. there will be no 
need to u~ldo any of these transactions during recovery. During a recovery. 
r e  scan the log backwards from the end. identifying incomplete transactions 
as in Section 17.2.3. Ho\vever, when Ke find a <CKPT> record. ti-e know that 
xve have seen all the incolnplete transactions. Since no transactions may begin 
until the checkpoint ends. a e  must have seen every log record pertaining to the 
inco~r~plete transactions alread~. Thus, there is no need to scan prior to the 
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Finding the Last Log Record 

The log is essentially a file, whose blocks hold the log records. A space in 
a block that has never been filled can be marked "empty." If records were 
never overwritten, then the recovery manager could find the last log record 
by searching for the first empty record and taking the previous record as 
the end of the file. 

However, if we overwrite old log records, then we need to keep a serial 
number, which only increases, with each record, as suggested by: 

4 5 6 7 8  

Then, we can find the record whose serial number is greater than that of 
the next record; the latter record will be the current end of the log, and 
the entire log is found by ordering the current records by their present 
serial numbers. 

In practice, a large log may be composed of many files, with a "top" 
file whose records indicate the files that comprise the log. Then, to recover, 
we find the last record of the top file, go to the file indicated, and find the 
last record there. 

<CKBT>, and in fact the log before that point can be deleted or overwritten 
safely. 

Example 17.4 : Suppose the log begins: 

At this time, n-e decide to do a checkpoint. Since TI and T2 are the active 
(incomplete) transactions, we shall have to wait until they complete before 
ariting the <CKPT> record on the log. 

-4 possible continuation of the log is sho~sn in Fig. 17.4. Suppose a crash 
occurs at  this point. Scanning the log from the end, we identify T3 as the only 
incomplete transaction. and restore E and F to their former values 25 and 30. 
respectively. IVhen n-e reach the <CKPT> record, sve know there is no need to 
examine prior log records and the restoration of the database state is complete. 
n 

17.2.5 Nonquiescent Checkpointing 

-1 problem with the checkpointing technique described in Section 17.2.4 is that 
effectively we must shut down the system while the checkpoint is being made. 

17.2. UNDO LOGGING 

Figure 17 .4  An undo log 

Since the active transactions may take a long time to commit or abort, the 
system may appear to users to be stalled. Thus, a more complex technique 
known as nonquiescent checkpointing, which allows new transactions to enter the 
system during the checkpoint, is usually preferred. The steps in a nonquiescent 
checkpoint are: 

1. IITrite a log record <START CKPT (TI.. . . , Tk)> and flush the log. Here, 
TI, .  . . , Tk are the names or identifiers for all the active transactions (i.e., 
transactions that have not yet committed and written their changes to 
disk). 

2. IT'ait until all of TI,. . . , Tk commit or abort, but do not prohibit other 
transactions from starting. 

3. When all of TI,. . . , Tk have completed, write a log record <END CKPT> 
and flush the log. 

With a log of this type, 1vc can recover from a system crash as follo\vs. AS 
usual, we scan the log from the end, finding all incomplete transactions as we go, 
and restoring old values for database elements changed by these transactions. 
There are tn-o cases, depending on whether, scanning backwards, we first meet 
an <END CKPT> record or a <START CKPT (TI,. . . , Tk) > record. 

If we first meet an <END CKPT> record, then we know that all incomplete 
transactions began after the previous <START CKPT (TI ,  . . . , T k ) >  record. 
We may thus scan back~vards as far as the nest START CKPT. and then 
stop; previous log is useless and may as  ell have been discarded. 

If we first meet a record <START CKPT (TI, . . . , Tk)>, then the crash oc- 
curred during the checkpoint. Ho\se\+er: the only incomplete transactions 
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are those we met scanning backwards before we reached the START CKPT 
and those of TI, . . . , TI, that did not conlplete before the crash. Thus, we 
need scan no further back than the start of the earliest of these incom- 
plete transactions. The previous START CKPT record is certainly prior to 
any of these transaction starts, but often we shall find the starts of the 
incomplete transactions long before we reach the previous checkpoint.3 
Moreover, if we use pointers to chain together the log records that belong 
to the same transaction, then we need not search the whole log for records 
belonging to active transactions; we just follow their chains back through 
the log. 

As a general rule, once an <END CKPT> record has been written to disk, n-e can 
delete the log prior to the previous START CKPT record. 

Example 17.5 : Suppose that, as in Example 17.4, the log begins: 

Now, we decide to do a nonquiescent checkpoint. Since Tl and Tz are the active 
(incomplete) transactions at  this time, we write a log record 

<START CKPT (Ti, T2)> 

Suppose that while waiting for TL and T2 to complete, another transaction, T3, 
initiates. A possible continuation of the log is shown in Fig. 17.5. 

Suppose that at this point there is a system crash. Examining the log from 
the end, xe find that T3 is an incomplete transaction and must be undone. 
The final log record tells us to restore database element F to the value 30. 
When we find the <END CKPT> record, we know that all incomplete transactions 
began after the previous START CKPT. Scanning further back. we find the record 
<T3, E, 25>, which tells us to restore E to value 25. Bet~veen that record, and 
the START CKPT there are no other transactions that started but did not commit, 
so no further changes to the database are made. 

Sow, let us consider a situation where the crash occurs during the check- 
point. Suppose the end of the log after the crash is as shown in Fig. 17.6. 
Scanning backwards. we identify T3 and then T.2 as incomplete transactions 
and undo changes they have made. I\-lien -re find the <START CKPT (Ti. Tz)> 
record, we know that the only other possible incomplete transaction is T I .  HOIY- 
ever. we have already scanned the <COMMIT Ti> record, so we know that Tl 
is not incomplete. Also, we have already see11 the <START T3> record. Thus. 
we need only to continue backwards until we meet the START record for T2. 
restoring database element B to value 10 as we go. 

3Sotice, however, that because the checkpoint is nonquiescent, one of the incomplete 
transactions could have hegun hetufeen the start and end of the previous checkpoint. 
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<START Ti > 
<Ti, A, 5> 
<START T2 > 
<Tz, B, lo> 
<START CKPT (Ti, T2) > 
<Tz, C, 15> 
<START T3 > 
<Ti, D,20> 
<COMMIT Ti> 
<T3, E,  25> 
<COMMIT T2> 
<END CKPT> 
<T3, F, 30> 

Figure 17.5: An undo log using nonquiescent checkpointing 

<START TI> 
<TI, A, 5> 
<START TI> 
<T2, B,  lo> 
<START CKPT (TI, T2)> 
<T2, C, 15> 
<START T3> 
<TI: D, 20> 
<COMMIT Ti > 
<T3, E, 25> 

Figure 17.6: Undo log with a system crash during checkpointing 

17.2.6 Exercises for Section 17.2 

Exercise 17.2.1 : Show the undo-log records for each of the transactions (call 
each T) of Exercise 17.1.1, assuming that initially A = 5 and B = 10. 

Exercise 17.2.2: For each of the sequences of log records representing the 
actions of one transaction T. tell all the sequences of e.i7ents that are legal 
according to the rules of undo logging, 1%-here the events of interest are the 
writing to disk of the blocks containing database elements. and the blocks of 
the log containing the update and commit records. You may assume that log 
records are written to disk in the order shown; i.e., it is not possible to write 
one log record to disk while a previous record is not written to disk. 
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! Exercise 17.2.3: The pattern introduced in Exercise 17.2.2 can be extended 
to a transaction that writes new values for n database elements. How many 
legal sequences of events are there for such a transaction, if the undo-logging 
rules are obeyed? 

Exercise 17.2.4: The following is a sequence of undo-log records written by 
two transactions T and U :  <START T > ;  <T, A, lo>; <START U>; <U, B, 20>; 
<T, C, 30>; <U, D, 40>; <COMMIT U>; <T, E, SO>; <COMMIT T>. Describe 
the action of the recovery manager, including changes to both disk and the log, 
if there is a crash and the last log record to appear on disk is: 

Exercise 17.2.5 : For each of the situations described in Exercise 17.2.4, a-hat 
values written by T and U must appear on disk? Which values might appear 
on disk? 

*! Exercise 17.2.6 : Suppose that the transaction U in Esercise 17.2.4 is changed 
so that the record <U, D,40> becomes <U, A, 40>. \'Chat is the effect on the 
disk value of .l if there is a'crash at  some point during the sequence of events? 
What does this example say about the ability of logging by itself to preserve 
atomicity of transactions? 

Exercise 17.2.7: Consider the following sequence of log records: <START S>; 
<S, Al GO>; <COMMIT S>; <START T>; <T, A, lo>; <START U>: <li, B. 20>; 
<T, C, 30>; <START V>; <U, D, 40>; <I/, F, 70>; <COMMIT U>; <T, E: SO>; 
<COMMIT T>; <V, B, 80>; <COMMIT V>. Suppose that we begin a nonquies- 
cent checkpoint immediately after one of the follo~ving log records has been 
written (in memory j: 

For each, tell: 

i. When the <END CKPT> record is written, and 

ii. For each possible point at  which a crash could occur, how far back in the 
log we must look to find all possible incomplete transactions. 
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17.3 Redo Logging 

While undo logging provides a natural and simple strategy for maintaining a 
log and recovering from a system failure, it is not the only possible approach. 
Undo logging has a potential problem that we cannot commit a transaction 
without first writing all its changed data to disk. Sometimes, we can save disk 
I/O1s if we let changes to the database reside only in main memory for a while: 
as long as there is a log to fix things up in the event of a crash, it is safe to do 
so. 

The requirement for immediate backup of database elements to disk can 
be avoided if we use a logging mechanism called redo logging. The principal 
differences between redo and undo logging are: 

1. While undo logging cancels the effect of incomplete transactions and ig- 
nores committed ones during recovery, redo logging ignores incomplete 
transactions and repeats the changes made by committed transactions. 

2. \Vhile undo logging requires us to write changed database elements to 
disk before the COMMIT log record reaches disk, redo logging requires that 
the COMMIT record appear on disk before any changed values reach disk. 

3. While the old values of changed database elements are exactly what \ve 
need to recover 11-hen the undo rules Ul and U.2 are follo~ved. to recover 
using redo logging, need the new values instead. Thus, although redo- 
log records have the same form as undo-log records, their interpretations. 
as described immediately below, are different. 

17.3.1 The Redo-Logging Rule 

In redo logging the meani~~g of a log record <T, S. u> is "transaction T wrote 
new value v for database element X." There is no indication of the old value 
of S in this record. Evcrp time a transaction T modifies a database ele~nent 
S, a record of the form <T.S.  v> must be written to the log. 

For redo logging, tlle order in ~vliich data and log entries reach disk can be 
described by a single -.redo rule." called the wnte-ahead logging rule. 

R1: Before modifying any database element :Y on disk, it is necessary that 
all log records pertaining to this modification of X. including both the 
update record < T  S. u> and the <COMMIT T> record. must appear on 
disk. 

Since the COMMIT record for a transaction can only be ~rritten to the log when 
the trallsaction completes. and therefore the commit record must follo~v all the 
update log records, we can summarize the effect of rule R1 by asserting that 
Il-l~en redo logging is in use, the order in which material associated with one 
transaction gets written to disk is: 
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1. The log records indicating changed database elements. 

2. The COMMIT log record. 

3. The changed database elements themselves. 

Example 17.6: Let us consider the same transaction T as in Example 17.2. 
Figure 17.7 shows a possible sequence of events for this transaction. 

Step - 
1) 
2) 
3)  
4) 
5) 
6) 
7) 
8) 
9) 

10) 
11) 

Action + M-A 

FLUSH LOG 
OUTPUT(A) 
OUTPUT(B) 

16 
16 

Figure 17.7: Actions and their log entries using redo logging 

The major differences between Figs. 17.7 and 17.3 are as follo~rs. First, we 
note in lines (4) and (7) of Fig, 17.7 that the log records reflecting the changes 
have the new values of A and B, rather than the old values. Second, \ve see 
that the <COMMIT T >  record comes earlier, at step (8). Then, the log is flushed, 
so all Iog records involving the changes of transaction T appear on disk. Only 
then can the new values of A and B be written to disk. We show these values 
written immediately, at  steps (10) and ( l l ) ,  although in practice they might 
occur much later. 0 

bl-B 

16 

17.3.2 Recovery With Redo Logging 

D-A 

8 
8 
8 

8 8 8  
8 8 8  

8 

D-B 

8 
8 
8 

8 

.In important consequence of the redo rule R1 is that unless the log has a 
<COMMIT T> record, we know that no changes to the database made by trans- 
action T have been written to disk. Thus, incomplete transactions may be 
treated during recovery as if they had never occurred. However, tlic cornnlittcd 
transactions present a problem, since we do not k n o ~  which of their database 
changes have been written to disk. Fortunately, the redo log has exactly the 
informationvae need: the new values, which jve may write to disk regardless of 
whether they R-ere already there. To recover, using a redo log, after a system 
crash, we do the following. 

Log 
<START T >  

<T, A,16> 

<T,B,16> 
<COMMIT T >  
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Order of Redo Matters 

Since several committed transactions may have written new values for the 
same database element X, we have required that during a redo recovery, 
we scadthe log from earliest to latest. Thus, the final value of X in the 
database will be the one written last, as it should be. Similarly, when 
describing undo recovery, we required that the log be scanned from latest 
to earliest. Thus, the final value of X will be the value that it had before 
any of the undone transactions changed it. 

However, if the DBMS enforces atomicity, then we would not expect 
to find, in an undo log, two uncommitted transactions, each of which had 
written the same database element. In contrast, with redo logging we 
focus on the committed transactions, as these need to be redone. It is 
quite normal, for there to be two committed transactions, each of which 
changed the same database element at  different times. Thus, order of redo 
is always important, while order of undo might not be if the right kind of 
concurrency control were in effect. 

1. Identify the committed transactions. 

2. Scan the log forward from the beginning. For each log record <T, X ,  v>  
encountered: 

(a) If T is not a committed transaction, do nothing. 

(b) If T is committed, write value v for database element X. 

3. For each incomplete transaction T, \$-rite an <ABORT T> record to the log 
and flush the log. 

Example 17.7: Let us consider the log written in Fig. 17.7 and see how 
recovery would be performed if the crash occurred after different steps in that 
sequence of actions. 

1. If the crash occurs any time after step (9). then the <COMMIT T >  record 
has been flushed to disk. The recovery system identifies T as a committed 
transaction. IYhen scanning the log forward. the log records <T, .-l.16> 
and <T, B. 16> cause the recovery manager to write wlues 16 for -4 and 
B. Sotice that if the crash occurred between steps (10) and (11). then 
the write of .-l is redundant, but the mi te  of B had not occurred and 
changing B to 16 is essential to restore the database state to consistency. 
If the crash occurred after step (11). then both writes are redundant but 
harmless. 
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2. If the crash occurs between st,eps (8) and (9), then although the record 
<COMMIT T> was written to the log, it may not have gotten to disk (de- 
pending on whether the log was flushed for some other reason). If it did 
get to disk, then the recovery proceeds as in case (I) ,  and if it did not get 
to disk, then recovery is as in case (3), below. 

3. If the crash occurs prior to step (8), then <COMMIT T >  surely has not 
reached disk. Thus, T is treated as an incompIete transaction. Xo changes 
to A or B on disk are made on behalf of T ,  and eventually an <ABORT T> 
record is written to the log. 

0 

17.3.3 Checkpointing a Redo Log 

We can insert checkpoints into a redo log as well as an undo log. However, redo 
logs present a new problem. Since the database changes made by a committed . 
transaction can be copied to disk much later than the time at which the transac- 
tion commits, we cannot limit our concern to transactions that are active at the 
time we decide to create a checkpoint. Regardless of whether the checkpoint 
is quiescent (transactions are not allowed to begin) or nonquiescent, the key 
act.ion we must take between the start and end of the checkpoint is to write to 
disk all database elements that have been modified by committed transactions 
but not yet written to disk. To do so requires that the buffer manager keep 
track of which buffers are dirty, that is, they have been changed but not written 
to disk. It is also required to know which transactions modified ~r-hich buffers. 

On the other hand, we can co~nplete the checkpoint without waiting for 
the active transactions to commit or abort, since they are not allowed to ~vrite 
their pages to disk at that time anyway. The steps to be taken to perform a 
nonquiescent checkpoint of a redo log are as follows: 

1. Write a log record <START CKPT (TI , .  . . , Tk)>, where TI. .  . . , Tk are all 
the active (uncommitted) transactions, and flush the log. 

2. Write to disk all database elements that were written to buffers but not yet 
to disk by transactions that had already committed when the START CKPT 
record was written to the log. 

3. IVrit,e an <END CKPT> record to the log and flush the log. 

Example 17.8 : Figure 17.8 shows a possible redo log. in the middle of ~vhich 
a checkpoint occurs. When we start the checkpoint, only T2 is active, but the 
value of A written by TI may have reached disk. If not. then n.r must copy -4 
to disk before the checkpoint can end. We suggest the end of the checkpoint 
occurring after several other events have occurred: T2 wrote a value for database 
element C ,  and a new transaction T3 started and wrote a value of D. After the 
end of the checkpoint, the only things that happen are that T2 and T3 commit. 
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<START Ti > 
<Ti, A, 5> 

/<START r2> 
<COMMIT Ti > 
<T2, B,  10> 
<START CKPT (Ti)> 
<Tz, C: 15> 
<START T3> 
<T3, D,20> 
<END CKPT> 
<COMMIT T2 > 
<COMMIT T3> 

Figure 17.8: A redo log 

17.3.4 Recovery With a Checkpointed Redo Log 

As for an undo log, the insertion of records to mark the start and end of a 
checkpoint helps us limit our examination of the log when a recovery is neces- 
sary. Also as with undo logging, there are two cases, depending on whether the 
last checkpoint record is START or END. 

Suppose first that the last checkpoi~lt record on the log before a crash is 
<END CKPT>. Now, we know that every value written by a transaction 
that committed before the corrcsponding <START CKPT (Ti, .  . . , Tk)> has 
had its changes written to disk, so we need not concern ourselves with re- 
covering the effects of these transactions. However, any transaction that is 
either among the T,'s or that started after the beginning of the checkpoint 
can still have changes it made not yet migrated to disk, even though the 
transaction has committed. Thus, I\-e must perform recovery as described 
in Section 17.3.2, but may limit our attention to the transactions that are 
either one of the T,'s mentioned in the last <START CKPT (TI , .  . . , Tk)> or 
that started after that log record appeared in the log. In searching the log. 
we do not have to look furthcr back than the earliest of the <START Ti> 
records. Sotice, ho~vcrer, that these START records could appear prior to 
any number of clierkpoints. Linking backrvards all the log records for a 
given transaction he lp  us to find the necessary records. as it did for undo 
logging. 

NOIS, let us suppose that the last checkpoint record on the log is a 
<START CKPT (TI , .  . . ,TI)> record. nre cannot be sure that committed 
transactions prior to the start of this checkpoint had their changes written 
to disk. Thus, me must search back to the previous <END CKPT> record, 
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find its matching <START CKPT (Sl , . . . , S,)> record: and redo all those 
committed transactions that either started after that START CKPT or are 
among the Si's. 

Example 17.9 : Consider again the log of Fig. 17.8. If a crash occurs at the 
end, we search backwards, finding the <END CKPT> record. We thus know that. 
it is sufficient to consider as candidates to redo all those transactions that either 
started after the <START CKPT (T2)> record was written or that are on its list 
(i.e., T 2 )  Thus, our candidate set is {T2, T3) .  We find the records <COMMIT T2> 
and <COMMIT T3>, SO we know that each must be redone. We search the log as 
far back as the <START T2> record, and find the update records <Tz, B, lo>; 
<T2, C, l5>,  and <T3, D, 20> for the committed transactions. Since we don't 
know whether these changes reached disk, we rewrite the values 10, 15, and 20 
for B, C, and D, respectively. 

Now, suppose the crash occurred between the records <COMMIT T2> and 
<COMMIT T3>. The recovery is similar to the above, except that T3 is no longer 
a committed transaction. Thus, its change <T3, D,20> must not be redone, 
and no change is n~ade to D during recovery, even though that log record is in 
the range of records that is examined. Also, we write an <ABORT T3> record 
to the log after recovery. 

Finally, suppose that the crash occurs just prior to the <END CKPT> record. 
In principal, we must search back to the next-to-last START CKPT record and 
get its list of active transactions. However, in this case there is no previous 
checkpoint, and we must go all the way to the beginning of the log. Thus. we 
identify Tl as the only comnlittcd transaction, 'edo its action <TI. -4,3>. and 
write records <ABORT T2> and <ABORT T3> to the log after reco~ery. 

Since transactions may be active during several checkpoints, it is convenient 
to include in the <START CKPT (TI, . . . : Tk)> records not only the names of the 
active transactions, but pointers to the place on the log where they started. By 
doing so, we know when it is safe to delete early portions of the log. Khen we 
nrite an <END CKPT>, we know that we shall never need to look back further 
than the earliest of the <START Ti> records for the active transactions T,. Thus. 
anything prior to that START record may be deleted. 

17.3.5 Exercises for Section 17.3 

Exercise 17.3.1 : Show the redo-log records for each of the transactiolls (call 
each T) of Exercise 17.1.1, assuming that initially A = 3 and B = 10. 

Exercise 17.3.2 : Repeat Exercise 17.2.2 for rcdo logging. 

Exercise 17.3.3: Repeat Exercise 17.2.4 for redo logging. 

4There is a small technicality that there could be a START CKPT record that, because of a 
previous crash, has no matching <END CKPT> record. Therefore, we must look not just for 
the previous START CKPT. but first for an <END CKPT> and then the previous START CKPT. 

Exercise 17.3.4 : Repeat Exercise 17.2.3 for redo logging. 

Exercise 17.3.5: Using the data of Exercise 17.2.7, answer for each of the 
positions (a) through (e) of that exercise: 

i .  d t  what points could the <END CKPT> record be written, and 

ii. For each possible point at which a crash could occur, how far back in the 
log we must look to find all possible incomplete transactions. Consider 
both the case that the <END CKPT> record was or was not written prior 
to the crash. 

17.4 UndolRedo Logging 

b'e have seen two different approaches to logging, differentiated by whether the 
log holds old values or new values when a database element is updated. Each 
has certain drawbacks: 

Undo logging requires that data be written to disk immediately after a 
transaction finishes; perhaps increasing the number of disk 110's that 
need to be performed. 

On the other hand. redo logging requires us to keep all modified blocks 
in buffers until the transaction commits and the log records have been 
flushed, perhaps increasing the average number of buffers required by 
transactions. 

Both undo and redo logs may put contradictory requirements on how 
buffers are handled during a checkpoint. unless the database elements are 
conlplete blocks or sets of blocks. For instance. if a buffer contains one 
database element A that was changed by a committed transaction and 
another database element B that was changed in the same buffer by a 
transaction that has not yet had its COMMIT record mitten to disk, then 
we are required to copy the buffer to disk because of -4 but also forbidden 
to  do so. because rule R1 applies to B. 

n e  shall 1lol.c- see a kind of logging called undo/redo logging, that provides 
increased flexibility to order actions, at the expense of maintaining more infor- 
mation on the log. 

17.4.1 The Undo/Redo Rules 
An undo/redo log has the same sorts of log records as the other kinds of log. 
I\-it11 one exception. The update log record that Jve write tvhen a database 
element changes value has four components. Record <T. S. v, w> means that 
transaction T changcd the value of database element S; its former value was 
c. and its new value is u*. The constraints that an undo/redo logging system 
must follor~ are summarized by the foiloffing rule: 
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URl Before modifying any database element X 011 disk because of changes 
made by some transaction I', it is necessary that the update record 
<T, X, v, w >  appear on disk. 

Rule URI for undo/redo logging thus enforces only the constraints enforced 
by both undo logging and redo logging. In particular, the <COMMIT TZ log 
record can precede or follow any of the changes to the database elements on 
disk. 

Example 17.10 : Figure 17.9 is a variation in the order of the actions associ- 
ated with the transaction T that we last saw in Example 17.6. Notice that the 
log records for updates now have both the old and the new values of -4 and B. 
In this sequence, we have written the <COMMIT T> log record in the middle of 
the output of database elements A and B to disk. Step (10) could also have 
appeared before step (8) or step (9), or after step (11). 

St? 1 Action 

2) READ(A,t) 
3) t := t*2 
4) WRITE(A, t) 
5) READ(B,t) 
6) t := t*2 
7) WRITE(B,t) 
8) FLUSH LOG 

Figure 17.9: A possible sequence of actions and their log entries using undolredo 
logging 

17.4.2 Recovery With Undo/Redo Logging 

\\hen n-p need to recover using an undo/rcdo log, we have the infortrlation in 
the update records either to undo a transaction T. by restoring the old values 
of the database elements that T changed, or to redo T by repeating the changes 
it has made. The undo/redo recovery policy is: 
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I A Problem With Delayed Commitment 1 .  
Like undo logging, a system using undolredo logging can exhibit a behavior 
where a transaction appears to the user to have been completed (e.g., they 
booked an airline seat over the Web and disconnected), and pt because 
the <COMMIT T> record was not flushed to disk, a subsequent crash causes 
the transaction to be undone rather than redone. If this possibility is a 
problem, we suggest the use of an additional rule for undolredo logging: 

I UR2 X <COMMIT T> record n~ust be flushed to disk as soon as it appears 
in the log. I 

For instance, we would add FLUSH LOG after step (10) of Fig. 17.9. I 
Sotice that it is necessary for us to do both. Because of the flexibility allowed 
by undo/redo Logging regarding the relative order in which COMMIT log records 
and the database changes themselves are copied to disk, we could have either 
a committed transaction with some or all of its changes not on disk, or an 
uncommitted transaction with some or all of its changes on disk. 

Example 17.11 : Consider the sequence of actions in Fig. 17.9. Here are the 
different ways that recovery would take place on the assumption that there is 
a crash at various points in the sequence. 

1. Suppose the crash occurs after the <COMMIT T> record is flushed to disk. 
Then T is identified as a committed transaction. We write the value 16 
for both -4 and B to the disk. Because of the actual order of events, A 
ahead\- has the value 16. but B may not, depending on whether the crash 
occurred before or after step (11). 

If the crash occurs prior to the <COMMIT T> record reaching disk, then 
T is treated as an incomplete transaction. The previous values of rl and 
B. 8 in each case, are written to disk. If the crash occurs between steps 
(9) and (lo), then the value of .A was 16 on disk, and the restoration to 
value S is necessary. In this example, the d u e  of B does not need to 
be undone, and if the crash occurs before step (9) then neither does the 
value of -4. However, in general we cannot be sure whether restoration is 
necessary. so a-e always perform the undo operation. 

Redo the committed transactions in the order earliest-first. and 
17.4.3 Checkpointing an Undo/Redo Log 

o than for I nonquiescent checkpoint is somewhat simpler for undo/redo loggin, 
2. Undo the transactions in the order latest-first. the other logging methods. \ve have only to do the f ~ l l ~ ' \ - ~ ~ g :  
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Strange Behavior of Transactions During Recovery 

The astute reader may have noticed that we did not specify whether undo's 
or redo's are done first during recovery using an undo/redo log. In fact, 
whether we perform the redo's or undo's first, we are open to the following 
situation: -4 transaction T has committed and is redone. However, T read 
a value X written by some transaction U that has not committed and is 
undone. The problem is not whether we redo first, and leave X T\-ith its 
value prior to U, or we undo first and leave X with its value written by T. 
The situation makes no sense either way, because the final database state 
does not correspond to the effect of any sequence of atomic transactions. 

In reality, the DBMS must do more than log changes. It must assure 
that such situations do not occur by some mechanisms. In Chapter 18, 
there is a discussion about the means to isolate transactions like T and 
U, so the interaction between them through database element X cannot 
occur. In Section 19.1, we explicitly address means for preventing this 
situation where T reads a "dirty" value of X - one that has not been 
committed. 

1. Write a <START CKPT (TI,. . . ,Tk)> record to the log, where TI . .  . . , Tk 
are all the active transactions, and flush the log. 

2. Write to disk all the buffers that are dirty; i.e., they contain one or more 
changed database elements. Unlike redo logging, we flush all buffers, not 
just those written by committed transactions. 

3. Write an <END CKPT> record to the log, and flush the log. 

Notice in connection with point (2) that, because of the flexibility undo/redo 
logging offers regarding when data reaches disk, we can tolerate the ivriting to 
disk of data written by incomplete transactions. Therefore we can tolerate 
database elements that are smaller than complete blocks and thus may share 
buffers. The only requirement we must make on transactions is: 

A transaction must not write any values (even to memory buffers) until 
it is certain not to abort. 

s we shall see in Section 19.1, this constraint is almost certainly needed any- 
"a?., in order to avoid inconsistent interactions bet~vecn transactions. Sotice 
that under redo logging, the abolp condition is not sufficient, since even if 
the transaction that wrote B is certain to commit, rule Rl requires that the 
transaction's COMMIT record be written to disk before B is written to disk. 

Example 17.12 : Figure 17.10 shows an undo/redo log analogoas to the redo 
log of Fig. 17.8. We have only changed the update records, giving thee, an old 
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value as well as a new value. For simplicity, we have assumed that in each case 
the old value is one less than the new d u e .  

<START TI > 
<Tl,A,4,5> 
<START Tz> 
<COMMIT TI > 
<Tz, B, 9,10> 
<START CKPT (T2)> 
<T2, C, 14,15> 
<START T3> 
<T3, D, 19,20> 
<END CKPT> 
<COMMIT T2> 
<COMMIT T3 > 

Figure 17.10: -in undolredo log 

As in Example 17.8, T2 is identified as the only active transaction when the 
checkpoint begins. Since this log is an undo/redo log, it is possible that T2.s new 
B-\-alue 10 has beell written to disk. which was not possible under redo log$$%. 
Ho\vever, it is irrelevant &ether or not that disk write has occurred. Durillg 
the checkpoint, we shall surely flush B to disk if it is not already there, Since 
lye flush all dirty buffers. Likewise, n-e shall flush .A, written by tbe committed 
transaction TI, if it is not already on disk. 

If the crash occurs at the end of this sequence of events, then T2 and T3 are 
identified as colnmitted transactions. Transaction TI is prior to the checkpoint. 
since we find the <END CKPT> record on the log, TI is correctly assumed to 
have both completed and had its changes written to disk. We therefore redo 
both b and T3, as in Example 17.8, and ignore T i  Hommr, when we redo a 
transaction such as T2. we do not need to look prior to the <START CKPT (Tz)> 
record, even though T2 ,\-as active at that time, because we know that T2.s 
changes prior to the start of the checkpoint were flushed to disk during the 
checkpoint. 

For another instance, suppose the crash occurs just before the <COMMIT T3> 
record is lyritten to disk. Then r;e identify 5 as committed but T3 as incom- 
plete. lye rdo T~ by setting C to 15 on disk; it is not necessary to set B to 
10 sillce we knor that change reached disk before the <END CKPT>. Hen-ever. 
unl ib  the situation ~vith a redo log, we also undo T3; that is. lve set D to 19 on 
disk. If T3 had been active at  the start of the checkpoint, we ~ o u l d  have had 
to look prior to the START-CKPT record to find if there nere Inore actions by T3 
that may have reached disk and need to be undone. Q 
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17.4.4 Exercises for Section 17.4 

Exercise 17.4.1 : Show the undo/redo-log records for each of the transactions 
(call each T)  of Exercise 17.1.1, assuming that initially A = 5 and B = 10. 

Exercise 17.4.2: For each of the sequences of log records representing the 
actions of one transaction T, tell all the sequences of events that are legal 
according to the rules of undo/redo logging, where the events of interest are the 
writing to disk of the blocks containing database elements, and the blocks of 
the log containing the update and commit records. You may assume that log 
records are written to disk in the order shown; i.e., it is not possible to write 
one log record to disk while a previous record is not written to disk. 

Exercise 17.4.3 : The following is a sequence of undolredo-log records writ- 
ten by two transactions T and U:  <START T>; <T, A, 10,11>; <START C>: 
<U, B, 20,21>; <T,C,30,31>; <U, D, 40,41>; <COMMIT U>; <T, E, 50: 51>: 
<COMMIT T>. Describe the action of the recovery manager, including changes 
to both disk and the log, if there is a crash and the last log record to appear 
on disk is: 

Exercise 17.4.4 : For each of the situations described in Exercise 17.4.3. what 
values written by T and U must appear on disk? \t7hich values might appear 
on disk? 

Exercise 17.4.5 : Consider the follorving sequence of log records: <START S>: 
<S, A, 60,61>; <COMMIT S>: <START T>: <T. .4.61.62>; <START C.>: 
<U, B, 20,21>; <T, C,30,31>: <START v>: <l7.D,10.41>: <I-. F. TO. TI>: 
<COMMIT U>; <T, EI 50,51>: <COMMIT T > ;  < I <  B, 21,22>: <COMMIT 1 ->. 
Suppose that we begin a nonquiescent checkpoint immediately after one of the 
following log records has been mitten (in memory): 

a) <S, -4, GO, GI>. 

1 7.5. PROTECTING AGAINST AIEDIA FAILURES 

For each, tell: 

i. At what points could the <END CKPT> record be 1s-ritten, and 

ii. For each possible point at which a crash could occur, how far back in the 
log we must look to find all possible incomplete transactions. Consider 
both the case that the <END CKPT> record was or was not written prior 
to the crash. 

17.5 Protecting Against Media Failures 

The log can protect us against system failures, where nothing is lost from disk, 
but temporary data in main memory is lost. However, as we discussed in 
Section 17.1.1, more serious failures involve the loss of one or more disks. We 
could, in principle, reconstruct the database from the log if: 

a) The log were on a disk other than the disk(s) that hold the data, 

b) The log xvere never thrown away after a checkpoint, and 

c) The log were of the redo or the undo/redo type. so new values are stored 
on the log. 

However, as mentioned, the log rill usually grow faster than the database, 
so it is not practical to keep the log forever. 

17.5.1 The Archive 

To protect against media failures, we are thus led to a solution invol\ing amhiu- 
xng - maintaining a copy of the database separate from the database itself. If 
it were possible to shut down the database for a while, we could make a backup 
copy on some storage medium such as tape or optical disk, and store them 
remote from the database in solne secure location. The backup would preserw 
the database state as it existed at this time, and if there were a media failure, 
the database could be restored to the state that existed then. 

To advance to a nlore recent state. we could use the log. provided the log 
had been preserved since the archive copy r a s  made. and the log itself survived 
the failure. In order to protect against losing the log, xve could transmit a copy 
of the log, almost as soon as it is created, to the same remote site as the archive. 
Then. if the log as n-ell as the data is lost, r e  can use the archive plus remotely was last transmitted 
stored log to recover, at  least up to the point that the lo, 
to the remote site. 
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Why Not Just Back Up the Log? 

We might question the need for an archive, since we have to back up the log 
in a secure place anyway if we are not to be stuck at the state the database 
was in when the previous archive was made. While it may not be obvious, 
the answer lies in the typical rate of change of a large database. While 
only a small fraction of the database may change in a day, the changes, 
each of which must be logged, will over the course of a year become much 
larger than the database itself. If we never archived, then the log could 
never be truncated, and the cost of storing the log would soon exceed the 
cost of storing a copy of the database. 

Since writing an archive is a lengthy process if the database is large, one 
generally tries to avoid copying the entire database at each archiving step. Thus, 
we distinguish between two levels of archiving: 

1. A full dump, in which the entire database is copied. 

2. An incremental dump, in which only those database elements changed 
since the previous full or incremental dump are copied. 

It is also possible to have several levels of dump, with a full dump thought of as 
a "level 0" dump, and a "level in dump copying everything changed since the 
last dump at  level i or below. 

We can restore the database from a full dump and its subsequent incremental 
dumps, in a process much like the way a redo or undo/redo log can be used 
to repair damage due to a system failure. We copy the full dump back to the 
database, and then in an earliest-first order, make the changes recorded by the 
later incremental dumps. Since incremental dumps will tend to involve only a 
small fraction of the data changed since the last dump, they take less space and 
can be done faster than full dumps. 

17.5.2 Nonquiescent Archiving 

The problem with the simple view of archiving in Section 17.5.1 is that most 
databases callnot be shut down for the period of time (possibly hours) needed 
to make a backup copy. We thus need to consider nonquiescent archiving. 
which is analogous to nonquiescent checkpointing. Recall that a nonquiescent 
checkpoint attempts to make a copy on the disk of the (approximate) database 
state that existed when the checkpoint started. We can rely on a small portion 
of the log around the time of the checkpoint to fix up any deviations from that 
database state, due to the fact that during the checkpoint, new transactions 
may have started and written to disk. 

Similarly, a nonquiescent dump tries to make a copy of the database that 
existed when the dump began, but database activity may change many database 
elements on disk during the minutcs or hours that the dump takes. If it is 
necessary to restore the database from the archive, the log entries made during 
the dump can be used to sort things out and get the database to a consistent 
state. The analogy is suggested by Fig. 17.11. 

memory Checkpoint gets data 
from memory to disk; 
log allows recovery from 
system failure 

( Disk 1 
Dump gets data from 
disk to archive; 
archive plus log allows 
recovery from media failure 

Archive 

Figure 17.11: The analogy between checkpoints and dumps 

I nonquiescent dump copies the database elements in some fixed order, 
possibly ~vliile those elements are being changed by crecuting transactioos. As 
a result. the value of a database element that is copied to the archive may or 
may not be the value that existed when the dunrp began. As lo11g as the log 
for the duration of the dump is preserved, the discrepancies ran be corrected 
from the log. 

Example 17.13 : For a very simple exan~ple, suppose that our database con- 
sists of four elements. A, B,  C, and D, ~vhicl~ have the values 1 through 4, 
respectively xvhen the dump begins. During the dump, .I is changed to 5, C 
is changed to 6. and B is changed to 7. Ho~ever, the database elements are 
copied order. and the sequence of events shown in Fig. 17.12 occurs. Then 
although the database at  the beginning of the dump has values (1.2.3, A),  and 
the database at the end of the dump has values (5.7.6,4).  the copy of the 
database in the archie has values (1,2,6,4). a database state that existed at 
no time during the dump 0 

In more derail. the process of making an archive can be broken into the 
follo\ving steps. \Ye assume that the logging method is either redo or undofredo; 
an undo log is not suitable for use ivith archiving. 

1. \bi te a log record <START DUMP>. 
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yy: 1 Archive 
Copy A 

Figure 17.12: Events during a nonquiescent dump 

2. Perform a checkpoint appropriate for whichever logging method is being 
used. 

3. Perform a full or incremental dump of the data disk(s), a* desired, making 
sure that the copy of the data has reached the secure, remote site. 

4. AzIake sure that enough of the log has been copied to the secure, remote 
site that at  least the prefix of the log up to and including the checkpoint 
in item (2) will survive a media failure of the database. 

5 .  Write a log record <END DUMP>. 

At the completion of the dump, it is safe to throw away log prior to the beginning 
of the checkpoint previous to the one performed in item (2) above. 

Example 17.14 : Suppose that the changes to the simple database in Exam- 
ple 17.13 \re, caused by taro transactions TI (which writes A and B) and T2 
(which writes C) that were active when the dump began. Figure li .13 s h o ~ s  
a possible imdo/redo log of the events during the dump. 

<START DUMP> 
<START CKPT (TI, T2) > 
<TI, .4,1,5> 
<Tz, C? 3,6> 
<COMMIT T2 > 
<TI, B, 2,7> 
<END CKPT> 
Dump completes 
<END DUMP> 

Figure 17.13: Log taken during a dump 

17.3. PROTECTIXG AGAIJ7ST XIEDM FAILURES 

Notice that we did not show TI committing. It would be unusual that a 
transaction remained active during the entire time a full dump was in progress, 
but that possibility doesn-t affect the correctness of the recovery method that 
lye discuss nest. 

17.5.3 Recovery Using an Archive and Log 

Suppose that a rnedia failure occurs, and we must reconstruct the database 
from the most recent archive and shatewr  prefix of the log has reached the 
remote site and has not been lost in the crash. We perform the following steps: 

1. Restore the database from the archive. 

(a) Find the most recent full dump and reconstruct the database from 
it (i.e., copy the archise into the database). 

(b) If there are later incremental dumps, modify the database according 
to each, earliest first. 

2. Xlodifi the database using the surviving log. Use the method of recovery 
appropriate to the log method being used. 

Example 17.15 : Suppose there is a media failure after the dump of Exam- 
ple 17.11 completes; and the log slionvn i s  Fig. l i .13 survives. Assame, to make 
the process interesting. that the surviving portion of the log does not include a 
<COMMIT &> record. although it does include the <COMMIT T2> record shown 
in that figure. The database is first restored to the values in the arcllive, which 
is, for database elements -4. B. C. and D, respectively, (1,2,6,4). 

Now, rye must look at the log. Since T2 has colnpleted. we redo the step 
that sets C to 6. In this example, C already had the value 6. but it nlighl be 
that: 

a) The archive for C was made before T2 changed 6: or 

b) The archive actually captured a later value of 6 ,  which may or may not 
haye been 1yritten by a transaction ~vhose comnlit record survived. Later 
in the recover? C n-ill be restored to the value foulid in the archive if the 
transaction xvas committed. 

Since TI does not have a COMMIT record, r e  must undo 6. \Ye use the log 
records for f i  to &ternline that A must be restored to value 1 and B to 2. It 
happens that they llad these values in the archive, but the actual arcllire value 
could have been different because the modified A and/or B had been included 
in the archive. 
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17.5.4 Exercises for Section 17.5 

Exercise 17.5.1: If a redo log, rather than an undojredo log, were used in 
Examples 17.14 and 17.15: 

a) What would the log look like? 

*! b) If we had to recover using the archive and this log, lvhat ~ o u l d  be the 
consequence of TI not having committed? 

c) What would be the state of the database after recovery? 

17.6 Summary of Chapter 17 

+ Thnsact~on Management: The two principal tasks of t l ~ e  trmsaetion 
manager are assuring recoverability of database aetions through logging, 
and assuring correct, concurrent behavior of transactions through the 
scheduler (not discussed in this chapter). 

+ Database Elements: The database is divided into elements, which are 
typically disk Mocks, but could be tuples, extents of a class, or many other 
units. Database elements are the units for both logging and scheduling. 

+ Loggzng: -4 record of every important action of a transaction - beginning; 
changing a database element, committing, or aborting - is stored on a 
log The log must be backed up on disk at a time that is related to 
when the corresponding database changes migrate to disk, but that time 
depends on the particular logging method used. 

+ Recovey: When a system crash occurs, the log is used to repair the 
database, restoring it to a consistent state. 

+ Logging Methods: The three principal methods for logging are undo, redo. 
and undo/redo, named for the s-ay(s) that they are alhred to fix the 
database during recovery. 

Undo Logging: This method logs the old value, each time a databae 
element is changed. With undo logging, a new \due of a database elelnent 
can be written to disk only after the log record for the change has reached 
disk, but before the commit record for the transactio~l performi~l~ the 
change reaches disk. Recovery ir clone fly restoring the old value for ex-en- 
uncommitted transaction. 

+ Redo Logging: Here. only the new value of database elemeiits is logged. 
With this form of logging, values of a database element can be Jvritten to 
disk only after both the log record of its change and the commit record 
for its transaction have reached disk. Recovery invol\res rewriting the nelv 
value for every committed transaction. 

7.7. REFERENCES FOR CHAPTER 17 
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+ Undo/Redo Logging In this method, both old and new values are logged. 
Undolredo logging is more flexible than the other methods, since it re- 
quires only that the log record of a change appear on the disk before 
the change itself does. There is no requirement about rhen  the commit 
record aopears. Recovery is effected by redoing committed transactions - - 
and undoing the uncommitted transactions. 

+ Checkpointing: Since all recovery methods require, in principle, looking 
a t  the entire log, the DBMS must occasionally checkpoint the log, to 
assure that no log records prior to the checkpoint will be needed during a 
recovery. Thus, old log records can eventually be thrown away and their 
disk space reused. 

+ Nonquiescent Checkpointing: To avoid shutting down the system while a 
checkpoint is made, techniques associated with each logging method allow 
the checkPoii~t to be made while the system is in operation and databare 
changes are occurring. The only cost is that some log records prior to the 
nomuiescent checkpoint may need to be examined during recovery. 

+ Archiving While logging protects against system failures inwlving only 
the loss of main memory, archiving is necessary to protect against failures 
%here the contents of disk are lost. Archives are copies of the database 
stored in a safe place. 

+ Incremental Backups: Instcad of copying the entire databnse to an archive 
periodically, a single conlplete backup can be follo~red by several incre- 
mental backups, \\:here only the changed data is copied to the archive. 

+ Nonqufe~cent Archwing: \Ve can create a backup of the data while the 
database is in operation. The necessary techniques involve making 1% 
lecords of the beginlling and end of the archiiing, as well aS performing 
a checkpoint for the log during the archirillg. 

+ Recovery From Media Failures: When a disk is lost, it may be restored by 
starting r i t h  a full backup of the database, modifying it according to any 
later increnlelltal backups, and finally recovering to a consistent database 
state by using an archived copy of the 1%. 

References for Chapter 17 
Tile major tc.;rbook on all aspects of transaction procersillg. iilcluding logging 
and recovery. is by Gray and Reuter [>I. This book was partially fed by Sonle 
informal notes on transaction processing by J i ~ n  Gray [3] that were widely 
circulated; the latter. along with [I] and [S] are the pdmary sources for much 

C 
<1LI of the logging and recovery technolog? 
@, 
-%' (21 is an earlier, more mncise description of transaction-pro~e~~ing technol- 
9 "- ogy. [i] is a recent treatment of recovery- # 
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Chapter. 18 

Concurrency Control 

Interactions among transactions can cause the database state to become in- 
consistent, even when the transactions individually preserve correctness of the 
state, and there is no system failure. Thus, the order in which the individual 
steps of different transactions occur needs to be regulated in some manner. The 
function of controlling these steps is given to the scheduler component of the 
DB1IS. and the general process of assuring that transactions preserw consis- 
tencv when executing simultaneously is called concurrency control. The role of 
the scheduler is suggested by Fig. 18.1. 

maoager 
ReadlWrite 
requests 

Scheduler 

Reads and 
writes 

Buffers 

Figure 18.1: The scheduler taker readj~vrite requests from transactions and 
either esecutes them in buffers or delays them 

.As tranaactiolls request reads and writes of database elements. these reqllests 
are parbed to the ullcdnler. 1. ~oost  situatio~ls. the scheduler i%-ill execute the 
r e d s  arid rritps directly. first calling 0x1 the bnffer manager if the desired 
database is not in a buffer. Hoxverer. in some Situations. it is not 
safe for tlie request to be executed inlmediately. T l a  scheduler must delay the 
reqmt:  in ,me concurre~~cy-co~~trol techniques. the scheduler may even abort 
the transaction that issued the request. 

\Ye begin by studying llow to assure that concurrently executing transactions 
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preserve correctness of the database state. The abstract requirement is called 
serializability, and there is an important, stronger condition called conflict- 
serializability that most schedulers actually enforce. We consider the most 
important techniques for implementing schedulers: locking, timestamping, and 
validation. 

Our study of lock-based schedulers includes the important concept of "two- 
phase locking," which is a requirement widely used to assure serializability 
of schedules. We also find that there are many different sets of lock modes 
that a scheduler can use, each with a different application. Among the locking 
schemes we study are those for nested and tree-structured collections of lockable 
elements. 

18.1 Serial and Serializable Schedules 

To begin our study of concurrency control, we must examine the conditions 
under which a collection of concurrently executing transactions will preserve 
consistency of the database state. Our fundamental assumption, which ~1-e 

called the "correctness principle" in Section 17.1.3,.is: every transaction, if es- 
ecuted in isolation (without any other transactions running concurrently), ~vill 
transform any consistent state to another consistent state. However. in ~ractice. 
transactions often run concurrently with other transactions, so the correctness 
principle doesn't apply directly. Thus, we need to consider "schedules" of ac- 
tions that can be guaranteed to produce the same result as if the transactions 
executed one-at-a-time. The major theme of this entire chapter is methods 
for forcing transactions to execute concurrently only in ways that make then1 
appear to run one-at-a-time. 

18.1.1 Schedules 

.A schedule is a time-ordered sequence of the important actions taken by onc 
or more transactions. When studying concurrency control, the important read 
and write actions take place in the main-memory buffers, not the disk. That 
is, a database element -4 that is brought to a buffer by some transaction T 
may be read or written in that buffer not only by T but bj. other transactions 
that access A. Recall from Section 17.1.4 that the READ and WRITE actions first 
call INPUT to get a database clement from disk if it is not already in a buffer. 
but other!vise READ and WRITE actions access the element in the buffer directly. 
Thm, only the READ and WRITE actions, and their orders, are important ~ ~ - h c n  
considering concurrency, and we shall ignore the INPUT and OUTPUT actions. 

Example 18.1 : Let us consider two transactions and the effect on the data- 
base when their actions are executed in certain orders. The important actions 
of the transactions TI and Tz are shown in Fig. 18.2. The variables t and s are 
local variables of TI and Tz, respectively they are not database elements. 

18.1. SERI.4L AND SERIALIZABLE SCHEDULES 

Figure 18.2: Two transactions 

We shall assunle that the ollly consistency constraint On the database state 
is that A = B. Since TI adds 100 to both A and B, and T2 multiplies both 
1 and B by 2, we know that each transaction, run in isolation, will Preserve 
consistency 

18.1.2 Serial Schedules 

l&Te say a schedule is 
if its actions consist of all the actions of one trans- 

action, then all the actions of another transaction, and SO 0% with no 
of the actions. lIore p~cisely,  a schedule S is serial if for any two transactions 
T and TI, if an>- action of T precedes any action of TI, then all actions of T 
precede all actions of T'. 

Figure 18.3: Serial schedule in which TI precedes 6 

READ(A,~) 
t := t+100 
WRITE(A,~) 
READ(B,~) 
t := t+100 
WRITE(B,~) 

READ (A, s) 
s := s*2 
WRITE(A , s) 
READ (B , s) 
s := s*2 

WRITE(B, s) 

Example 18.2 : For the transactions of Fig. 18.2, there are tn-0 serial schd- 
ules, one in TI precedes T2 and the other in ahic l~  Tz precedes TI. Fig- 

125 

125 

250 

250 
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ure 18.3 shows the sequence of events when TI precedes T2, and the initial state 
is A = B = 25. We shall take the convention that when displayed verticall~ 
time proceeds down the page. Also, the values of -4 arld B sliolvn refer to their 
values in main-memory buffers, not necessarily to their values on disk. 

s := s*2 
WRITE(A, s) 
READ ( B ,  s) 
s := s*2  
WRITE (B , s) 

READ(A,t) 
t := ti100 
WRITE(A,t) 
READ(B, t) 
t := ti100 
WRITE(B , t) 

Figure 18.4: Serial schedule in which T2 precedes Tl 

Then, Fig. 18.4 shows another serial schedule in which T2 precedes TI; the 
initial state is again assumed to be d = B = 25. Notice that the final values of 
-4 and B are different for the two schedules; they both have value 250 ~vhen TI 
goes first and 150 when T2 goes first. However, the final result is not the central 
issue, as long as consistency is preserved. In general, we would not expect the 
final state of a database to be independent of the order of transactions. 

We can represent a serial sclledule as in Fig. 18.3 or Fig. 18.4, listing each 
of the actions in the order they occur. However, since the order of actions in 
a serial schedule depends only on the order of the transactions themselves; ti-e 
shall sometimes represent a serial schedule by the list of transactions. Thus. the 
schedule of Fig. 18.3 is represented (TI. T,). and that of Fig. 18.4 is (T?. TI). 

18.1.3 Serializable Schedules 

The correctness principle for transactions tells us that every scrial schedule \vill 
preserve consistency of the database state. But are there any other schedules 
that also are guaranteed to preserve consistency? There are, as the follori~lg 
example sho~vs. In general, we say a schedule is serializable if its effect on the 
database state is the same as that of some serial schedule, regardless of what 
the initial state of the database is. 

18.1. SERIAL AiVD SERIALIZABLE SCHEDULES 

Figure 18.5: X serializable, but not serial, schedule 

Example 18.3 : Figure 18..5 sho~vs a schedule of the transactions from Exam- 
ple 18.1 that is serializable but not serial. In this schedule, T2 acts on A after TI 
does. but before T I  acts on B. Hoivever, we see that the effect of the two trans- 
actions scheduled in this manner is the same as for the serial schedule (TI ,T2) 
that we saw in Fig. 18.3 To convince ourselves of the truth of this statement, 
\Ye must consider not only the effect from the database state A = B = 25, 
nhich lye sho\v in Fig. 18.5. but from any consistent database state. Since all 
consistent database states haye -4 = B = c for some constant c ,  it is not hard 
to deduce that in the schedule of Fig. 18.5, both A and B will be left with the 
value 2(c + LOO), and thus consistency is ~ r e x r v e d  from any consistent state. 

On the other hand, consider the schedule of Fig. 18.6. Clearly it is not 
serial, but more significantly, it is not serializable. The reason we can be sure 
it is rlot serializable is that it takes the consistent state A = B = 25 and leaves 
the database in an inconsistent state, where '4 = 250 and B = 150. Notice 
that in this order of actions, where TI operates on A first, but Tz operates on 
B first, we have in effect applied different computations to A and B, that is 

:= 2 ( l +  100) versus B := 2 0  + 100. The schedule of Fig. 18.6 is the sort 
of behavior that concurrency control mechanisms nlust avoid. 

18.1.4 The Effect of Transaction Semantics 

In our study of serializability so far, we have considered in detail the opera- 
tions performed by the transactions. to determine whether or not a schedule is 
serializable. The details of the transactions do matter, as we can see from the 
following example. 
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TI T2 A B 

25 25 
READ (A, t) 
t := t+100 
WRITE (A, t ) 

READ (A, s) 
s := s*2 
WRITE(A,s) 
READ (B , s) 
s := s*2  
WRITE (B, s) 

READ (B, t) 
t := t+100 
WRITE (B , t ) 

Figure 18.6: -4 nonserializable schedule 

Example 18.4 : Consider the schedule of Fig. 18.7, which differs from Fig. 18.6 
only in the computation that T, performs. That is, instead of multiplying A 
and B by 2, T2 multiplies them by 1.' NOW, the values of A and B at the 
end of this schedule are equal, and one can easily check that regardless of the 
consistent initial state: the final state will be consistent. In fact, the final state 
is the one that results from either of the serial schedules (TI, T2) or (T2, TI). 

Unfortunately, it is not realistic for the scheduler to concern itself with the 
details of computation undertaken by transactions. Since transactions often 
involve code written in a general-purpose programming language os well as SQL 
or other high-level-language statements, it is sometimes very hard to answer 
questions like "does this transaction multiply d by a corlstant other than l'.' 
However, the scheduler does get to see the read and write requests from the 
transactions, so it can know what database elements each transaction reads. 
and what elements it might change. To simplify the job of the scheduler, it is 
conventional to assume that: 

n y  database element -1 that a transaction T ~rrites is g i ~ e n  a r-alue 
that dejlends on the database state i r l  such a nay that no arithmetic 
coincid~nces occur. 

'One might reasonably ask why a transaction vould behave that  rqv, but let us ignore the 
matter for the  sake of a n  example. In fact. there are  many plausible transnctions \\,e could 
substitute for T2 that  would leave '4 and B unchanged; for instance, T2 might simply read .A 
and B and print their values. Or, Tz might ask the riser for some data ,  compute a factor F 
with which t o  multiply A and 8, and find for some user inputs that  F = 1. 

Figure 18.7: sciledule that is seriahzable only because of the detailedbehavior 
of the transactions 

p u t  anotller ray,  if there is something that T could have done to  A that Ivill 
make the database state inconsistent, then T \-ill do that. shall make 

this assumption more precise in Section 18.2. when ive talk about suffrcie1lt 
conditions to guarantee serializabihty- 

A Notation for Transactions and Schedules 

If ~ve  accept that the exact computations performed 
a trans"tion can be 

arbitrar>- then we do not need to consider the details of local complltation steps 
as t := t+ioo. On]? the leads and writes performed by the transactioll 

matter, ~ l l u s .  y e  shall represent transactions and schedules b) a shorthand 
notation. in ~shich the actions are r r ( X )  and wr(X), meaning that transaction 
T reads, or respertiyely writes. database elernent x. IIoreover; Since \re shall 
,,all? name our transactions 6, &, . . . , we adopt the conrention that T ~ ( W  
and c, (S) are synonyms for r r ,  (S) and WT, (x). respectirely. 

Example 18.5 : The trallsactions of Fig. 18.2 can be written: 

TI: r1(-4): w1(-A): rl(B); u1l(B); 
T2: r2(-4): ZC?(.I): r?(B): w.z(B): 

lot ice illat tilere is no 11lention of the local ~ariables t and s ailyahel~.  and 110 

illdicalion of happelled to .4 and I( after tile? \Yere read. Iatuitiwl? .I-e 
sllall ..assume the Karst.. regarding the nays in which these database elements 
change. 

ls example, consider the rerialirable schedule of TI and T2 from 
Fig. 18.5. This schedule is written: 
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TI(A); wl (A):  r z ( A ) ;  w2(A); TI ( B ) ;  w1 (B);  r 2 ( B ) ;  w 2 ( B ) ;  

To make the notation precise: 

1. An action is an expression of the form r ,  (X) or w, (S), meaning that 
transaction T, reads or writes, respectively, the database ele~nellt X. 

2. A transaction Ti is a sequence of actions with subscript i. 

3. A schedule S of a set of transactions 7 is a sequence of actions, in which 
for each transaction Ti in 7, the actions of Ti appear in S in the same 
order that they appear in the definition of Ti itself. lire say that S is an 
interleaving of the actions of the transactions of which it is composed. 

For instance, the schedule of Example 18.5 has all the actions with subscript 
1 appearing in the same order that they have in the definition of TI, and the 
actions with subscript 2 appear in the same order that they appear in the 
definition of T2. 

18.1.6 Exercises for Section 18.1 

* Exercise 18.1.1 : A transaction TI.  executed by an airline-reservatioll system. 
performs the following steps: 

i. The customer is queried for a desired flight time and cities. Information 
about the desired flights is located in database elements (perhaps disk 
blocks) A and B ,  which the system retrieves fro111 disk. 

ii. The customer is told about the options, and selects a flight \\-hose data. 
including the nunlber of reservations for that flight is in B. A reservation 
011 that flight is made for the customer. 

iii. The customer selects a seat for the flight; seat data for the flight is ill 
database element C. 

io. The system gets the custo~ner.~ credit-card number and appends the bill 
for the flight to it list of hills in database element D. 

c. The c.ustomer's pho~le and flight data is added to another list on database 
element E for a fas to be sent confirnliug the flight. 

Express transaction TI as a sequence of r and w actions. 

*! Exercise 18.1.2: If two transactions collsist of 4 and 6 actions, respective15 
holv nlany interleavings of these transactions are there? 

18.2. CONFLICT-SERI.4LIZABILITY 

18.2 Conflict-Serializability 

lye shall nos  develop a condition that is sufficient to assure that a schedule 
is serializable. Schedulers in commercial systems generally assure this stronger 
condition, which we shall call "conflict-serializability," when they want to assure 
that transactions behave in a serializable manner. It is based on the idea of a 
conflict: a pair of consecutive actions in a schedule such that, if their order is 
interchanged, then the behavior of at least one of the transactions involved can 
change. 

18.2.1 Conflicts 

To begin, let us observe that most pairs of actions do not conflict in the sense 
above. In what follo\vs, we assume that T, and Tj are different transactions; 
i.e., i # j. 

1. r,(-Y); r, ( Y )  is never a conflict, even if S = Y .  The reason is that neither 
of these steps change the value of any database element. 

2. r . ( S ) ;  l l ; ( l* )  is not a conflict provided S # Y .  The reason is that should 
TJ write ) before T, reads h., the value of X is not changed. Also, the 
read of I by TI has no effect on Tj, so it does not affect the value T j  
writes fol 1.. 

3. w,(S): r , ( l r )  is not a conflict if X # I T ,  for the same reason as (2 ) .  

4. Also sinlilarly. w,(X); w,(Y) is not a conflict as 10% as S # 1. 

011 the other hand. there are three situations where we may not swap the order 
of actions: 

a) Two actions of tlie same transaction, e.g., T,(\.): zu,(Y), conflict. The 
reason is that the order of actions of a single t,ransaction are fixed and 
lnay not be reordercd by the DBXIS. 

b) TI\-o writes of the same database element by different trallsactions conflict. 
That is. w,(l): w,(.Y) is a conflict. The reason is that as written, the 
value of S remains afterward as whatever T, computed it to be, If me s15~ap 
tile order as icJ( l ' ) :  i r , (S ) .  then Ire leave X with the ralue computed by 
T ,  our  assumption of "no coincidences. tells us that the valucs written by 
Tt and TI .dl be different. at least for some initial states of the database. 

-) A read and a .rite of the sanie database element by different transactions 
also conflict. That is, r , ( S ) :  c, (X) is a confict, and so is w,(S): r, (S). 
If ive more w, (S) ahead of r ,  (S), then the value of -Y read by T, will 
be that lvritten by T,, which we assunie is not necessarily the same as 
the previous value of .Y. Thus. sn-appmg the order of r,(-Y) and ib(.Y) 
affects the value T, reads for S and could therefore affect what T, does. 
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The conclusion we draw is that any two actions of different transactions may 
be swapped unless: 

I. They involve the same database element, and 

2. At least one is a write. 

Extending this idea, we may take any sclledule and make as many nonconflicting 
swaps as we wish, with the goal of turning the schedule into a serial schedule. 
If we can do so, then the original schedule is serializable, because its effect 011 

the database state remains the same as we perform each of the nonconflicting 
swaps. 

We say that two schedules are confkct-equivalent if they can be turned one 
into the other by a sequence of nonconflicting swaps of adjacent actions. We 
shall call a scliedule conflict-serializable if it is conflict-equivalent to a serial 
schedule. Note that conflict-serializability is a sufficient condition for serializ- 
ability; i.e., a conflict-serializable schedule is a serializable schedule. Conflict- 
serializability is not required for a schedule to be serializable. but it is the 
condition that the schedulers in commercial systems generally use when they 
need to guarantee serializability. 

I Example 18.6 : Consider the schedule 

from Exaniple 18.5. We claim this schedule is conflict-serializable. Figure 18.8 
shows the sequence of swaps in which this schedule is converted to the serial 
schedule (Tl,T?), where all of TI'S actions precede all those of Te. We have 

underlined the pair of adjacent actions about to be swapped at each step. O 

r l  (-4): W I  (-4); rz(A); we@); r~ (B); WI (B); rz(B); w2(B): -- 
rl(.l): LC '~ ( .~ ) ;  r2(-4); ri(B): WL(-4); wl(B); r2(B); ~ ( a ) :  -- 
TI (-4): w1 (A); TI (B); r2(.4); wz(.l); WI (B); 7-2 (B); WL(B); -- 
TI (-4): w~ (A); rl (B);  rz('4); a; wz('4); rz(B); wz(B); - 
r l  (-4): to1 (-4); r1 (B); LC'I (B); rz (A); w2 (-4); r2 (B); wv (B): 

Figure 18.8: Converting a 
swaps of adjacent actions 

conflict-scrializable schedule serial schedule by 

18.2.2 Precedence Graphs and a Test for 
Conflict-Serializability 

It is relatively simple to examine a schedule S and decide whether or not it 
is conflict-serializable. The idea is that when there are conflicting actions that 
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Why Conflict-Serializability is not Necessary for 
Serializability 

One example has already been seen in Fig. 18.7. bTe saw there how the 
particular computation performed by Tr made the schedule serlalizable. 
However, the schedule of Fig. 18.7 is not conflict-scrializable, because -4 is 
written first by Ti and B is written first by Tz Since neither the writes 
of A nor the writes of B can be reordered, there is no way xe  can get all 
the actions of Ti ahead of all actions of T2, or vice-versa. 

However, there are examples of serializable but not conflict-serializ- 
able schedules that do not depend on the computations performed by the 
transactions. For instance, consider three transactions TI, T2, and T3 that 
each write a value for X. Ti and Tz also write values for Y before they 
write values for X. One possible schedule, which happens to be serial, is 

s l :  wl(Y); wl(X); 7uz(Y): w2(S); w3(-Y); 

S1 leaves S with the wlue written by T3 and Y with the value written by 
T2. However, so does the schedule 

Si: u:i(k'); w2(k7); wz(X): WI(X);  w3(.Y); 

Intuitively, the values of S written by TI and T2 have no effect. since 
T3 overwrites their values. Thus S1 and S2 leave both S and 1' with 
the same wlue. Since S1 is serial, and S2 has the same effect as S1 on 
any database state, we k1io1v that S2 is serializable. Hoi~ever, since we 
cannot swap wl(Y) with ~ ~ ( 1 . ) .  and 11-e cannot sxvap wl(-Y) x+ith wz(X)? 
therefore we cannot convert Sz to any serial schedule by sxvaps. That is, 
S2 is serializable, but not conflict-serializabl~. 

appear anywhere in S .  the transactions performing those actiol~s m~ist appear in 
the same order in any conflict-equivalent serial schedule as the actions appear in 
S. Thus. conflicting pairs of actions put constraints on the order of transactions 
in the hypothetical, conflict-equivalent serial schedule. If these constraints are 
not contradictory. we can find a conflict-equivalent serial schedule. If they are 
cont~adictory, we know that no such serial schedule esists. 

Girc.11 a schcdule S. involving transactio~ls TI and T2. perhaps alllong oilier 
transactions. we say that Ti t akes  precedence over T2. tvritten TI <s T2. if there 
are actions ;Il of Ti and A2 of T?. sllcfi that: 

1. .-II is ahead of -42 in S. 

2. Both .-I1 and .A2 involve the same database element. and 

3. At least one of .Al and ,Ir is a ~vrite action. 



928 CH-4PTER 18. CONCLRREXCI' COSTROL 

Xotice that these are exactly the conditions under which n e  ca11iot slvap the 
order of ill and A?. Thus, -41 ~vill appear before A2 in any schedule that is 
conflict-equi\,alent to  S. As a result: if one of thcsc schedules is a serial schedule, 
then it must have Tl before I?,. 

\T1e can summarize these prececie~~ces in a precedence gr~ph.  The nodes of the 
precedence graph are the tra~isactions of a schedule S. \$;hen the transactions 
are Ti for various i, we shall label the node for Ti by only the integer i .  There 
is an arc from node i to node j if T,  <s Tj .  

Example  18.7 : The follo~ving schedule S involves three transactions, Ti, T?: 
and T3. 

5': T:!(-4); TI (B ) ;  w2(d); rg(A); w1 (B ) ;  w3(A); r2(B);  1~'2(B); 

If we look at tlie actions involving ;l? we find several reasolls ~vhy  I:L <.s T?. 
For example, r:! (A) comes ahead of ws (A) in S, and ull (-4) comes ahead of both . 
~ ( . + l )  and wy(A). Any one of these three observations is sufficient to justify the 
arc in the precedence graph of Fig. 18.9 fro111 2 to 3. 

Figure 18.9: The precedence graph for the sclicdule .S of Exa~nple i8.7 

Similarly, if \ve look at  the actions i l l rolvi~~g B,  we find that there are several 
reasons why TI <s T2. For instance. the action r l (B )  comes before ic2(B). 
Thus, tlie prccederlce graph for S also has an alc  from 1 to 2. Honever. these 
are the only arcs we can justify from the order of actions in schedule S. 

There is a simple rule for telling whether a schedule S is conflict-serializable: 

Construct the precedence graph for S and ask if there are any cj-cles. 

If so, then S is not conflict-serializable. But if the graph is acyclic. the11 S 
is conflict-serializable. and moreover. any topological order of the nodes2 is a 
conflict-cquiralent serial order. 

Example  18.8: Figure 18.9 is acyclic, so the scllcd~~le S of Esanlple 18.7 
is conflict-serializable. There is only one order of the nodes or transactions 
consistent ~ r i t h  the arcs of that graph: ( T I .  T.; F . ) .  rotice that it is incleect 
possible to convert S illto the schedule in ~vhicli all actions of each of thc three 
transactions occur in this order; this serial sclledulc is: 

St: TI ( B ) ;  wl (B ) :  r?(.-l); w2 (-4); r2 (B ) :  w2 (B ) :  r3 (.4); w:.(-4): 

'.,2 topological order of an acyclic graph is any ortler of the nodes such that for ewry arc 
a i 6 ,  node a precedes node 6 in the topological order. \Ve can find a topological order 
for any acyclic graph by repeatedly removing nodes that have no prrdecessol.~ among the 
remaining nodes. 

To see that we can get froni S to S' by swaps of adjacent elements, first notice 
~ v e  can move r l ( B )  ahead of rz(.4) without conflict. Then. by three sxvaps 
it-e call move wl (B)  just after r l (B ) ,  because each of the intervening actions 
ir~volves -4 and not B. We can the11 move r>(B)  and w2(B) to  a position just 
after .tc2(A). moving through only actions involving .4; the result is S'. 

E 

Example 18.9 : Consider tlie scl~edule 

Sl: r2(-4): rl (B ) :  w2(.4); r 2 ( B ) ;  r3(-4); W ( B ) :  ~ 3 ( - 4 ) ;  us2(B); 

\vhich differs from S only in that action r2(B)  has been moved forward three 
positions. Examination of the actions involving A still give us only the prece- 
dence T2 <sl T3. Ho~vever. allen we examine B Ire s t  not only Ti <sl fi 
[becausr ri ( B )  and u l  ( B )  appear before ta?(B)]. but also T1 <s1 Ti (because 
r2(B)  appeals before w1(B)].  Thus. ive have the precede~lce graph of Fig. 18,10 
for schedule Sl. 

Figure 18.10: graph; its scliedulc is not conflict-seriali~able 

This gyapIl evidently 1i;ls a cycle. We couclud~ that S1 is 110t conflict- 
serializable. Illtuiti\.ely, any conflirt-equicilent serial schedule \vould haye t o  
have Ti both ahead of and Ijellind T,, so therefore no such schedule csists. 

18.2.3 Why the Precedence-Graph T e s t  Works 

As n-e have seen: a cycle in the precedence graph puts too malls constraints on 
the order of transactiolls in a hypothetical conflict-equivalent serial schedule. 
That is. if there is a cycle involving T I  transactions Tl -t Tl -+ . . . + T,, + Ti ,  
then in the Il!.potlietical serial order, the actions of TI must prececle those of 
T2. \vhich precede those of T3. and so 011: up to  T,. But the actions of T,,: 
n-llicli therefore come after those of TI? are also required t o  prcccde those of Ti 
becallse of the arc T,, -+ TI. Thus. \ye concllldc that if therc is a cycle in tllc 
p"c~den('e graph, then the schedule is rlot collflict-serializable. 

TIle convchrse is a hit 11ardrr. \ \c  rlll~st show that if the precedence graph 
]las 110 i.!.r]ps. tIlnl \ye c;jll ipordrr tho s(~li~~cl~lli. 's actious osing legal s!I-alls of 
adjticcat lctiolls ,1lltil tile scll(rll,le brcuilcs a rerial scliednle. If I\-c can do 50. 

then haye our proof that every schedule n.itli an acyclic precedence graph is 
conflict-serializab]e. Tile proof is an incluction on the number of trallsactiolls 
involved in the schedule. 

B A S I S :  1f = 1. i.e.. there is o n 1  one trnlisactiol~ i11 the schedl~le. then the 

schedule is already scrial. and thrrcfore surely conflict-serializahle. 
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INDUCTION: Let the schedule S consist of the actions of n transactions 

\Ye suppose that S has an acyclic precedence graph. If a finite graph is acyclic. 
then there is a t  least one node that has no arcs in; let the node i correspo~lding 
to transaction T, he such a node. Since there are no arcs into node i. there can 
be no action d in S that: 

1. Involves any transaction T, other than T,. 

2. Precedes soInc> action of T,, and 

3. Conflicts with that action. 

For if there were, we should liave put an arc from node j to node i in the 
precedence graph. 

It  is thus possible to  snap all the actions of T,, keeping t lmn in oitler. but 
moving then1 to the front of S. The schedule lias now taken the form 

(.ictions of l;)(Actions of the other 11 - 1 tra~isactions) 

Let us no\\- consider the tail of S - the actions of all traiisactions otlier than 
Ti. Since these actions maintain the same relative order that they did in S:  the 
precedence graph for the tail is tlie sarrle as the precedence graph for S .  except 
that tlic r~otlc for Ti and ally arcs out of tliat node are missing. 

Since the original precedence graph was acyclic, and deleting nodes and arcs 
carinot make it cyclic, xve conclude that the tail's precedence grapli is acj-clic. 
lIoreover, since the tail involves n - 1 transactions, the inductive hypothesis 
applies to it. Thus, xve know n e  cat1 reorder the actions of the tail using 
legal sxvaps of adjacent actions to  turn it into a serial sclledulc. Son-. S itself 
lias been turned into a serial schedule, ni th  the actioris of Ti first and the 
actions of the other transactions follo~ving in some serial ordcr. Tlir incl~iction 
is coniplete, and we conclude that every schedule ~v i th  an acyclic precctience 
graph is conflict-scrializable. 

18.2.4 Exercises for Section 18.2 

Exercise 18.2.1 : Below are tn-o transactio~is. dcscril~cd in terms of thcir effect 
on tn-o database rlcrnents .-1 and B. n-llich n-e :nay assume are i~lrcgc~rs. 

Ilk assume that; xvhatcver consistency corisiraints there are on the database. 

tltese trar~sactiorls preserl-e them in isolation. Sote that -4 = B is n o t  the 
consistency constrai~lt. 

a) I t  t u n s  out tliat both aerial ordels liave the same effect on the database: 
that  is. (TI, T2) and (Ti. TI) are ecluivalcnt. De~nonstratc this fact by 
sho\ving the effect of the tn.0 t ~ a n s a ~ t i o n s  on a n  a rb i r ra~y  initial database 
state. 

b) Give mainpies of a serial~zable scbedule and a oonrerializable schedule of 
the 12 actions above. 

c) Ho~v many serial schedules of the 12 actio~is are there? 

*!! d) How many srrializable schcdulrs of the 12 actions are there? 

Exercise 18.2.2: The tn-0 transactions of Exercise 15.2.1 can be written in 
our notation that slio\vs read- arid ~vritc-actions only, as: 

-insn-er tlie fol lo~~ing:  

*! a) .lmong the possible scl~cdulcs of the eight actions above, how 1ilaIly are 
co~~flict-e~ui\-alel~t to  the serial older (Ti. TL)'? 

1)) Holy n1a.y srhedulcs of tile eight acticns are etlaivalimt to the serial order 
(T2. TI)'? 

!! c) Hoiv lllally sclied,llcs of the eight actio~is are equivaicnt (not iircessaril~ 
collflict-e~lui~a]el~t) to  the serial sclicdule (TI. Tz). assunling the transac- 
tiolls haye tile effect 011 the database descril~ed in Exercise 18.2.1:' 

! d )  n-I1)- are tile alis\vers to  (c) al~ove ant1 Exercise 18.2.l(d) different'? 

! Exercise be: 18.2.3:  Suppose tile transactions of Exercise 18.2.2 are changed t o  

That is. tlie transactiolls retail1 their scniantics from Exercise 18.2.1. but 5 
has I~cen changed so -4 is proccssctl 1)cfort. B. Givc: 

a) The n ~ m l l ~ e r  of co~~flict-sc~sinlizal)l(~ sclicth~lrs. 

b) TIlC ~lillllbrl of seria]ir;lble scli(~lalcs, i~ssumillg tile t r ;m~ac t io l l~  llavt the 
same effect on t]le datallase state as i r ~  Exercise 18.2.1. 

Exercise 18.2.4: For each of the follo~ving scherl~lles: 



A n s ~ e r  the following questions: 

i .  What is the prccetlcnce graph for the schedule? 

ii. Is the schedule conflict-serializable:? If so, rvhat are all the equivalent 
serial schedules? 

! iii. Are there any serial schedules that must be equivalent (regardless of what 
the transactions do to the data). but are not conflict-equivalent'? 

!! Exercise 18.2.5 : Say that a transaction T precedes a transactio~l C in a scliecl- . 
ule S if every action of T precedes every action of U in S.  Xote that if T and C 
are the only transactions in S, then saying T precedes U is the sanie as saying 
t'hat S is the serial schedule (T, L;). Ho~vever, if S involves transactions other 
than T and C'; then S miglit not be serializable, and in fact, because of t11ta 
effect of other transactions, might not even be conflict-serializable. Give an 
esanlple of a schedule S such tliat: 
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~hatsoe \ . e r  on that  element. I11 Scctiori 18.4, TI-e shall learn Inore realistic lock- 
ing sclwiics. wit11 sevanl kinds of lock: including the common shared/e~clusi \~e 
locks that correspond to t!ic privileges of reading and n-riting, respectively. 

18.3.1 Loclcs 

I11 Fig. 18.11 vr  ice a scllrduler tliat uses a lock table t o  help perforln its 
job. Reciill tliat the reipoo,il;ility of the scheduler is to take requests froin 
tiansacrions aiid eitllri alloc. them to opelate on the database or defer then1 
until such time ci5 it is safe to  all or^ them to esecute. .i lock table will be used 
t o  guide this tlccision in a rnanncr that tve shall discuss a t  length 

requests from 
transactions 

of actions 

Figlnr 15.11: .\ scheduler that uses a lock table to  guide decisions 

i .  111 S ,  TI precedes T2, alld 1dValiy. a sclle~l,l~clr n.o,lltl f ~ ~ \ y a r d  a request if ailtl o1ll.Y if its esecution 
callnot possil,ly lPad lo all illcollsistc.llt database statc after all actiye trans- 

i i .  S is conflict-serializable? but colilmit or a\lort, ~t is ~nuch too hard to  decide this question ill real 

i i i .  In every serial schedule conflict-equivalent to S ,  T, precedes T ~ ,  tillle. ilon-ever. ~ l ~ ~ ~ ~ ,  all schcdulcrs use a sinlple test that gual-antees serial- 
izal,iliry llllt lllay forlli(l solne actions that collld llot I,!. the1llsclves ]cad to 

! Exercise 18.2.6: ~ s p l a i n  hon-, for any 71 > 1, one can find a sclle(iule illcollsistellcy. -1 lockillg sc.]letluler. like most types of scheduler. illstead en- 
precedence graph has a cycle of length n, but no smallcr c.-clc. forces collflict-scrializal,ilit~-, F.c-hicl~ as n.c learned is a lllore strillg~llt conditioll 

18.3 Enforcing Serializability by Locks 

Imagine a collection of transactions performing their actions in an unconstrained 
manner. These actions will form some schedule: but it is 11111ikeIy that the scl~ed- 
ule \\-ill be scrializable. It  is the jol, of the schetlulcr to  prevent orders of actions 
that lead to an unserializablo schedule. 111 this sectio~l n.e consider the 1110~t 
connnon architccturc for a schetlnlcr. onc in n-hich '.locks" are mtti11t;iincd o11 
database eleme~its to prcvcnt unsc~rializablc brhavior. Intuitively. a trans;~criorl 
obtains locks on the database ele~nc~lts  it acccssrs to 1,rcvcnt otllcr transactio~~s 
from accessing tlicse elcnlcnts a t  rouglily the same time and thereby incurrilig 
the risk of unserializahility. 

In this section, we introduce the coilccpt of locking with an (overly) simple 
locking scheme. 111 this sclie~ne, there is only one kind of lock. xvhich trallsac- 
tions must obtain on a database elcment if they want to perform any operation 

than serializabilit!-. 
\i-llell a sc.llcdulcr llscs locks. transactions ~llust request and release locks, 

i11 addition to reading auct n.ririrlg datal)a.qe e4c1l1eilrs. The use of locks rl~ust 
be llroller in two senses. olie applying to the structure of trallsactions, and the - - 
other to  tlie structure of sclirdules. . C o l l s i s t ~ n c y  of Tr(1n.5nctions: ,\ctions and locks ~l lust  relate ill the ex- 

pcc~tctl \!-ays: 

1. .\ tr;m5;ictioll (.;ill olii\- 1.c;id or write a11 elrii~cllt if it previously 
rc~cac\ltcrl a lrrcli U I l  rllat eleln(.,nt and lia5n't yet released the lock. 

2. ~f ;, transac.tioll locks an clcmcnt. it rnlist later ~mlock that  elerncnt. 

. Lagnllty Schetlv[es: Locks mrist have their intended mcani~lg: no t\vo 
trallsactiull.; nlaY locked tile same cleinent n - i thu t  one having first 

relcasetl the 1oc.k. 
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IVe shall extend our notation for actions to include locking and unlocking 
actions: 

[,(A'): Transaction T, requests a lock on database element A'. 
u,(X): Transaction T, releases (.'unlocks") its lock on database elelllent -Y. 

Thus, the consistency colldition for t,ransactions call bc stated as: '.lYhenever 
a transaction Ti has an action r i ( S )  or w,(X), then there is a previo~ls actioil 
li(S) ~vith no intervening action u i ( S ) ,  and there is a subsequent u i (S) . "  The 
legality of schedules is stated: "If there are actions l i(S) follo~ved by Ij(.Y) 
in a schedule, then sotnewhere b c t ~ ~ c e n  these actions t,here must be an actio:~ 
t l , ( X )  .:I 

Example 18.10: Let us consider the two transactions TI and T2 that we 
introduced in Esample 18.1. Recall that Tl adds 100 to database elcments .-1 
and B, while Ti doubles them. Here are specificatiorls for these transactions. 
in which we have includect lock actions as well as  arithn~ctic actions to help us 
remember ~vllat the trarisactior~s are doing." 

Each of these transactions is consistent. Thcy each release the locks or1 -4 arid 
B that they take. lIoreol~er, they each operate on A and B only in steps n.lielr 
they hare previously requested a lock on that elenlent and have not y t  released 
the lock. 

Figure 15.12 shows one legal schedule of these two tratisactjolls. To sa1.c 
space 15-e have put several actions 011 one line. The schedule is legal because 
the tivo transactions never hold a lock on A a t  the same time, alld likelvisc for 
B. Specifically, T2 does not execute 12('4) until after TI executes 11, (.A). and Tl 
does not escrutc 11(B) unt,il after T2 executes u2(B). As ~ v e  see from the trace 
of the values computed, the schedule, although legal. is not scrializable. \Ye 
shall see in Section 18.3.3 the additio~lal contlition, "two-phase lockirlg." that 
~ v e  need t,o assure that legal schedules are conflict-serializable. 

18.3.2 The Locking Scheduler 

It is the job of a schcrl~~lr\r I>ascd on locking to grant rrqllcsts if ;111<1 only if 
the rcqucst will rcsnlt in a legal schedule. To aid this dccisioll. it Ilas a lack 
table. 1v11ich tells, for every database c l e ~ n c ~ ~ t .  thc transaction. if any. that 
currently holds a lock on that element. We shall discuss tllc strlicture of a 

- 

%emember that the actrlal computations of the transaction ustlally are not represented i : ~  
our cnrrent notation, since they are not considered hy the  sclleduler ~vlren deciding \\-Iirther 
to grant or deny transaction requests. 

Figure 18.12: . legal schedule of consistrllt ~ri3lli.icti011~: 

5 0 

150 

unfortunately it is not 

lock table in lllorc detail in Sectioll 18.5.2. However,  hen there i* 0111~ one 
killd lock; as s e  llaye assunled so far, the table may be t h ~ ~ h t  of as  a 
relation ~ a c k s  t ransac t ion) .  consisting of pairs (x 7) such illat 
trallrnctioll i. cllrrpnfly llas a lock on database elenlent -y. The sclledulrr 
llL,s only 10 query illis relation and liiodify it ivith si~nple INSERT and DELETE 

Exnlnple 18.11: Tile srhcdule of Fig. 18.12 is lcgal. as ive oastioried, so 
the lorkiiig scllcdl~ler would grant every request in t i e  order of arrival s l i o ~ v ~ ~ .  
Hoivever. sor~ietiilles it is not to g r a d  requests. Here ale TI and T2 from 
Eralllp]e 119.10. s-itll silllple (hiit ilnportant. as KF dhaii see ill Section 18.3.3) 
cllsilgps ill \i]licll TI and T2 each lock B before relcasilig the lock on -4- 

rll ~ i . ,  l e , l :3  T, r ~ c p e s s  a lo& all B. tlle schnhlier i n u s  deny 

loch ~lccanie Still llolds ;, loch 011 B. Tbiii. T2 stalls. and the oi1rt sctiOlls 

f,.olll f i -  ~ ~ ~ ~ ~ t ~ ~ , ~ l ~ ~ ,  T~ e ~ ~ : c u ~ e s  il1(B). ivllicll anlocks B. SOI~.  T? call get 
its lock B. lyllirll is exccut& at tile nest step. sot ice illat becallse b n'ils 

fnrcc,j to \vait. it I,-ound up ulultiplyisg B I- P after T1 added 100. resulting in 

t a consistent database state. 



11 (24); r 1 ( 4 :  
A := A+100; 
WI ('4): 11 (B):  u1 ('4); 123 

12 (.A) ; I.? (-4) : 
A := A*2; 
IU? (-4): 250 
Lz(B) D e n i e d  

rl(B); B : = B+100: 
201 ( B ) ;  UI ( B ) ;  123 

12(B): ~ l g ( A ) ;  T ~ ( B ) ;  
B := B*2; 
wz(B); tl2(B): 230 

Figure 18.13 The loclci~ig scheduler delals icr4uests that nould result in an 
lliegal schedule 

18.3.3 Two-Phase Locking 

There is a surprising coridit,ion undcr which ~ v e  can guarantee that a legal 
schedule of coiisistent trailsactions is conflict-scria1izat)le. This co~idition. wliicli 
is 1%-idely follo~ved in commercial locking sj-stems; is called two-phase locking or 
2PL. The 2PL condition is: 

In eveiy tlansaction, all lock iequests prcccde all unlock leyucsts 

The "tn-o phases" referred to  by 2PL are thus the first phase. where locks 
are obtailietl and the second phase, nhere loclis are relinquished. TKO-phasr 
locking is a condition; like consistency. on the order of actions ill a transaction. 
d transaction that obeys tlie 2PL condition is said to he a tu~o-phase-locker1 
tmnsnction. or 2PL transaction. 

Example  18.12 : In Es i~n~plc  18.10. thc t r ; i i i~i~~tioi is  do not ol~c'y tliv rn-o- 
pllits(! loclting r~llo. For i~isti~ncc. Tl unlo(~1is .-l l~cforcx it locks B. Hon-c>vc1r. tlic. 
\-crsions of tllo tr;~ns;~c.tions found in Esiiniplc 18.11 (lo oLcy tlic 2PL condiric,n. 
Notice that TI locks both d and B n-itliiii the first fivc actions aild unlocks 
tliern n-ithi11 thc nest fivc actions: Ti behaves sinlilarly. If I\-e colnparc Figs. 
18.12 and 18.13, \ve see lio~i. the two-pllasc-lockctl trnrisactiorls ii~tcract propcrly 
xvit11 thr scheduler to assure consistency: \vllile thc no]]-2PL transactions allon. 
inronsistent (and tlicrcforc not-conflict-serializablc) behavior. 

18.3.4 Why Two-Phase Locking Works 

It is true. but far from obvious. that the be~iefit from 2PL that \ve observecl in 
our exa~nples holds in general Intuitively, cdch t\vo-phase-locked transactio~l 
may be thought to execute in its entircty a t  tlie instant it issues its first unlock 
request. as suggested by Fig. 18.14. The conflict-equivalent serial schedule for a 
schedule S of 2PL transactions is the one in ~vhicli the transactiorls arc ordered 
i11 the same order as their first  unlock^.^ 

Instantaneously 
[ executes now 

locks 
acquired 

time 

Figure 18.14: Every tn-~-~hase-lockcd trdnsactioll has a point at nllich it may 
be  thought to execute instalitailcousl~, 

\Ye shall sho~r- how to convert any legal schedule S of consistc+nt. tn-o-phase- 
locked trallsactiolls to a conflict-equi\nlcnt serial schedule. The conversion is 
best described as an induction 011 n;  the number of transactions in S .  In \\.hat 
follons, it is important to remelnbcr that the issue of co~iflict-eclui\.alcnce refers 
to  the read iind \~--ri-itc actions only. As n-e slvap the order of reads and vritrs.  
I\-e ignore tllc loci; a:ld unlock actions. Ol~ce n-e have the read and write actions 
ordered serially. n-e can place the lock and unlock actions around them as the 
x-arious tra~isactior~s require. Since each transaction releases all locks before its 
end: lye kno~v that the serial schedule is legal. 

BASIS If n = 1. there is nothing to do: S is already a serial schc~dule 

INDUCTION: Suppose S i~ivolves 11 transactio~is TI. T?. . . . : T,,, and let Ti be 
the trans;ictioll \\.it11 the first unlock actioll in tlie entire schctlule S. say u i ( S ) .  
\\e claim it is possil>le to  1llol.e all the rcatl and ~vrite actions of Ti  forward to 
the beginning of the schedule xvitllout passing any conflictillg actions. 

Consider some action of Ti.  say wi(17) .  Could it be preceded in S by sorile 
conflicting action. say ~ c ~ ( I - ) ' l  If so: tllcr-ri i r i  schedule S. actions zlj(17) and ! , ( I 7 )  
must intervene. in a sequence of actions 

.-llt look Since T, is the first to 11nlock. u , ( S )  prccedcs t i , ( > - )  in S :  that is. S mi, 
like: 

. . . :  w,(17): .  . .; I l i ( -Y ) : .  . .: l i j ( l - ) : .  . .: l i ( I 7 ) : .  . .: lc , ( l - ) : .  , . 

.'In some schedules. there arc orher conflict-equivalent serial sched~ilrs as !r-ell. 
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or l'i(-y) cotlld even appear before 1i!,(Ir). ~n case; v j ( ~ )  appPars hefore A Risk of ~eadlock  
li(I.'): which means that Ti is not tit-o-phase-loclied, as n-c, assulncd, lyllile 

we have only argued the nonexistence of conflicting pairs of ivrites: same solrer~ by tn-o-phase locking is potential for 
Olle piobien tilaf is 

argurnellt applies to any pair of potentially conflictillg actjolls, orlc froln T, and deacllocks. Ivllere several trallsactiolls are forced by the scheduler to T'-ait 
the other froni another T ~ .  fore,r for a loch ileld by another traosactioll For installce~ consider the 

\S'e concIude that it is indeed possiblc to move a]] the actiolls of T, fOrwarrl 2 p ~  irallsactions iron] E r a ~ ~ l p l e  18.11, but jVith T2 changed 
nark On 

to the beginning of S, llsing SlVapS of nonconflicting ;Ind a.rjte actions, 
follolved by restoration of the lock and unlock actions of T ~ ,  ~ h ~ t  is, s can lle first: 
written in the form ll(-41; r1(-4): A := A + ~ O O ;  w~(-4) ;  l l ( ~ ) ;  ~ J I ( * ~ L  rl(B): := B+lOO' 

101 (B): UI(B) ;  
(Actions of Ti)(-Actions of the otlier r2 - 1 trallsactions) 

T2: !?(B); r 2 ( ~ ) i  B := ~ * 2 ;  w2(B); 12(.4); 
pj(a4); A := A*2' 

The tail of tl - 1 transactions is still a legal schedule of consistent, 2 p ~  trans- c2(-I) :  112('A); 
actions, so the inductive hypothesis applies to  it. \yc convert tail to a 
collfiict-ecluivalcl~t serial schedule, a11d now all of s has beell slloi,.n possible interlearing of tile actions of these transactions is' 
serializable. 

Tl T? 
A l3 
25 25 

18.3.5 Exercises for Section 18.3 l l(-I);  n ( - I ) :  
12(B): rz(B)i 

Exercise 18.3.1: Below are two transactions, nirh lock requests the sc. 
malltics of the trallsactiorls indicated. Recall froln Exercise 18.2.1 that, tilcse A := A+100: 

B := B*2; tralisactions haye unusual property that they can he scheduIet[ in n-ays tllat 
1~~ (-4) : 125 

are ]lot conflict-serializable, but: because of t,he semalltics, arc scriaiiza~lc, 
w?(B); 30 

Tl: zl(-4): 
(all; A := A+2; ~ l ( ~ 4 ) :  111(*4); Zl(B); r ,  ( B ) ;  B := 13~3: t i q l ( ~ ) :  l1 ( 4 )  Denied 12(.4) Dellied 

11 I (B);  
To,v, 

can p r O c ~ d .  aiid the) ,'a'' In 'I-('- 

tiol, 19,3. \ve illall discuss nlPrllodr to rcn icd~  this Honeyr. 
'2: '2(B); r?(B); := B*2; w { B ) :  ? d 2 ( L ? ) :  12(A4); r2(-4): A :: A+3: tlt2(-4): 

?12(-4): obs tilat if is llot IloS.iblC to n l l ~ ~ v  botli t r a~ isac t io~s  to  proceed 

if so filial dntabaie state callllot posihl!- 'lave 
= B' 

In questions below, consider o111~- sclledulcs of tile and n-ritc clctionr;, 
not the lock: unlock, or assignn~e~it stells. 

112(.4k 
! 'I) Of those st.hctlulcs tlli~t arc Icgal anil scyjalizal,lr. lloK c o I l ~ j c t -  

serializable? lllaei- legal Scl,edulCs tile 2nd iriite actions of tlleic rrallitir""'.' 

are tlitre? 
!! Siuce Ti and are not t ~ ~ o - p h a s c - l o ~ k ~ d .  I,--c. \,--o,lld expCct rllat sollie 

llorlserializable behaviors would occur. .-\re tflcre scllc,ti,lles tliar Exercise 18.3.3: For earll of 
sdledule~ d Exercise lS.2.1. assulne Cat 

are unscrializable? If so: give an csanll,lc. and if explaill n-~ly, 
eacll a loci\ eL,ch database eleinellts illlmcdiatcl!- bcfon it 
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reads or writes the element, and that each transaction releases its locks irnmedi- 
ately after the last time it accesses an elrment. Tell what the locking scheduler 
would do with each of these schedules: i.e.. what requests ~vould get delayed, 
and when would they he allowed to resume? 

! Exercise 18.3.4: For each of the transactions described below, suppose that 
we insert one lock ant1 one u ~ ~ l o c k  action for each database elenlent that is 
accessed. 

Tell how many orders of the lock, unlock, read, and write actions are: 

i. Consistent and t~vo-phase locked. 

ii. Consistent, but not two-phase locked. 

iii. Inconsistent, but two-phase locked. 

ia. Seither consistent nor two-phase lockcd. 

18.4 Locking Systems With Several Lock Modes 

The locking scheme of Section 18.3 illustrates the important ideas behind lock- 
ing. hut it is too si~nple to be a practical sclieme. The main problem is that a 
transaction T must take a lock on a database element S even if it only \\-ants 
to read -Y and not write it. IVe cannot a\-oid taking the lork. because if we 
didn't. tlierl another transaction might \$-rite a new value for S while I. n-;is 
active and cause unserializable behavior. On the other hand; there is no reason 
why several transactions could not read .Y at  the same time; as  long as none is 
allolved tp 11-rite ,Y. 

We are thus moth-atcd to introduce the first. and most common. lockillg 
schenie. where there are two differe~lt kinds of locks. one for reading (called a 
"shared lock" or .'read lock"). and one for n-riting (called an "esclusive lock.' 
or .,write lork"). \IF then csa~ninc an ilnproved scheme \\-here trallsactions arc 
alloncd to take a shared lock arld ..upgrade.. it to an esrlusive lock ltitcr. \Ye 
also consider .'increment locks," I\-hich treat specially n-rite actions that ir~crf- 
nient a database element; the important distinction is that increment operatio~ls 
co~nlnute, while general writes do not. These exatnplcs lead us to the general 
notion of a lock scheme described 11y a  compatibility matrix" that indicates 
1v1lat locks on a database element may be granted when other locks are Ilel(l. 

18.4.1 Shared and Exclusive Locks 

Since two read actlolls on the same database element do not create a conflict, 
thele is no need to use locking or any other concurrency-control mechan~sln to 
force the read actions to  occur in one particular order. As suggested in the 
introduction, we still nced to lock an element Tve are about to lead, since a 
~vriter of that element must be inhibited. Hen-ever. the lock \ye need for nriting 
is .'stronger' than the lock 11-e nced to read, since it must prevent both leads 
and writes. 

Let us therefore consider a locking scheduler that  uses tn.o different kinds 
of locks: shared locks and escluszve locks. Intuitively, for any database element 
S there call be either one exclusive lock on S, or no esclusive locks but any 
number of shared locks. If we want to  write JY, we need to have an exclusive 
lock on 9. but if we ~vish only to read X we may have either a shared or 
esclusive lock on X Presumably, if we want to  lead X but not &rite it, then 
Re prefer to  take only a shared lock. 

We shall use s l , ( S )  to mean b.transaction T, requests a shared lock on 
database ele~nent X" and r l , ( S )  for .'T, iequests an exclusive lock on S." I\% 
conti~iue to use u,(.Y) to  mean that T,  unlocks S: i c., ~t relinquishes nhatexer 
lock(s) it has on S. 

The thrce kinds of requirements - consistency and 2PL for transactions, 
and legalitv for schedules - each have their counterpart for a shared/esclusive - - 
lock system. \Ye surnrnarize these rcquircn~cnts here: 

1. Consistency tmn,sactiorj,,s: may not \$-rite \$:ithotIt holding all E X -  

clusivc lock: and you nlay not rcad n-ithout holdirlg some lock. Vore 
precisely. in any transaction TI .  

(a) .i read actlon r, (.Y) n111st be preceded by sl,(.Y) or .cl, (1). xi th  no 
intervening u, ( S ) .  

(b) A write action 1c,(X) must be preceded by x l , ( S ) ,  n-ith no interven- 
ing u ,  (S). 

.I11 locks must he followed by an unlock of the same elcment. 

2. Two-phase lochng of tmnsnct~ons: Locking must precede unlocking. To 
he more plccisc. in any t\vo-pha\e locked transaction T,. no action sl,(.y) 
or . r l , (S)  can he bv an actior~ tr,(Ir). for any I-.  

3. Legcr/ity of schedules: .in e l ( , n ~ c ~ ~ t  may either be locked cs~lusi\-el! by 
traIlsacrioll or sevpral in shared mode. but not both. Nore precisely: 

(a) If .rl ,(T) appeiirs in a scll~dule. t1le11 there cannot be a follo~ving 
+ l J ( S )  or s l J ( S ) .  for some j other than i, ~vitllout an intervening 
(1 , (-1-1. 

(b) If sl,(T) appears in a schedule. then there cannot he a follo~ving 
.rl,(S). for j # i. I\-ithout an intervening ~ l , ( ? i ) .  
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Sote that 15-e do  a l l o ~  one tia~lsaction to request and hold both sharcd 
and csclusivc locks on the same elenient, provided its d o n ~ g  so does not 
conflict with the lock(s) of other transactions. If transactions kno~v in 
advance their needs for locks, then only the exclusive lock would have to 
be requested, but if lock nccds are unpredictable. then it is possible that 
one transaction rvould icquest both shared and esclusi\re locks at  different 
times. 

Example 18.13: Let us esainille a possible schedule of the follo\ving two 
transactions, using shared and csclusivc locks: 

TI: sll (A): TI ( A ) ;  xll(B): r l (B);  wl (B): ul (A); ul (B);  
T2: s l ~ ( A ) ;  ~2(.4); sZ~(B); ra(B); u2(.4); u2(B); 

Both TI and T2 lead A and B, but only Ti rvrites B. Kcither writes A. 
In Fig. 18.15 is an interleaving of the actions of TI and T2 ill which TI begills 

by getting a shaietl lock on A. Then. T2 follo~vs by getting shared locks on bo t l~  
A and B. Sow, Ti nccds an exclusive lock on B .  since it will both read anri 
write B Ho\vcver. it cannot get the esclusive lock because T2 already has a 
shared lock on B. Tllus, the schccluler forces Tl to  wait. Ex-cntu a 11"-. \. T2 icleases 
the lock on B. .At that time, TI lnay complete. O 

slp (B): ~2 (B):  
.dl (B) Denied 

1lp(.4); Z L ~ ( B )  
.zll (B); r l  (B); tcl (B) :  
111 (A); 111  (B): 

Figure 15.13: AA schedule using shared and esclusi\le locks 

Sotice that the rcsultillg schedule in Fig 18.15 is coiiflict-scrializable. The 
conflict-cquivalcnt serial order is (T2.  TI). even thougll Tl started first. 1I7hilc 
n-e do 11ot pi-ovc3 it llcrc,. the argunlcnr we gavc i11 Scctioll 18.3.4 to sllon. tlittr 
legal sclrcd~ilcs of consiitctlt. 2PL transactio~ls arc coliflict-sc.rializi1111c tipplies 
to systcnls wit11 slitired and csclusive locks as ~vcll. 111 Fig. 18.13. T2 u~~locks  
before Ti. so n-e ~vould cspcct T? to precede TI ill tllc serial order. Equivalently 
15-e may esalninc the rcad and write actioris of Fig. 18.15 a ~ l d  notice that n e  
can sn-ap rl(.4) back: past a11 the actions of T2> altile n.c cannot move 11.1 (B) 
ahead of rs(B) .  1v1;hich ~vould be necessary if Tl colild precede T2 in a conflict- 
equivaleilt serial scht,dule. 

18.4.2 Compatibility Matrices 

If we use several lock modes. then the scheduler needs a policy about \\-he11 it 
can grant a lock request, given the other locks that may already be held on the 
same database element. Khile the shared/esclusive system is simple, \ve shall 
see that there are considerably more comples systc~lls of lock modes in use. 
We sllall therefore introduce the follo~ving notation for describillg lock-granting 
policies in the contest of the simple shared/esclusive systein. 

A compatzbzltty matrix has a row and colurlln for eacll lock mode. The 
rows correspond to a lock that  is already held on an element -Y bg- another 
transaction. and the colu~ll~ls correspoild to the mode of a lock on .Y that is 
reqllestcd. The rule for using a compatibility matrix for lock-granting decisions 
is: 

r \ye can grant the lock in nlode C if arid only if for every row R such that 
there is already a lock on X in nlode R by some other transaction. there 
is a '.Yes" in c o l u m ~ ~  C.  

I Lock requested * in mode 

Figurc 18.16: Tile colllpatil,ility inatris for shared and csclusive locks 

Example 18-14: Fig,lle 18.16 is the conlpatibi1it~- matrix for shared (S) and 
esclusixe (S) locks. Tile coluiun for S s q  s that 15-e call glant a shaled lock on 
a n  elelnent if the only locks held on that elelne~lt currently are shared locks. 
The colull1n for .Y says that \re can glant an esclusive lock o~llp ~f there are 
no other locks held currently. Sotice horn tlicse rules reflect the definition of 
legality of schedules for this s j  steni of locks. 

18.4.3 Upgrading Locks 
trallsactioll T that takes a sllaretl lock on S is being ..fi-itndly" to\vard other 

trailsactions. since the!- arc allox~-ed to rcatl .\I at  the sanie tirric T is. Illus. 
xve might ~vo~idcr  ~vhcther it ~vo~i ld  bc fsirndlier still if a transaction 1 that 
\\-ants to read \\-rite a nc\v value of S 11-ere to first take a sharecl lock 
on S; and only later. n.lie11 T \\-as ready to write the new value. upgrade the 
lock to exclusive (i.e.. request an exclusive lock on S in addition to its already 
held shared lock on S). There is nothing that prevents a transaction from 
issuing requests for locks on the same database elenient in different modes. 11-e 



i~dopt the convention that u,(X) releases all loclts 011 S held by tlaniaction T,. 
although n-e could introduce mode-speclfic unlock actions if there Irere a use 
for them. 

Exainple 18.15: In thc ~~~~~~~~ing example. t ~ a ~ ~ s a c t i o n  TI is able to perfonn 
its compntation co~~currently with T?. jvhich ~i-ould not be possible had TI taken 
an exclusive lock on B initially. The t1x-o tra~lsactions are: 

TI: .sll(-A): r1(-4): sll(B); r l (B) :  zll(B): W I  (B); u1(-4): ul(B);  
TL:  S!~(.A); rj(.A); sly(B): r? (B) ;  U?(-4); u?(B): 

Hem. TI reads A and B and perfor~ns some (possibly lengthy) calculatio~t with 
tlier~i, e~entuallg usir~g the result to n-rlte a new d u e  of B. Notice that Tl 
takes a shared lock on B first, and later. aftcr its calculation involving =I and B 
is finished, requests an exclusive lock on B. Transaction T2 only reads d and 
B, and does not ~vrite. 

.slz (A) ; 7-2 ('4); 
sl?(B); m(B);  

sl1 (Dl; T1 (B)  I 
t l l  (B) Denied  

u?(-4); ur(B) 
~ 1 1  (B); UI (B): 
71.1 (.A); t l2 (B):  

Figure 18.17: Upgrading locks allo~vs more concurre~lt operation 

Figure 18.1 T sIio~~-s a possible sched~~le of actions. T2 gets a shared lock (III 

B before TI does, hut on the fourth line. TI is also able to lock B in sharcd 
mode. Thus, TI has both .-I and B and can perform its computation using their 
ralucs. It is not t~iitil TI trips to ujtgrttdc its lock on B to esclrlsi~-c that t l ~ c  
scheduler rnust deny the request and force TI to  T\-ait until T.l releases its lock 
on B. -it  that tiine, TI gets its exclusive lock on B. nritcs B, and finishes. 

Notice that had TI asked for an esclusi1-e lock on B initially. before r~aciili;: 
13. then thc request ~vould have been denied. because T2 already had a shart>tl 
lock on 13. TI cot~ld not perforrn its comp~itation n.it11out reading B .  and so 
TI ~vorild lial-c marc, to do aftcr I:? rcleasc~s its locks. .As a rc.srllt. Tl fillishc-; 
latcr 11si11g 0111. 311 (~xcI11si~e lark 011 B ~ 1 1 ~ 1 1  it \vo111d if it riscd t l l ~  ~ ~ ~ ~ g r a i l i l i g  
strategy. 

Example 18.16 : Unfortunatcl~; indiscrinlinate use of upgrading introducc.s ;I 

new and potentially serious source of dcacllocks. Suppose. that TI and T2 each 
read database ~lernent -4 and n-rite a new 1al11e for .4. If both tralisactions l~s(% 

an upgrad~ng appioach, f i ~ s t  getting a sharc,d lock on .4 and then upgradirlg it t o  
esclusivc, the scqucl1c.c of events suggested in Fig. 18.18 \\-ill happen n-henevel 
TI a ~ i d  T, initiate at  approsinlately the same time. 

dl (-4) D e n i e d  
xlz (.4) Denied  

rigule 18.18: Cpgrading by two t~ansactions can cause a deadlock 

TI and T2 are both able to  get shared locks on A Then, they each try to 
upgrade to exclusive. but the scheduler forces each to wait because the other 
]las a sllarct] lock on -4. Thus, neither can ~nake  progress, and they n-ill cach 
nai t  forel-el-. or ,inti1 the system discovers that there is a deadlock, aborts one 
of the t ~ v o  tran>actions. ant1 gives tlie other the rsclusivc lock on -4. 

18.4.4 Update Locks 

There is a \\-a? to  avoid tile deadlock proble~n of Exaniple 18.16 by using a 
tllird lock lllorie. callecl nlldnte locks. An update lock u / i ( S )  gives transactioll 
Ti o ~ ~ l y  tilc jlriyilcgc to rea(l x. not t o  ~ r i t c  -y. Ho~vever. ollls the update lock 
call upgraded to a !\-rite lock later: a rcxl  lock cannot be upgraded. fi 
call grant an tlpdate lock 011 -'i n.11~11 t,licrc: ore alreaci!. sliarcd lo~k .  on S. but 
ollcc tllere is an ulldate lock 011 S \ve prevent additio~lal locks of any kirlti -- 
sllareci. llpdate. or exclui.ive -- from being taken on S. The reason is that if \\-e 
c1o1l.t deny such loclis. tlicn tlic 11pdatc.r nlight never get a clinnce t o  t~pgrade 
to esclusiye. since there ~vould alrvays be o t l l ~ r  locks on 1. 

This rule lcaCls to all asynimetric compatibility matrix. because the update 
(c) lock looks like a s]ial-ed lock ~ \ -ho l  ~ v o  are requesting it  arid looks like all 
escltlsiye lock \\-hen \,-e already have it. Tlius, the colul l l~l~ for U and S 1 0 ~ 1 ~ s  
are the same. and ro\vs for L and S locks ;ire the samc. TIie lnatris is 

shon-11 in Fig. 18.10." 

Exalnple 18.17: The use of update locks ~vould have no effect on Esam- 
pit: 18.15, .\s its third actioll. Tl n.oillcl take an update lock on B. rather thali 
a sllRl.e(! lock. But the llpdato lock ~vould be grantcd. since onl)- sharcd locks 
arc hrld o n  B. mlc salllc scclucncc of actions sho\v11 in Fig. 1S.17 ~ o u l ( 1  
cl(~c1lr. 

"Rrlllclllber. llo\\.ever. that there is an aclditiol~t~l condition regarding legality of .ciieclilles 

that is not reflected by tllis matrix: a transaction liolding a shared lock b u t  not an ul~ciate 

lock on an  element .Y callnot be  given an esclusive lock on S. e\.en tl~orlgh \ve do not in 
general prohibit a transaction fi-om holding multiple locks on an  element. 
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Figure 18.19: Compatibility matrix for shared, exclusive, and update locks 

Holyever, update locks fix the proble~n shown in Exanlple 18.16. Son-. both 
TI and T2 first request update locks 011 =I and only later take exclusive locks. 
Possible descriptions of TI and T2 are: 

The sequence of events corrcspondirlg t o  Fig. 18.18 is sho~vn in Fig. 18.20. Son-. . T2 the secorid to requ~s t  an updatc lock on -4: is denied. TI is allowed to finish, 
and the11 T2 may p~occed. The lork system 11% effectively prevented concurrcl~t 
esecution of TI and Tj,  but in this example, any significant arnount of (o~lcur- 
rent execution 111 result in either a deadlock or an irlconsistent database state 

ulq(.-l) Denied 
z11(-4); u11(.4): u1(.4); 

u12(-4); r2(.4): 
d2 (-4); ~ C Z  ( -4):  u 2  (A-l); 

Figure 18.20: Correct execution using updatc locks 

18.4.5 Increment Locks 

Anotlicr i~~tcresting kiud of lock that is l~seful in sonic siti~;~tiorls is all ..illc.l.~- 
nlent lock." lI21ny transactions operate 011 the dat;lbasc only by inrrcwlc~iting 
or decl.c~nenting stored va111es. Exarnplcs ii1.e: 

1. .\ tf~llsaction that transfers money from one bank account to another. 

2. .I transaction that sells an airplarle ticket and dccrcrnc~~ts the count of 
available scats on that flight. 

The interesting propert; of incremerlt. actions is that tllcy colnrrlute wirh each 
other, since if two transactions add constants to  the same database element: it 
does not matter 1~1iich goes first, as the diagranl of database state transitions in 
Fig. 18.21 suggests. 011 the other hand, increme~ltatiori connnutes with neither 
reading nor writing If you read .4 before or aftcr it is incren~ented, you get 
different values: and if you increment A-1 before or after some other transaction 
xvrites a new value for .1. you get different \-ahles of .-I in the database. 

Figure 18.21: T ~ v o  increnlent actions commute, since the final database state 
does not depend on ~vliich \vent first 

Let us introduce as a possible action ill transac:tions the increment action, 
~r-ritten I N C ( A ,  c ) .  Informally, this action adtls constant c t o  database clcrncllt 
.-I. ~vhicll we assutue is a single nurtiber. So te  that c could be negative, in 
n-hich case we are really decrementing .4. 111 practice, we nlight apply INC to a 
component of a tuple. ~vllile the tuple itself. rather than one of its components, 
is the lockal~le element. 

More formally. \ye use INC(A ,c) to  st;ind for the atomic esecution of the 
follo~t-i~ig steps: READ ( A ,  t) ; t : = t+c ; WRITE(A, t) ; . 1% sliall not discuss 
the hard1\-are software mecha~~isrn that IWJI I I~  be used to lnalte this 
operation atomic. but slioulrl note that this for111 of atonlicity is 011 3 l o ~ e r  
level than the atomicity of transactiolls that we support by lockillg. 

CorrespolltliIlg to the increlnent action. lye need an increment jock. 
shall denote tllc action of Ti requesting an increment lock on S h~ i l i ( X ) .  ifi 
also use shorthalld i n c i ( S )  for the actiol~ irl n-hich trarisaction T; increments 
tlatahase elflllent S b?- solnc constant: thc exact constant doesn't matter. 

The esistence of incremerit actions and locks rcq~lircs us to nlakc several 
modifications to our definitions of consistent rrarlsactions, conflicts. and legal 
schedules. These c1langt.s arc: 

a) X colisistc~it transaction can only haye an increnlellt action on S if it 
holds an increment lock 011 S at the time. .An increment lock does not 
cnal)lc either rcad or ri-rite actiolis. ho~i-ever. 

1,) 111 a legal Pc]lcdule. ;lny llunll~cr of transarrions <,an holtl an ilicrc~nlent 
lock on -Y at any tinlc. Ho\vc\\-c~. if 2\11 incrcnlcnt lock on -1- is hcld b y  
jollle trallsaction. then no or11c.r tr;+nsaction call lioltl cithc'r a sharc~d 01. 

exclusive lock on 1 at the sarnc rinic. Tl~ese rcquirenic~lts arc esprcssed 
I,!- the compatibility lllatris of Fig. 18.22. n-here I represents a lock ill 
increment  node. 



c) The action inc,(X) conflicts with both r , ( S )  ant1 w,(X). for j # z .  but 
does not conflict with inc, (X). 

x Yo S o  S o  
I S o  S o  Yes 

Figure 18.22: Compatil~ility niatris for shared, exclusive. and increment locks 

Example 18.18: Consider two transactions, each of which read database elc- 
nient A and then incrcmerit B .  Perhaps they add .-l to  B, or the constant bx 
tvliich they increment B may depend in some otller way on '4. 

TI : s11(~4): r l  (A); ill (B) ;  incl (B); ul (.4): (B): 
2-2: s12(.4); r2 (A); i l ~ ( B ) ;  ine2(B): 112(.4): 1 1 ~  (B):  

Sotice that the transactions are consistent, since they only perfornl an incre- 
mcntation xvhile they have an incre~~icnt lock, and they only read n-hile they 
have a shared lock. Figure 18.23 sliows a possible ilitcrlewving of TI arltl T.l. TI 
reads .4 first, but theri 2-2 both reads .-l and incrciilcnts B.  Ho~vcver. T1 is the11 
allo~vcd to get its incrc1ment lock on B and procecd. 

.s12(.4); r? (-4): 
ile(B); incs(B): 

ill ( B ) ;  incl (B); 
11~(~-1);  u?(B): 

111 (-4): 111 (B): 

Figure 18.23: A s c l ~ e d ~ ~ l c  of transactions n.itli incrcmc~it iictiolls 21nd loclis 

Sotice tliat tlic srlicd~llr~r tiitl not have to delay any requests ill Fig. 18.23. 
Supposc3. for ir1st:tncc.. that TI incrcri~cl~its B hy .A. a r ~ d  T2 ~ I ~ ( . ~ C I I I ~ ' I I ~ S  B I I ~  2.-1. 
Tllcy cnii c.sccutr in citl~c,r ordcl-. since, thc v;1111(, of -4 doc,s not c,llangc. ;illti tlic 
i~icrcn~c>~ltat io~~s 111ay also I)c porfornic~d ill cxitllcr orr1c.r. 

Put  anothcr \v;iy; 11-e lnay look at the sequelicc, of ~ l t>~l - lo~l i  ac.tio~is ill tlie 
schedule of Fig. 18.23: they arc: 

S:  rI(--l); r2(-4): inr2(B):  inr1 (B): 

\I-e rnay move tlic last action. incl(B), t o  tllc second position. since it does 
not conflict I\-ith another increment of the same element, and surely does not 
conflict ~vitli a read of a different element. This sequence of slvaps shows that 
S is conflict-equivalent to the serial schedule r l (A);  incl(B);  re(.-l); irzce(8):. 
Similarl?: ~r-e can 111ol-e the first action, rl(.4) to  thc third positioll by SIX-aps: 
giving a serial scliedlile in ~vl-hich T2 precedes TI. 

18.4.6 Exercises for Section 18.4 

Exercise 18.4.1: For each of the schedulrs of transactions Ti. 111, and T3 
bclo~v. 

a )  rl (-4): r2(B): r3(C); u l  (B): w(C) ;  w3(D); 

c) r l  (-4): r2  (B): 1.3 ( c ) :  rl  (B) r? ( c ) :  Q(-4): XLII(.~); cz(B):  w3 ( c ) :  

do each of the follou-ing: 

i. Insert s]lared loclcs, and insert u~ilock actions. Place a 
shared lock immediately in front of each read action that is not fo!lon-ed 
I,;\- a n-l-ire actioll of the i;a111c elenlent by the same transaction. Place 
a11 exclusive lock ill fi-ant of every other rcnd or write actioll. Place the 
necessar?. u~llocks a t  the end of every transaction. 

i i .  Tell n-hat happens when each schedule is run by a scl~edtller that suppolts 
shared and esclusivc locks 

iii. Insert shared and csclusive locks in a way that allow upgrading. Place 
a sllareti lock ill front of every rend. an exclusive lock in front of every 
n-rite. alld place the Ilecessary unlocks at the elids of tlip trail~actions. 

ir. Tell ~vliat happens n-l~en earl1 schedule from (iii) is run by a scheduler 
tli;tt supports shared locks. c,rclusive locks, and upgrading. 

1.. Insert   ha red. esclusivc. ant1 update loc:ks. along 11-ith unlock actions. 
Place a illarcd lock il l  front of cvory rc,ad action that is not going to be 
llpgradcd. place ;ill npd:it<, 1uc.i i l l  front of c v c v  read action that h(' 
l ~ p g ~ ~ ~ [ e ( l ,  alld pl;rc(, ;ill csi.lusi\.c lotk in front of ever!- n-rite actio~l. p l ; i ~  
unlocks at  tlie entls of t ransact io~~s.  as usual. 

r i  Tell n-hat happens alien each sclledt~le from (v) is run by a scl~eduler that 
supports shared. c\;clusi~e. and uptiate locks. 
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! Exercise 18.4.2: Consider tlie tn-o transactions: 

Answer the follo~vi~lg: 

* a) How many iriterleavings cf these transactions are serializahle? 

11) If the order of incrcmc~ltation in T2 :,vcrc reversed [i.e.> inc.?(B) follon-ed 
by inc2(.4)], how illany scrializable interleavings ix-ould there be? 

Exercise 18.4.3 : 'or each of the follo~ving schedules, insert appropriate locks 
(read. ~vrite, or increment) before each action. and unlocks at  the ends of trans- 
actions. Then tell what happens wllen the schedule is run by a sclieduler that 
supports these three types of locks. 

a) rl(.-l): r'(B); incl (B): irlc?(C): rcl(C): tun(D); 

Exercise 18.4.4 : In Exercise 18.1.1. n-e discussed a hypotlictical transactioll 
involving an airline r e s e r ~ a t i o ~ ~ .  If the trallsactioli nlanager had a~ailal>le to  it 
shared. exclusive. update, and incrr~nent locks; what 1ot.k ~voiild you recolnmerld 
for each of the steps of the trans;~ctioi~'! 

Exercise 18.4.5: The actiol~ (if mi~ltiplication by a constant factor can bc 
motleled by an action of its on-ii. Supposc MC(X, c)  stands for an atoli~ic esecu- 
tion of tlic steps READ(X, t) ; t := crt ; URITE(X, t) ;. I lk  can also introduce 
a lock mode that allows only niultiplication 1)y a constant factor. 

a) S1101v t h ( ~  c.ornpatil>ility nlatris foi rcad. nrite. and multiplication-IIY-a- 
constant locks. 

! h) Slion- the cornpatibilit? matrix for I C R ~ .  nrite. inrrc~~l'ntatio~l. and mult- 
iplication-by-a-corlsta~lt locks. 

! Exercise 18.4.6: Suppose for sakc~ of arg~i~ncnt  that d ; ~ t a l ~ a s r  clcrilc~lts arc 
t1vc-din1cnsiotl;11 vc3c.tors. T1icl.c. arc folir ol)r>r;ltions n-c ca11 pcrforn~ on vcc.tors. 
R I I ~  vac11 will  ha^^ its own typc of 10c.k. 

i. Cliange the 1-alue along rho .r-asis (an S-lock). 

ii. Cliangc tlic value along the y-axis (a 1.-lock). 

i i i .  Change the angle of the Ycctor (an -4-locli). 

ir. C'l~nngc tlie rnagnitrrde of the rector (ail -11-lock). 

18.5. ;IS .4XCHITECTC-RE FOR A LOCI(I\*G SCHEDCIXR 

.Ansner the foIlo\ving questions. 

* a)  Khich pails of o1)~1atio1is commute? For esample. if we iotate the vectol 
so it's angle is 120° and then change the .z-coordinate t o  be 10, is that 
the salllc as first changing the e-coordinate to 10 and then changing the 
angle t o  120°P 

b) Based on your anslver to  (a).  what is the compatibility ~ n a t r i s  for the four 
types of locks? 

!! c) Suppose I\-e changed the four operations so that instead of giving n e ~ v  
\ d u e s  f o ~  a measule. the operations increrrlcnted the measure (e.g., "add 
10 to  the j-cooldinate," or '.rotate the vector 30' clock\vise'). \Yhat 

n-ould the compatibil~ry nlatiix then be? 

! Exercise 18.4.7 : I-Iere is a schedule with one action missing: 

rl (-4): r2 (B); ??'?; UJI (C); 1 ~ 2  (-4); 

\bur problem is to  figure out ~ v h a t  actions of certain types could replace the 
:'?? and lllal;e the schedule not 1,e serializabli.. Tell all possihle norlserializable 
replacc~ncnts for each of the follo\\-ing types of action: *a) Read b) \lrrite 

c) Cpdate d) Increment. 

18.5 A11 Architecture for a Locking Scheduler 

Having see11 a llul~lber of diffcl-cllt locking schemes, n-e nest iieetl to  consider 
11on- a sclledi~ler that uses one of these schc~ries operates. I l e  sliall consider here 
only a silnple scheduler arcliitecturc based on several principles: 

1. The tlansactions tl~emsclvcs do not request locks, or cannot be relied 
upoll do so. It is the job of the  schedule^ t o  insert lock actions into the 
stieam of rc,ttls. I\-iitcs. and other actio~ls that access data. 

.2. Transactiolls do lclcasc loclis. Ratlier. the scheduler releases the locks 
\vIlen the transaction Illanager tells it that the trausaction nil1 con~mir or 
abort. 

18.5.1 A Scheduler That Inserts Lock Actions 

Figure 1 E . z ~  sllon-s a tn-o-p;~rt sc,llctlulcr that accepts requests such 3s rcad. 
n-rite. colllnlit. alltl ;r),orr. fi.onl transactions. The sc:heduler m a i n t a i ~ ~ s  a locli 
table. 1~1licl~. altllollgll it is sho~vn as secondary-storage data, may be 11artiall>- 
or complete1~- in main nielnory. Sormally, the main me111oi-y used by the lock 
table is not part of the buffer pool that is used for query esecution and loggi~lg. 
Rather. the lock t;ll,le is just another coinpo~ient of the DBIIS. and \\-ill be 
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From transactiolls 

READ (A) ; WRITE (B) ; 

A 
CoMMI,T(T) ; . . . 

Scheduler, Part I 

a;-;(., ; READ (A)  ; . . 

Scheduler, Part I1 

Figure 18.24: A scheduler that inserts lock requests into the transactions' re- 
quest stream 

allocated space by the operating system like other code and intcinal data of the 
DB.\,IS. 

.ictions requested by a transaction are generally tra~tsmitted through the 
scheduler and executed on the database. Howel-er, under sonic circurnsta~lces 
a transaction is delaged, waiting for a lock, and its requests are 11ot (yet) trans- 
mitted to the database. Tile two parts of tlie scheduler perforrri the follo\ving 
actions: 

1. Part I takes the stream of requests generated by the transactio~ls and 
inserts appropriate lock actions ahead of ail database-access operations 
such as read, write, increment. or update. The database access action5 
are then transmitted to  Part 11. Part I of the schrdi~ler must select an 
appropriate lock mode fro111 ~vhatel-er set of lock modes the scheduler is 
using. 

2. Part I1 takes the sequence of lock and database-access actioils passed 
to it by Part 1: and executes each appropriately. If a lock or database- 
access request is received by Part 11: it determi~les ~vhetller the issuing 
transaction T is delayed because a lock has rlot been granted. If so. 
then tlie action is itself dclayed and added to a list of actiolls that  l n ~ ~ ~ t  
eventually be ljerforrned for trallsactiori T. If T is rtot dclzlyrd (i.e.. all 
locks it previously rctluestetl have been granted already). thcn 

(a) If the action is a database access. it is transmittrrl to the d:italjnsc 
ant1 executed. 

(b) If a lock action is received by Part 11. it examines the lock table to 
scc if the lock can be granted. 

i. I f  so, the lock tabic is modified to include the lock just gralltcci 

ii. If not. tllen an entry must be 111atle in the lock table to indicate 
that the lock has been requested. Part I1 of the scheduler rhen 
delays further actions for transaction T: until such time as the 
lock is granted. 

3. \\.hen a transaction T commits or aborts, Part I is notified by the trans- 
action manager, and releases all lorks held by T. If any transactio~ls are 
Jvaiting for any of these locks. Pa l t  I notifies Part 11. 

4. \\-hen Part  11 is notified that a lock on some database element S is avail- 
able. it dcterlnines the next t ransac t io~~ or transactions that can non- be 
given a lock on .Ti. The transaction(s) that receive a lock are allo~ved t o  
execute as many of tllei~ delayed actions ns can execute, until e i t h e ~  they 
co~ilplete or reach another lock request that cannot be granted. 

E x a m p l e  18.19 : If there is only one kind of lock, as in Section 18.3. then the 
task of Part I of the scheduler is simple. If it sees any action on database elenlent 
S. and it has not already inserted a lock request on S for that trailsaction, 
then it inserts the request. 11-hen a transactio~i colnrnits or aborts. Part I can 
forget about that transaction after releasi~ig its locks, so the memory required 
for Part I does not grow iiidefinitelg. 

\I-lien there are several kinds of locks, tlie scheduler may require advance 
notice of what future actions on the same database element vill occur. Let us 
reconsider tlle case of shared-exclusive-update locks; using the tralisactiorls of 
Esalnp1e 15.13; ~vhich we now write ~vithout any locks at all: 

The lnessages sent to Part I of the scheduler nlust include not only the read 
or n-rite request, but an indication of future actions on the same element. In 
particular. ~vlien r l ( B )  is sent, the scheduler needs to  know that there xi11 be  
a later w l ( B )  action (or might be such an action, if trallsactio~~ T1 invnlvc~s 
bra~iching iu its code). There are several ways the i~iforniatioll ~nigllt be made 
a\-ailallle. For example. if the tra~isaction is n query, we kno~v it ~vill not write 
an!-thing. If the transactio~i is an SQL database modification command. tlle~l 
tlle quer>- processor can deter~nille in advance tlie database elements that might 
be b o t l ~  read and tvi-itten. If tlie transaction is a program xvith embedded SQL. 
tliell the compiler has access to  all the SQL statr~nents  (xvhich are the only 
o~les  that can n-rite to the database) and can tieter~lli~le the potei~tial datalxisr 
~ l ( ~ m e n t s  written. 

In our csanlple. s~ippose that cl-cnts occur in the ortlcr suggested 11:- Fig. 
18.17. Tliell T I  first issues r1(.4). Since there  ill 11e no future upgradi~ig of 
this lock. the scheduler inscrts dl (-4) ahead of rl (-4). Zest .  the rerlucsts from 
T.. - r2(.4) and r2(B) - arrive at  the scheduler. -igain there is rio filture 
upgrade. so the sequence of actions sle(.4): r2(.4); sln(B); r2(B) are issued by 
Part I. 
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Then, the action r l (B)  arrives at  the scheduler, along with a warning that 
this lock may be upgraded. The scheduler Part I thus ernits ull (B): (B) to 
Part 11. The latter consults the lock table and finds that it can grant the update 
lock on B to Ti,  because there are only shared locks on B. 

IVhen the action wl(B) arrives at the scheduler. Part I emits xll(B); wl(B). 
However, Part I1 cennot grant the xll (B) request. because there is a shared lock 
on B for T2. This and any subsequent actions from TI are delayed. stored by 
Part I1 for future execution. Eventually, T2 commits, and Part I releases the 
locks on .4 and B that held. At  that time, it is found that TI is vaiting for 
a lock on B. Part I1 of the scheduler is notified, and it finds the lock xll(B) 
is now available. It enters this lock into the lock table and proceeds to esecutp 
stored actions from TI to  the extent possible. In this case. TI completes. 

Lock information for a 

Figure 18.25: -4 lock table is a rnapping from database elements to  their lock 
information 

18.5.2 The Lock Table 

;Ibstractly, the lock table is a relation that associates database clernents ~vitli 
locking illforlnatioll about that element, as suggested by Fig. 18.25. The table 
might, for instance, be iniple~nented with a hash table, using (addresses of) 
database elements as the hash key. Any ele~neiit that is not locked does not 
appear in the table, so the size is proportional to the number of locked elements 
only, not to the size of the entire database. 

In Fig. 18.26 is an example of the sort of infor~nation I\-e would find in a lock- 
table cn ty .  This esample structure assulnes that the shared-esclusi\-e-update 
lock scl~emc of Scctio~l 18.4.4 is used by the sched~~lcr. The cntry shown for a 
typical database element d is a tuplc with tlie follo~ving coniponcnts: 

1. The g v o ~ ~ p  rrlode is a sulnmary of thc ~liost stringent contlitiorls that a 
trtunsactiol~ requesting a 11c1i- lock on -4 faces. Rather than colnpari~lg 
tlie lock request with every lock held I)y another transactioll on thc sanle 
elenlent, we can simplify the grant/deny decision by comparing the request 
with only thc group mode.6 For the shared-exclusive-11~date (SSL: )  lock 
sclicnie. the rule is sinlplc: a group 111ode of 

6 ~ h e  lock manager must. howe\.er. deal with the possibility that the reqursti~lg transaction 
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Element Info Group mode: U 

Waiting: yes 

List: 

Tran Mode Wait? Tnext Next 

/ T, S no I 

/ 

Figure 18.26: Structure of locli-table entries 

(a) S nleans that only shared locks ale held. 

(b) U mealis that there is one update lock and perhaps one or mole 
sliared locks. 

(c) S means there is one exclusi\-e lock and no other locks. 

For other lock schemes, there is usually an appropriate systelll of sunl- 
marics a grollp nlode; n-c leare esaniplcs as exercises. 

2. The waiting bit tells that there is at least one transaction ~vaiting for a 
lock on -4. 

3. X list describing all those trallsactiolls that either currently hold lo~l is  011 

-4 or are waiting for a lock on .i. Ilseful information that each list entry 
has might inc!ude: 

(a )  The na1lle of tile rlansactiotl I~oldi~lg or waiting for a lock. 

(b)  The mode of this lock. 

(c) 11-liether the trailsactior1 is holding or \ \ d i n g  for the lock. 

11% also s h o ~  in Fig. 18.26 t~q-o links for each entry. One links the entries 
thpmselyes, aIld the other links all entries for a particular trall~actioll 
(Tnext in the figure). The latter link nuuld be used nllen a tranractioll 
commirs or al1orts. so that can casily find all the locks that  nus st bc 

released. 
Ctance. in the S.Sl. lock 

already has a lock in another nlode on the samr element. For in- 
system discussed. t he  lock manager may be able to grant an S-lock request if the requesting 
transaction is the one that  holds a C lock on the same element. For systems that do not 
sul,oort multiple locks held by one transaction on one element. rhe group mode al\vays tells . . 
what the  lock-manager needs to  kno\\. 
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Handling Lock Requests 

Suppose transaction T requests a lock on -4. If there is no lock-table entry for 
'4, then surely there are no locks on -4, so the entry is created and the request 
is granted. If the lock-table entry for A exists: \vc use it to  guide the decision 
about the lock request. We find the group mode, which in Fig. 18.26 is U ;  
or "update." Once there is an update lock on an element, no other lock call 
be granted (except in the case that T itself holds the U lock and other locks 
are compatible with T's request). Thus, this request by T is denied, and an 
entry mill be placed on the list saying T requests a lock (in whatever mode n-as 
requested), and Wait? = 'yes ' . 

If the group mode had been X (exclusi\,e); then the same thing ~vould hap- 
pen, but if the group mode were S (shared), then another shared or update 
lock could be grant,ed. In that case, the entry for T on the list ~vould have 
Wait? = 'no' ,  and the group modc wotild be changed to U if tlie new lock 
were an update lock; othcr~q-ise, the group mode ~vould remain S. \Vhether or 
not the lock is granted, the new list entry is linked properly, through its Tnext 
and Next fields. Notice that whether or not t,he lock is granted, the entry i11 the 
lock table tells the scheduler what it needs to know without having to exanline 
the list of locks. 

Handling Unlocks 

Sow suppose transaction T unlocks A. T's entry on the list for ..I is deleted. If 
the lock held by T is not the same as the group mode (e.g.. T held an S lock 
while the group mode was li). then there is no reason t o  change the group rnode 
On the other hand, if T's lock is in the group mode. n-e may have to esanli~ie t h ~  
entire list to  find the new g ~ o u p  mode. In the esa~nple of Fig. 18.26. ~ v e  knon. 
there can be only one U lock on an element, so if that lock is released, the nex  
group mode could be only S (if there arc shared locks remaining) or nothing 
(if no other locks are currently held).j If tlie group mode is S, we know there 
are no other locks. and if the group mode is S. \ve need to detelmine \vhctlicl 
there arc other shared locks. 

If the value of Waiting is 'yes' .  then n.c need to grant one or niore locks 
from the list of requested locks. Theic are several different approaches. each 
with its advantages: 

1. First-come-first-serrled: Grant the lock rcclucst that has bccn waiting tlic 
longest. This strategy guarantcc,s no  stnrt*otion,. the situation \vh(,rr a 
transaction can wait forel-er for a lock. 

2. Priorgty to shared locks: First grant all the shared locks xvaiting. Tlicn. 
grant one update lock, if thele ale any ~vaiting. Only grant an esclusive 
lock if no others are waiting. This strategy can allow starvation. if a 
transaction is waiting for a U or S lock. 

'\Ye would never actually see a group mode of -nothing." since if t l~ere  are no locks and 
no lock requests on an element: then there is 110 lock-table entry for that  element. 
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3. Priority to  apgmding: If there is a transaction with a U lock tvaiting to  
upgrade it to  an X lock. grant that first. Otherrvise, follo\v one of the 
other strategies mentioned. 

18.5.3 Exercises for Section 18.5 

Exercise 18.5.1 : What are suitable group modes for a lock table if the lock 
modes used are: 

a) Shared and exclusive locks. 

*! b) Shared, esclusive, and increment locks. 

!! c) The lock modes of Esercise 18.4.6 

Exercise 18.5.2 : For each of the schedules of Esercise 18.2.4, tell the steps 
that the locking scheduler described in this section I<-ould esecute. 

18.6 Managing Hierarchies of Database 
Elements 

Let us 110s return to the esploration of different locking schemes that we began 
in Section 18.4. In particular. \ye sllall focus on two proble~lls that come 11p 
~vhcn there is a tree structure t o  our data. 

1. The first kind of tree structure we encounter is a hierarchy of lockable 
elements. lye shall discuss in this section how to allow locks on both large 
elements, e.g., relatio~ls, and smaller elements contained 11-ithin these, such 
as blocks holding several tuples of the relation, or individual tuples. 

2. The second kind of hieralchy that is inlportant in concurre~lcy-control 
systenls is data  that is itself orgallized in a tree. .A major esnmple is 
B-tlee i ~ l d e s ~ s .  \Ve may vie\\- nodes of the B-tree as database elements. 
but if n e  do. then as ~ v e  shall see in Section 18 7. the locking schemes 
studied so far peifor~n poorly. and Ire need to use a new approach. 

18.6.1 Locks With Multiple Granularity 

Recall that the tern1 -database elcmcnt" nas  purposely left undefined, because 
different systems use differcut sizes of database elements to  lock. such as tuples. 
pages or blocks. and relations. Some applications profit from small database 
elements, such as tuples, ~vhile others are best off ~v i th  large elements. 

Example 18.20: Consider a database for a bank. If we treated relations as 
database elements. and therefore had only one lock for an entire relation such 
as the one giring account balances. then the system ~vould allolv very little 



concurrency. Since most transactions will change the account balance either 
positively or negatively, most transactions it-ould need an exclusive lock on the 
arcounts relation. Thus, only one deposit or withdrawal could take place at 
any tinip. no matter how many processors we had available to execute these 
transactions. .A better approach is to  lock individual pages or data blocks. 
Thus, two accounts whose tuples are on diEerent blocks can be updated at the 
same time, offering almost all the coriculrency that is possible in the system. 
The extreme xvould be t o  provide a lock for every tuple, so any set of accounrs 
whatsoever could be updated a t  once, but this fine a grain of locks is probabl) 
not worth the extra effort. 

In contrast, consider a database of documents. These documents may be 
edited from time to time. but most transactions rvill retrieve whole documents. 
The sensible choice of database element is a complete document. Since most 
transactions are read-only (i.e., they do not perform any 11-rite actions), lockilig 
is only necessary to  avoid the reading of a document that is in the middle of 
being edited Were we t o  use smaller-granulality locks, such as paragraphs. 
sentences, or words, there would be essentially no benefit but added expense . 
The only activity a smaller granularity lock ~vould support is tlie ability to  read 
parts of a document during tlie time that other parts of the same docu~nent are 
heing edited. 

Sonie applications could use both large- and small-grained locks. For in- 
stance, the bank database discussed in Exarnple 18.20 clearly needs block- or 
tuple-level locking, hut might also at  some time need a lock on the entire ac- 
counts relation in order to  audit accounts (e.g., check that the sum of the 
accounts is correct). However, taking a shared lock on the accounts relation. 
in order to compute some aggregation oil the relation, n-hile a t  tlie same time 
there are exclusive locks on individual account tnplcs can easily lead to unseri- 
alizable behavior: because the relation is actually changing while a supposedly 
frozen copy of it is being read by the aggregation query. 

18.6.2 Warning Locks 

The solutiori to the problem of ~nanagirlg locks a t  different granularities involves 
a new kind of lock called a "warning." These locks are useful when the database 
elements form a nested or hierarchical structure. as suggested in Fig. 18.27. 
There, we see three levels of database elements: 

I. Relations are the largest lockable elenle~its. 

2. Each relation is composed of one or niore block or pages. un which its 
tuples are stored. 

3. Each block contains one or more tuples. 

The rules for managing locks on a Iiierarcliy of datahase elc~rlents constitute 
the warning protocol. which involves both "ordinary.' locks aild .'naming.' locks. 

Figure 18.27: Database clernents organized in a hierarchy 

\Ye shall describe the lock sclie~ile where tlle ordinary locks are S and S (shared 
and exclusive). The I\-ariiing locks ~vill be denoted by prefising I (for '.intention 
to") to  thc ordinary locks; for cxa~nple IS represents the intention t o  ohtail1 a 
shared lock 0x1  a subelement. The rules of the warning protocol are: 

1. To place an ordinary S or lock 011 any element. we must begin at  the 

root of tlic hit~ra~chy. 

2. If xve are a t  the element that Ive want to lock, we need look no further. 
\Ye request an S or -Y lock on that element. 

3. If the elenlent xve xvisli to  lock is further don-11 the hierarchy, then \ve 
place a ~1-arning at  this node: that is. if xve ~ v a n t  to get a shared lock on a 
sul>elelneIlt request an I S  lock at this node. and if we 71-ant an exclusive 
lock 011 a subclemcIlt~ ~ . i c  requett an IS lock on this node. \L-!lcll the lock 
on tlie current node is granted, 11-e procwd to the appropriate child (the 
0 1 1 ~  n-]lose subtree contains the notie n.c wish to  lock). Lye then repeat 
step (2) or step (3) ,  21s appropriate. ui~til  I\-e reach the desired node. 

Figure 18.27: Colllp;~i\~i]ity lllrriiz for slliir<:d. exchirive. and intention locks 

Ill to dccidr Tv]lctlicr or not onc of these locks can he granted. Ust' 

tile coll~l~atibi]ity lllatrix of Fig. 18.28. To see xh\- this matris makes Sense. 
collsider first the I S  column. \\-hen Ive request an IS lock on a node .Y. we 
inteIld to read a descendant of .\-. The only time this intent could create a 
prohlerll is if some other transaction has already claimed the riglit to  write a 
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nen. copy of the entire database element represe~itcd by M; thus TI-e see ..So' 
in the row for S .  Sotice that if some other transaction plans to write o n l ~  d 
subelement, indicated by an I-\= lock a t  1Y. then ne can afford to grant tile IS 
lock a t  S, and allow the conflict to  be resolved at a lo~ver level. if indeed the 
intent to write and the intent to read happen to invol~e a common elenlent. 

Sow consider the column for I S .  If n e  intend to write a subelement of 
node S, then we must prevent either rclading or writing of the entire elrrnent 
represented by N. Thus. we sec "Xo" in the entries for lock modes S and S. 
Ho\~evei, per our discussion of the I S  column, another trarisactio~i that reads 
or writes a subelement can have potential confl~cts dealt w t h  at  that lelel so 
I S  does not conflict with another I,Y at  -V or with an I S  at N. 

Next, corisider the columrl for S. Reading the element corlespondillg to 
node N cannot conflict with either another rcad lock on ,V or a read lock on 
sonie subelement of N ,  rcp~ese~lted by IS at -\'. Thus, we see '.Yes'' in the ron-s 
for both S  and IS .  Holvever, either an S or an IS nlcans that some other 
t~ansaction nil1 write a t  least a part of the elemcnt represented by AT. Thus. . 
we cannot grant the rlght to lead all of X. which explains the .'So" entries in 
the column for S .  

Finally. the column for A' has only ..So" entries. U e  cannot allo~v \-1-1iting 
of all of node AT if any other transaction alleady has the right to read or ni i te  
S, or to acquire that right on a subelement. 

Example  18.21 : Consider the relation 

H o v i e ( t i t l e ,  year ,  l e n g t h ,  studioNme) 

Let us postulate a lock on the entire relation and locks on individual tuples 
Tlien transaction TI, which consists of the query 

SELECT * 
FROM Movie 
WHERE t i t l e  = 'King Kong'; 

starts by getting an IS lock on the entire relation. It then moves to the indi- 
vidual tuples (there are txvo movies I$-ith the title King Kong), and gets S locks 
011 each of them. 

Son., suppose that ~vhile we are executi~lg the first qllery, trarlsactioll T2. 
which changes thc year component of a tuplc. begins: 

UPDATE Movie 
SET year = 1939 
WHERE t i t l e  = 'Gone With t h e  Wind'; 

TL needs an I X  lock on the relation, since it plans to write a new value for one 
of the tuples. TI'S IS lock on the relation is compatible, so the lock is granted. 
1Vlien T2 goes to  the tuple for Gone With the Wind: it finds no lock there. and 
so gets its S lock and rewrites the tuple. Had T2 tried to write a new value in 

I Group Modes for Intention Locks I 
TIle compati~lility lnatrix of Fig. 13.28 exhibits a sitliation \v(: have not seen 
lIefore regardillg the po\\-cr of lock nlodes. In prior lock sch(:rries, whenever 
it Xvas for a database e l u ~ n ~ n t  to  br' locked in both niotles ill and 
,\: at the sallie tinle: one of these modes dominates the othcsr, in the sense 
that its ro,v and colullln each has ..So" in whatever positions the other 

ro\\- or respectively~ has "SO." For rsarr~plo. in Fig. 15.19 

~\-\-e  see that C dolnillates S: and S ds~uinatcs both .s anti u. .An advantage 
of kllon-ing tllat tilere is a1XYa.s one dominant lock cjn an clcrncnt is that \ve 
can sullllllariLe tile effect of Inany locks with a "group modc," as discussed 

in Sectiorl l5.j.2. 
As TI-e see froln Fig. 15.25, neither of nlodes S and I S  tlon~inate the 

other. lIorcover, it is possible for an elelllent t o  he lockcd in botll modes 
S alld IS at the same timc, the locks are rc:quested by the 
sanle trallsaction (recall that the '.So" entries ill a conlpatihility rnatrix 
only apply to locks llcld by some other transaction). r\ t.r-i~r~saction might 

botll locks if it xvalltcd to rcad an entire p!r.r~~cnt i ~ r i r l  then write a 
slnall su~)sel of its su\~cIernent~s. If a transaction has both .S and IX locks 
011 an eleInellt, thell it restricts other transactions To the (:r:rcnt that cither 
lock does. That is, ive can imagine another lock lnotle SI*\=. whose row 
and colulml llale .'So'' evcry\v!iere except ill the c:ntr?, for 1.5. The lock 
lllodc S I X  serves as the group niocle if therc is a transilr.rion with locks 
ill S and IS ~llodes, but not 'y ~ilodc. 

Incidtlltally, n.c 131ight iinaginc that the sail?@ 5itni1ti~ln occ111.s ill the 
nlatris of Fig 18.22 for i~~crenient locks. That is. OIIC transaction could 
llold locks ill lIotll S I Inodcs. Hou-cwr. this sirllatioii i5 cc411i\-alcnt to 
holdiIlg a lock in 1 so we collld Use S a .  ill(' gI'b::p nlOrk! i l l  that 
situation. 

the for olle of tile Icing Kong nmvics. it \\.Ou:(i iial.(! !.hi1 to lvait ~llltil TI 
released its S lock. since S and 1 are not compa:i:;ie. T!IC r:ollection of locks 
is suggested by Fig. 15.29. 

18.6.3 Phantoms and Handling Insertions Correctly 

\\.llcll tfan5acrions cycatc n(x\y s,ll ,c~lv~nc~~ts of a lo(k'.,l? c;!c-r..c r!i. therc are some . . 

opI,o~uliitip'; to  go ~ ~ - r o n g .  The p l - (~ l~ l (3~n  is th;it n-( r +.I1 OIL.;. :,rk csisting itenis: 
tllere is 110 easy xv:.;1y to lock datal~asc ~ l c i l ~ c l l t ~  thai 61) 110: 1-:::i.-i hut might later 

inserted, The follo~ving esamplc illllstrat~s the ?c~illt. 

Example 18.22: Snpposc \\-c have thr  same k-:ie ic-:%iion as in Esanl- 
18.21. aIld the first traIlsaction to esecute is T2. ivhict ihe query 
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18.6.4 Exercises for Section 18.6 

Exercise 18.6.1 : Consider, for variety, an object-oriented database. The ob- 
jects of class c are stored on t ~ v o  blocks; Bl and BI. Block Bi  cootains objects 

King Kor~g Kir~g Korlg Gorle IVith rRe C'Jitld O1 and O?. while block B2 contains objects 0 3 ,  0 4 ,  and 0 5 .  Class extents, 

TI -S TI-S T,-X \,locks, and form a hiwarchy of lockable database cle~nents. Tell tile se- 
queiice of lock requests and the response of a warning-protocol-b*ed scheduler 
to the folloT\-ing seqllellces of rc.quests. l i iu  ma! aSSU1Ile all requests occur just 

Figllre 18.29: Locks granted to tn-o transactions accessing Movie tul,les before they are ileedetf, alld all unlocks occur a t  the end of the trallsactioll. 

SELECT SUM(1ength) 
FROM Movie 
WHERE studioName = 'Disney'; 

T3 needs to  read the tuples of all the Disncy movies, so it might start by getting 
an IS lock on tlie relation and S locks on each of the tuples for Disney movies.* 

Xon-, a transaction T4 coriles along ancl inserts a new Disney movie. It ' 

seems that TI needs no locks, but it has made the result of T3 incorrect. That 
fact by itself is not a concurrency problem, since the serial order !T3.T4) is 
cqui\.alent to  what actually happened. However, there could also be sonie other 
element S that both T3 and T4 write, IT-ith T4 xvrit,iiig first, so there covld be 
an unscrializable behavior of more complex transactions. 

To be niore precise, suppose tliat D l  and D2 are pre-existing Disney movies. 
and D3 is the new Disriey movie inserted by T4. Let L he tlie sum of the lengtlls 
of the Disney mories computed hj. T3. and ;rssur~le thc co~~sistency co~lbtraint 
on tlie database is that L should be equal to the sum of all the lengths of the 
Disncy inovies that existed the last t i~rle L was computed. The11 the follon-ing 
is a sequence of events that is legal under the warning protocol: 

~ ( 0 1 ) :  ~ ( 0 2 ) ;  IL:J(D~);  1 ~ . 1 ( S ) :  1~:3(L): x 3 ( S ) ;  

Here, n-e have used ,t~34(Dg) to represent the creation of D3 by transaction T4. 
The schedule abo* is not serializable. In partic~ilar. th(: value of L is not the 
sum of the lengths of D l ,  D2: and D:{, n-llich are tlie cul.rcilt Disnq  ~novies. 
1Ioreover: the fact that S lias the value written by T3 alld not T4 rules out the 
possibility that T: \\-as ahead of T4 in a supposed ccluivalcnt serial order. 

The problem in Example 18.22 is that the new Dis11c.y movit has a phnntorrt 
t l l ~ l ~ ,  one that sllo111d have 11ecn locked 1 ~ 1 t  ~vasn't. because it didn't csist 
at thc tinic the locks were taken. Therc is. however. a simple n-a! to avoid 
the occ~urrcn(,e of 1)hantoms. '\Ii. must :.c,g;irrl ttic ir~scl.tiorl or tlelction of a 
tuple as i< nritc operation 011 the rolatiu~l as a n-holc. Tlll~s. trai~saction T4 
in Esaniplc 18.22 nlust obtain an S lock on tho rc1:ttion Movie. Si~ice T:3 lias 
already locket! this relation in mode 1.5; and that [node is liot conipatible n-it11 
mode S. TJ ~ - o u l d  have to wait until after T3 completes. 

%owever. if there \rere many Dislley ~novies. it might he Inore elficirrlt j r~s t  to get an S 
lock on the entire relation. 

Exercise 18.6.2 : Cllallge the sequence of actions in Example 18 22 so that the 
li.,(DJ) actin11 becoalvs a ivlitc by T I  of the entire relation Movie. Tlien. S ~ O X ~  

action of a \yalni~lg-protocol-based schetluler 011 this sequence of requests. 

!! Exercise 18.6.3: Sllolv hoxv to add iricreiricnt locks to  a ~varxling-protocol- 
based scheduler. 

18.7 The Tree Protocol 

111 this sectioll n.e collsider anotller prob~em involving trees of e ~ e l l l ( ~ ~ l t ~ .  Set- 
tioll 18.6 <tpalt n-it]l tl.ces that arc fornied by the ~ lcs t i~ lg  structure of the 
database elements. rvith the children being suhparts of the parerlt. Sow, vie 
deal ~ ~ i t l i  tree structures that are formed by the link patter11 of the elernents 
themselves. Database clerne~lts are disjoint pieces of data, but the oilly ~vay to 
get to R llOde is tllroilgli its parent; B-trees arc an iillportant eralrple of tliis 
sort of data. I<llon-ing that 1;lust traverse a particular pat11 t o  all clement 

gives a s  s o ~ s c  illiportsat freedom to inanage locks differently froin tile two-phase 
lorkiiig approaches n e  have seen so far. 

18.7.1 Motivation for Tree-Based Locki~lg 
Let us consider a B-trcle i I l ~ ( ~ s .  in a s\-stc~n that trcats indi\-idllal nodes (i.e.. 
Illoclisj as lockal,lc t[attlh;\sc> c~lc~n~c~~lts.  The notfc, is the right l c ~ e l  of l0rk grallu- 
l;irity, l)cca,lsc trpatillg slllal]<,r l>ic(:c>s i ts  L ~ ~ C I ~ L C ~ I I ~ S  offers 110 \>~llC>fit. 311~1 tr(':lti~lg 
the elltire B-trce as olle tlatal,asc c>l(,lnc'~lt prcvents thr? sost of co1lCUrrcllt use 
of the illciex that can be ac]lievetl via tlie mcchanis~ns that forril the subject of 
Section 1P.T. 

If n-e use a standard set of lock modes. like sliared. exclusive. and update 
locks. and n-c use t~o-pliasc, locking. t l~ r i i  concurl-cnt wse of the B-tree is allnost 
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impossible. The reason is that every transaction using the index must begin by 
locking the root notic of the B-tree. If the transaction is 2PL; the11 it cannot 
unlock the root until it has acquired all the locks it needs, both on B-tree nodes 
and other database elernents.".\loreover, since in principle any transaction that 
iilserts or deletes colild wind up rewriting the root of the B-tree, the transaction 
1:eeds at  least an update icxk on the root node, or an exclusive lock if update 
rnode is not available. Thus, only one transactiorl that is not read-only can 
access the B-tree a t  any time. 

However, in most situations, we can deduce almost iinn~ediately that a B- 
tree node will iiot be rciwritteri. even if the transaction inserts or deletes a tuple. 
For example, if the transaction inserts a tuple, but the child of the root that 
we visit is not cotnpletely full, then we know the insertion cannot propagate up 
to the root. Similarly, if the transaction deletes a single tuple, and the child 
of the root we visit has more than the ~niriimum number of keys and pointers, 
then we can be sure the root will not change. 

" 
Thus, as soon as  a transaction moves to a child of the root and ol~scrx-cs 

the (quite usual) situatiorl that rules out a rewrite of the root, we n-ould like to 
release the lock on the root. The sarne observation applies to the lock on any 
interior node of the B-tree, although most of the opportunity for concurrent B- 
tree access comes from releasing locks on the root early. Unfortunatel~; releasing 
the lock on the root early will violate 2PL, so we cannot be sure that the schedule 
of several transactions accessing the B-tree will be serializable. The solution 
is a specialized protocol for transactiotls that access tree-structured data like 
B-trees. The protocol violates 2PL, but uses the fact that acccsscs to  eleinel~ts 
rriust procced dou-11 the tree to  assure serializability. 

18.7.2 Rules for Access to Tree-Structured Data 

The follo~ving restrictiolls on locks fo rn~  the tree protocol. We assullle that 
there is only one kind of lock, represented by lock requests of the form /,(XI. 
but the idea generalizes to  any set of lock modes. We assume that transactions 
are consister~t. and .schrdulcs niust be legal (i.?., the scheduler will ellforce tlie 
espected restrictior~s by granting locks only when they do not collflict n-it11 
locks already a t  a node), but there is no trvo-phase locking requirement 011 

transactions. 

1. A tran\artion's first lock ma>- he at any node of the tree.1° 

2. Slibscc~~lent 1oc.k~ inay only be acquirrd if the transaction currently Ilas a 
lock 011 the parcnt iiode. 

3. Sodcs may be u~ilocked at  ally time. 

Y.4dditionall!., there are good reasons why a transaction !\.ill hold all its locks ulltil it is 
ready to co~nmit: see Section 19.1. 

'Oln the B-tl-re esalnple of Section 18.7.1, the first lock ~vould always be at the root. 

18.7. TIfE TREE PROTOCOL 

4. A tra~lsaction may not relock a node on which it  has released a lock, el 
if i t  ctill holds a lock on the node's parent. 

'en 

Figure 18.30: -4 tree of lockable elements 

Example 18.23: Figure 18.30 s l l o ~ s  a hierardly of nodes, and Fig. 18.31 
inrlicatcs the action of three transactiol~s on this data. TI  starts a t  the root -+I: 
a1~(1 proceeds doivn\vard to B,  C ,  and D T2 starts a t  B and tries to nlore to  
E. llut its ll,ove is initially denied because of the loclc by T: WI E. ':l'ransactioll 
T3 ,Tarts a t  E and inoyes to F and G. Sotice that 11 is not a 2PL transaction, 
because tlie lock on .A is relinquished before the lock on D is ;icquired Similarly, 
T: is not a 2PL transaction: althougll T2 happens to  be 2PL. 0 

18.7.3 Why the Tree Protocol Works 

~1~~ tree ploiocol forces a serial order on the traiisactions involved in a schedule. 
11% call define an ortler of picccdence as follons. Say that T, <s T, if in schedule 
S. tlic trallsactiolls T,  and T, lock a node in cotnmon. and T, locks the node 
first. 

Example 18.24: 111 tire schedule S of Fig 18.31. x e  find TI and Ti lock B ia 
coli~rnuil. and TI locks it first. Thus. TI <s T2. K e  also find that T? and T? 
lock E in common, and T3 locks it first; thus T3 <s T2. Ho~~-ever- there is no 
pnmdeirce bet\vee. TI arid T3; Irecause they lock no nude in colnmon. Thus. 
rile ilrrCrdPnCC graph derived from these prccedcoce relations is as shoxvn in 

" 

1f lllc. pWwdcnrr ~ r a p l l  (lrlwl froin the i)rccdcllce r~lat ions that \IT ilcfined 
;ll,r,\-i. cyC1pS. tllcll ,TF claiill tll;it ;lily topological orc!cr of the trallsactiolls 
ia all r(iiliialrnt sc,rinl scll~dillr. For i ~ s ; i l ~ ~ p l ~ .  either (TI. 4. T.1 or (T3 7 1  T.1 
is all rqui,-alnit serial irll(~dule fur Fig. 18.31. The reasotl is thilt in ~ l l ~ h  a S C I ~ ; ~ I  
rclledulr, all llodes al-e t o u ~ l e d  in the saoie order as t h y  are in the original 
schcd~~l r .  

To illlderstand the precc(lcnce graph described above must al~va!-s he 

acyclic. let us first obser\-e the folloxving: 
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TI TJ T3 parent. 
11 (-4); r1(.4); 
11 (B); 1.1 (B);  
11 (C); 7.1 (C);  
Wl(A); u1(.A); 

r1(D); P 

wl(B);  u1(B); z (I locks first 

Lz(L3); rz(B); 
1:j ( E ) ;  r3 (E): 

WI ( D ) ;  211 (D); 
wl (C);  ul (C); 

y U locks first 
h ( E )  Denied 

13(F); r~ (F); Figure 18.33: -4 path of ele~nents locked by t ~ v o  transactiolls 
~3 (F) ;  w ( F ) ;  
/3(G); v ( G )  Consider tile first elelllellt along this path, Say 2, th:lt C locks first, as  
20 (E);  1l3(E); by Fig. 15.33. Then T locks the parent P of Z before G docs. But 

12(E); TZ(E);  tllcll T is still holding the lock on P \\-llcn it locks Z ?  so U has ]lot locked 
w ~ ( G ) ;  I L ~ ( G )  p ,\-lien it locks 2. 1t callnot he that Z is the first elernel~t U locks i11 common 

~ l z ( B ) ;  11%(B); 
\virh T ,  since ttle3- lock ancestor S (~vhich could also be P. but ]lot 2). 

u:z(E); u2 (E); 
~ 1 ~ ~ ~ .  L- cannot lock z ulltil after it has acquired a lock on P.  \vhich is after T 
locks Z .  \ye collclude that T preccdcs b' at every node they lock in coInlll(~n. 

Figure 18.31: Three transactions foIlo\5-iIlg tile tree protocol so,v, collsider an arl1itrary set of transactions Ti. T2;. . . . T,, that obey the 
protocol alld lock some of the nodes of a tree according to sc.hcsd~lle S .  

~ i ~ ~ ~ ,  ;hose tllat lock the root. tiley do 50  in sonic order. slid the rule 
If t"O transactions lock several elrmenrs in common, tllell tiley are all just observed: 
locked in the sanle order. . ~f T,  loclis tllc roo; llefore T,. then Ti locks every node in colrimo~i \vitll 

Corlsider some transactions T and C;. ~vhic]] lock t l r . ~  or Inore itelns ill coiili,lon. TJ hcfore TJ does. That is, T, <s T,. but not Tj <S TI .  

'lotice that each transaction locks a set of elclllrnts tllat forll1 a tree, alld \ye call shon- by illductioll on the nul11bt.r of nodes of the tree that there is some 
intersectioll of tiyo trees is itself a tree. Tlllls: tllere is solllc higllc.st serial order eclui\-alent to S for the complete Set of tra~lsactio~ls. '.'lerne1lt that both T and G lock. Suppose that T locks -1- first, but tllat 

is solilc other elemelit I *  that i; locks before T ,  ~h~~~ tllcrc is a pntll in BASIS: ~f there is one node. the root. tllcr~ as we just o l ~ > ~ r ~ t . d .  the order 

of eler'lcllts from X to I*: and both T alld u mllst lock eacll in \vhicIl the transactions lock tllc root ser\-es. 
'long the I ' ~ ~ ~ ~ .  bccallse neitlier can lock a llode \vitllout hayillg a lock on i ts  INDUCTION: 1f thcrc is lliore t1la.n one notie in the tree. consider for each 

of the root the. of tr;tll~actions that lock one or inorc llodcs ill tllat' 

sul,trtc. sot? tllat  trallsactiol~s locliing t i ~ c  root nlay Ijclo~lg to  more than 011c 
cul,tref. bllt ;1 trallsncti(jn that docs nu t  lock the root l ~ i l l  I)c!oll:: to only (Jne of 

E1ll,trecs, F~~ illlcc. alilollg the transactio~ls of Fig. 18.31. 0111~ TI locks 
rile root. alld it ~ , ~ l ~ ~ ~ ~  to I,orll >ul,trc,cs - tlie tree rootctl a t  B alld th? ti.('c 
rootetl at C. Hon-c.ver, T~ T~ 11clo1lg o~iIy to tile tree rootc(1 a t  B. 

B~ the illductive [lypotllcsis. tllcre is a serial order for all the tEmsactio1ls 
t l la t  lock ill any one subtret.. \ye ]lave o l i l ~  to blend the serial orders 
for the subrrces. SiIlcc the only transactions these lists of transactions 

Figllre 18.32: Precedence graph derived from tile sc~lc,~,ile of ~ i ~ .  
haye ill colllllloll arc the transactio1ls that lock the root. alld \<-C cstal~lisllcd 
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that these transactions lock every node in comrrloll in the sarrle order that tlley 
lock the root, i t  is not possible that tn-o transactions lockiilg the root appear in 
different orders in t ~ v o  of the sublists. Specifically. if Ti and Tj appear on the 
list for some child C of the root, then they lock C i11 the same order as they lock 
the root and therefore appear on the list in that order. Thus, we can build a 
serial order for the full set of trarisactiorls 1,. starting with the transactiorls that 
lock the root, in their appropriate order, and interspersi~lg those transactions 
that do not lock tlle root in any ortler consistent with the serial order of their 
subtrees. 

Example 18.25 : Suppose there are 10 trarisactions TI ; T.2, . . . , Tlo: and of 
these, TI: TJ: and T3 lock the root it1 that order. Supl~ose also that there 
are two childreti of the root, the first locked by Ti througli T7 and the secorld 
locked by Tl, T3, T8! Tg, and Tlo. Hypot,hetically, let the serial order for the 
first subtree be (&,TI,  T5, 2'2, Te, T.3: T7); note that this orcler  nus st iriclude TI: 
T?, and T3 in that order. Also: let the serial order for the second subtree be 
(T8,T'1! Tg, TIDl T3). AS 111ust be the case, tlte transactions T2 and T3, rvhich 
locked the root, appear in this sequence in the order in ~vliich thev locked the 
root. 

Figure 18.34: Conibining serial orders for tlie subtrt.es into a scrial order for all 
tralisactio~ls 

The col~strairlts imposed on the srrial ortler of these transactions are as 
sho~vn in Fig. 15.34. Solid lines represent constraints due to the order at the 
first child of tlie root. ~l-hile dashed lines represent the order at the second cllild. 
(T4; Ts, T I ,  T5, T2. T9. T,. TI". T3: Ti j is one of the Inany to1)ological sorts of this 
graph. 

18.7.4 Exercises for Section 18.7 

Exercise 18.7.1 : Suppose n-e pcrfornl thc following acticlrls 011 tllc B-tree of 
Fig. 13.23. If n.e use the tree protocol. n.llc'n (.it11 n-e rclc,;~sc n n-ritc-1oc.l; on each 
of tlle llodcs searcllotl'.' 

11) Insert 20. 

c) Delete 5. 

! Exercise 18.7.2: Consider the following transactiolis that operate on the tree 
of Fig. 18.30. 

If schr~i~iles follow the tree protocol, in hov.~ nmally ways can n-e interleave: 
'a) Tl and T, b) Ti and T3 !! c) all three'? 

! Exercise 18.7.3 : Suppose there are eight trallsactions TI? Tl, . . . , T8: of nhich 
the odd-numbered transactions, TI, T3, T5, and T7, lock the root of a tree, in 
that order. There are three children of the root, the first locked by Ti, T2, T3, 
and T4 in that  order. The second child is locked by T j ,  T6, and T5, in that 
order, and the third child is locked by T8 and T7, ill that order. How mally 
serial orders of the trallsactions are consistent nit11 these statements? 

!! Exercise 18.7.4 : Suppose \v(: use the tlec p~otocol with shared and exclusive 
locks for wading and nliting, respectively. Rule ( 2 ) ,  which iequires a lock on 
the parent to get a lock on a node. must be changed to prevent unserializablc. 
behaliol. ]That is the proper rule (2) fol shared and esclusive locks? Hznt: 
Does the lock on the parent ha\-e to be of the sarne t?pc as the lock on the 
child? 

18.8 Concurrency Control by Timestamps 

Sesr .  n-e shall consider t ~ r o  nletliods othrr than lockillg that are used in some 
systenis to assure selinlizability of transactions: 

1. Timestn7nping. ni' assign a "timestamp" to each transactio11, record the 
tilnestarnps of tlie transactiolis that last read and xri te  each database ele- 
~ l le l~ t .  and compare these 1-~11uc?s to  assure that the serial schedule accord- 
ing to  the tra~lsactions. timcstalnps is equivalent t o  the actual schedule 
of the transactions. This approach is the subject of the present section. 

2. Ihlidntion. \Ye csainine timcsta~nps of the transaction and the database 
e l c m c ~ ~ t ~  n-hcIl ;I transaction is ahout to  commit: this process is called 
..validation'. of tllc trali~action. The serial srhcdule that orders transac- 
tioils to their \-a1irl;trion tilnc1 11lust be equivalrlit to  the actllal 
schedule. Tile valiciatioll approach is discussed in Section 15.9. 

Both these approaches are optimistic. in the sense that they assume that no 
u~lserializahle behavior will occlir and olily fis things up ~vhen a violation is 
apparent. In contrast. all locking inethods assume that things ~vill go Tvrong 



unless transactions are prevented in advance from engaging in nonserializable 
hehavior The optimistic approaches differ from locking in that the only rem- 
edy when something does go wrong is to abort and restart a transaction that 
trirs to  engage in unserializable beha\-ior. In contlast, locking schedulers delay 
transactions, but do not abort them." C;enerally, optimistic sclledulers are 
Letter than locking when marly of the transactions are read-only. si~ice those 
transactions can never by thenlselves cause unserializable behavior. 

18.8.1 Timestamps 

In order to  use tiniestamping as a concurrency-control method, the scheduler 
needs to assign to each transaction T a unique number, its t imestamp TS(T). 
Ti~riestamps must be issued in ascending order, a t  the time that a transactioll 
first notifies the scheduler that it is beginning. Two approaches to  generating 
timestamps are: 

a) One possible way t o  create timestamps is to  use the system clock. provided 
the scheduler does not operate so fast that it could assign timestanips tu 
two transactions on one tick of the clock. 

b) Another approach is for the scheduler to ~naintain a counter Each time 
a transaction starts, the counter is inclementcd by 1. and the new value 
becomes the timestamp of the transaction. In this app~oach.  timestamps 
hwe nothing to do with "time," but they have the iniportant property 
that xve need for any timestamp-generating system: a tra~lsactio~l that 
starts later has a higher timestamp than a transaction that s t a ~ t s  ea~lier.  

\\-hatever method of generating ti~nestarnps is used. the scheduler must nlai11- 
tail1 a table of currently active transactions and their timestamps. 

To use ti~nestanips as a concurrency-control method. n.e need to associate 
I\-ith each database element S t~x-o timestalrlps and an additional bit: 

1. R T ( ~ ) .  the read tzrne of S, xvfiich is the highest tin~cslaillp of a trans;iction 
that has read X. 

2. \\'T(.Y), the wrzte time of S. nhic l~  is the highest timestamp of a trans- 
action that has ~vrittcn S. 

3. c(S).  the commit bit for S. which is truc if and only if the most r ~ c c n t  
transaction to write S has already co11111iitted. The purpose of this hit 
is to avoid a situation nliere one transaction T reads data xvrittcli 1,:. 
aliotlier trailsaction li: arid C' then aborts. This problem, xvhere T lnakrs 
a "dirty read" of uncommitted data. certainly can cause the datahilse 

"That is not t o  say that a system using a lockilrg scheduler will ne1.t.r abort a transaction: 
for instance, Section 19.3 discusses aborting transactions to fix deadlocks. Ifo\r.ei.er. a locking 
scl~eduler never uses a transaction abort simply as a response to a lock request that it cannot 
grant. 

s ta te  to heconie inconsistent. and ally scheduler lieeds a nleclialiisrn to 
prevent dirty reads.12 

18.8.2 Physically Unrealizable Behaviors 

In order to  uIlderstand the architecture and rules of a tiir\cstanlp-based sched- 
uler. llecd t o  relTlenlber that tile scheduler assulnrs tliat the timestamp order 
of transactions is also the serial order in which they rnust appear t o  esecute. 
Thus; tlie job of the scheduler: in additiorl to assignitlg timestanlps and updat- 
illg RT, l1.T. arid C for the database ele~neilts, is t o  clicck that  ivhenever a read 
or \vrite occurs, what. happens in real time could ha le  happened if each trans- 
action had executed irista~itaneously at  the iiioi~ie~lt of its ti~llestalnp. If  lot, 
xve say the behavior is physicullgl unreaiirable. There are tx-o kinds of problenls 
that can occur: 

1. Read too late: Transaction T tries to  read datatjasc elemerlt S, but  the 
\\.rite time of inciicatcs that, the current value of S xvas lvritten after T 
theoretically executed: that is. TS(T) < \vT(S). Fig~lre 18.35 illustrates 
the problem. The llorizolltal asis represel~ts the real ti111e a t  1\-11ich events 
occur. Dotted lines link the actual events to the tinles a t  which they 
theoretically occur - the tiniestamp of the rransaction that  performs the 
event. Thus, n-e set a transaction b' that started after transactio~l T, but 
ivrote a l-all~c for 1 before T reads S. T should not be able to  read 
tile vall1e Tvritte~l ))y Li: because theoretically. C; e ~ ~ c ~ t ( ! d  after T did. 
Hoxvevcr: ?. h3.i no <rhoice, 11ec:alisc. I-'s value of S is the one that  T now 
sees. TIle sohltion is to abort T ~vhen the problem is encountered. 

U writes X 
I T reads X 

T start U start 

Figure 15.3;: Transaction T trirs to  read too late 

2. lTrrite too lote: Trallsactiori T trios t o  writ? datab:~se e le lnc~~t  S: but the 
read tinle of 3 illtliciltcs thitt son~c, othcr tran-ac.tio11 should have read the 

\vrittcll lJY T l,llt rc.atl sornc. otllcr vahic instead. That is. \vT(S) < 
TS(T) < R T ( ~ ) .  Tile prol,lpnl is shon-n in Fig. 18.36. There 1x-e see a 
trallsactioll C,- that after T. but read .'i bcfore T got a chance to  
~vri te  S. \\-hell T tries to write S: n.e find RT(S) > TS(T): meaning that 
S llas already been read by a transactio~l L- that theoretically executed 

".41though colnniercial s!-stems generally gin? the user an  option to allo\\. dirty reads. 
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late1 than T. U'e also find \VT(S) < TS(T), r~-llich means that no other 
transaction wrote into S a value that would have overlvrittcn T's xaluc. 
thus. negating T's responsibility t o  get its value illto X so transactioll t7 
could lead it. 

U reads X 
1 T writes X 

T start U start 

Figurc 18.36: Transaction T tries to write too late 

18.8.3 Problems With Dirty Data 

There is a class of problems that  the corrlmit bit is designed to help deal ir-itli. 
One of these problems, a '.dirty read," is suggested in Fig. 15.37. There. trans- 
action T reads S; and S was last written by U .  The timestamp of C' is less 
than that of T, and the read by T occurs after the write by U in real time. so 
the evezit seems to be physically realizable. Ho~vever, it is possible tliat after 
T the value of S \vrittcn by C? tra~isactiorl U will abort; perhaps C (,,I- 
counters ax1 error coliditioil ix~ its o'ivn data, such as a divisiox~ by 0. or as we 
shall see in Sectio~l 18.8.4, the schedt~ler forces C: to abort because it trics to do 
sonietlling physically unrealizable. Thus, although there is nothing physically 
ui~realizable about T reading X;  it is better to delay T's  read until I -  comlnits 
or aborts. \T7e can tell that U is not committed because the cornillit bit c(S) 
n-ill be false. 

U writes X 

1 T reads X 

U sra1.t T stair U aborts 

Figur" 18.37: T could pclrfnrln a dirt!. rclad if it rcads S 11-11en >!ioc-11 

.;\ second potential pioble~ll is sugge~ted by Fig. 18.35. Here. t-. a trans- 
action 1~1th a later timestamp than T. has mit ten -' first. When T tries to 
xrite, the appropriate action is to  do nothing. Evidently no other tlalisactiol~ 
1-  tliat sllould haye read T's value of S got C-.s value instead, because if 1. 

tried to  read S i t  n-ould have nbortc~d because of a too-latc read. Future reads 
of s nant  I;.S value or a later value of S, not T's value. This idea, that 
\\-rites can be sltipped \\-hen a nrite ivith a later write-time is already in place, 
is called tlic Thonzas mrrte nl le 

U writes X 
j T writes X 

. . .  . 

T start U start T c o ~ m i t s  [I aborts 

Figure 18.35: A ~vrite is cancelled because of a write with a later t in~es tan~p ,  
but the writer then aborts 

Tllele 1s a potential problcm lvitli the Thomas write rule, however. If U later 
a l~ol ts .  as  is suggested in Fig 13.33. thcn lts value of X should be  ~crnoved and 
tile preriour lallie and \vise-time iestolcd. Since T is coxnmitted. it ivolild 
see111 that  the { d u e  of S sliollld be the oiie written by T for future reading. 
Howexer. \\e alieady \kippcd the m i t e  l ~ y  T and it is too late to  repair the 
damage. 

il-llile there are many \vays to deal n-ith the problems j~ l s t  described, ~b-e 
shall atlopt a relatively silllplc policy bawd on the following assllnled capability 
of the tilnrstar~lp-bascti .ch(~tlulcr. . \T-llen a trallsactioll T 1vrites a database elenlent S. the write is "tenta- 

tive.' allcl ma.  l,e cundonc if T aborts. The collinlit hit C ( S )  is set to  false, 
alld the schedlllcr ~nakes a copy of the old va111e of .Y and its prcvious 
I Y T ( . ~ ) .  

18.8.4 The Rules for Timestamp-Based Scheduling 

\I$ call Iln\T7 sL!lnlllarizr rhc r,]les that a scheduler using t i r l~csta~r~ps must f o l l o ~ ~  
10 lnake sure that Ilothillg p]l>-sically unrealizable may occur. The sclleduler, 
in response to  a read or xvrite mjurst  fro111 a transaction T has the choice of 

I a )  Granting 1111. rcqnost . 

I 11) ~ \ ~ l l ~ ~ ~ i l l g  (if 1. Iv(~,~lc[ yic,l;tt<, physical reality) ;111~1 restartill$ \ ~ i t l l  3 

Ilcn- tilnr~:r;~ljl], (al)ort follory~tl I,? rcstart is aftell c a l l ~ d  mllbnck). or 

c )  Dela>-ing 7. and later tfecitiing i\-lletllc.r to abort T or to grant the request 
(if r~qucs t  is a lead. and the scad might be dirty. as in Section 18.5.3). 

I The rules are as follo\vs: 
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1. Suppose the scheduler receives a request rr(,Y). 

(a) If TS(T) 2 I\?(-Y). the read is physically reali7able. 

i. If c(S) is true. grant the request. If TS(T) > RT(S), set 
RT(S) := TS(T); otherwise do not change I<T(X). 

ii. If c(X) is false; delay T until c(S) becomes true or tlie trans- 
action that u7rote .Y aborts. 

(1)) If TS(TJ < \\.T(S), the read is pltysically unrealizable. Rollbark T: 
that is, alrrort T and restart it with a new, larger timestamp. 

2. Suppose tlle scheduler receives a request wT(S) 

(a) If TS(T) 2 R T ( ~ )  and TS(T) 2 \vT(X), the write is physically 
realizable and must bc performed. 

i. U7rite the new value for X, 
ii. Set \vT(X) := TS(T), and 

iii. Set c(X) := false. 

(b) If T S ( T )  2 RT(.Y), but TS(T) < IVT(X), then the write is physicall!. 
realizable, but tliere is already a later value i11 S. If C(S) is true. 
then the precious ~vriter of X is committed, and n-e sir~lply ignore 
the write by T ;  ive allo~v T to proceed and make no change to the 
database. However, if C(>Y) is false, then we lnust dcla~- T as in 
point l(a)ii. 

(c) If 'rs(T) < RT(S).  then the i i ~ i t e  is pliysicnlly unrealizable. and T 
rllust be rolled back. 

3. Suppose the scheduler receives a request to  comlziit T. It nlujt iirld (udng 
a list tlie schedtiler maintains) all the database elernellts X ~vr~t te l l  by T 
and set c(-Y) := t r ue .  If any trallsactiolis are waiting for S to l ~ e  corn- 
lnitted (found fi om another sclieduler-maintained list), these tra1,~actions 
are allow-ed to proceed. 

4. Suppose the scheduler rccc,i~es a request to abort T or decides to roll1,;tcE; 
T as i11 Ib  or 2c. Then any transactiorl that was ~vaitirlg on all cle~nent S 
that T n-rote must repeat its attempt to read or u-rite: and see ~ h e t h e r  
the actio~l is no~v  legal after the aborted t ransact io~l .~ ivrites are ca~~rel led.  

Example 18.26: Figurc 18.39 shon-s a schedule of thrcc trai~sactiolls. TI. T.,. 
and T3 that access three database elerncrits. -4. B. arid C. The rc.tt1 tii~lc at 
xhich eicrlts occur incrcascs doii-11 the page. as usual. Hon-ever. n.c I ~ a i e  also 
illclicated tlie timestamps of the transactions and the rcad alld ~ r r i t c  rinles of 
tlie elements. We assunie that at the beginning; each of the tlatabasc elements 
has both a read and a-rite time of 0. The timestamps of the tralisactio~ls 
are acquired when they notify the scheduler that they are b e g i n ~ ~ i ~ ~ g .  Xotice 
that even though TI executes the first data access, it does llot haye the least 

A b o r t :  
w3(-4): 

~i~~~~ 18.39: Tllree tiallsactiolls execntirg under a tisie~tal~lp-based scl1eduler 

tilae5tuIai>. Prrinnlat)ly was tile first t o  notify the scheduler of its start. alld 

T3 did so nest,  with TI last to start.  
ill rllc first ilrtioll~ T~ B,  Since the write time of B is less than the 

til~leital~ll~ of T,. read is pllrsically rcaliiablc and allo~ved to llsppell. The 
rend tillle of B is set to 200. [lie tinlestarnp of Ti.  The second and third rean 
aC-ions sillli~arly are legal slid result in the read tiine of each database element 
l)Eillg set to  tile tilnestalllj) of the tmwactioa tlrat re id it. 

t tile fourtll step. T~ x r i t c d .  Since tlie read time of B is not bigger than 
tis tinastamp of il, tllp ryritc is pllysically realizabli!. Since the !I-rite tiillc of 
o is no larger tilc t i l l lc~tr l l l~> of TI _ Tb~-r ien;t actiisll) ~ ' P ~ ~ c ) s I I ~  the ivritc. 
\ ~ - l ~ ~ ~ ,  do. tile $,-rite tillre of B is raised to 200; the tiniot:allp of the i ~ r i t i n g  
tralisaction TI .  

y r x t  T, tries t(1 xirite C.  Ho~;cycr. C 11-a~ alreacly read b! transactioa T3, 
,Tlricll tllcoretically e\;enltcd ;it tilllc 175. while T2 w n l d  hare u-iitten its value 
.t rilnc 150. ~ l ~ , ~ s  Tz is tryill- to do soaiethillg that irould resriit in physically -. . . - - - 

ullrealizable behavior. ant1 T2 lllust be roll[,d back. 
~1~~ last step is the sritp of .A 11) T:j. Since the read tiinc of -4. 150. is less 

tllall t i e  tinleatalnp of T - ~ .  17.5 r ] ~ c  ~vr i t r  is legal. Hoiievrr. t l~cre  is t ~ l i ~ d ~  a 
later of -4 in tllat datab;isc r l c ~ n w t .  nnncly the value x-sittea bi. 
7 , .  tllporrticall? at tillle 200. ~ 1 1 ~ s .  1 is not rollrcl back. but neither does it 

1 ~i-rite its I-ah?. 

\ll ilnportrllr ririsrit,ll uf t i l l u ~ ~ t i ~ l l p i s ;  ~nailitains oltl vrr*iooa of database 
clnllellra ill sddiiion to tile cllr~pl>r rcr,iol~ ti;a is stornl ill tlii. database i t idf .  
l-lle llllrpose is to allo,\- rends ii(.Y) that otirer\visc iioiild cause traiisartioe 
T to abort (13ccaure cllrrcllt versiciil of I was ~vritten ill T.5 f l l t ~ r e )  10 
yrOclrd by rpading tile rrrsioll of that is appropriate for a trall~actioll "it11 
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T's timestamp. The method is especially useful if database elements are disk 
blocks or pages, since then all that must be done is for the buffer manager to 
keep in memory certain blocks that niight be useful for some currently active 
transaction. 

Example 18.27: Consider the set of transactions accessing database element 
' A  sho~rn in Fig. 18.40. These transactions are operating under an ordinary 
timestamp-based scheduler, and \vhen T3 tries to read -4, it finds \\7~(.4) to 
be greater than its own timestamp, and must abort. However. there is an old 
value of .4 written by Tl and ovei~vritten by T2 that would have been suitable 
for T3 to read; this version of -A hati a write time of 150, which is less than T3.s 
timestamp of 175. If this old value of A were available, T3 could be allor~ed to 
read it, even though it is not the "current.' ralue of A. 

7'2 (24) RT=200 
w.2 (A )  IVT=200 

r:3 (-4) 
A b o r t  

rl(A) RT=225 

Figure 18.40: T3 must abort because it cannot access an old value of .A 

A4 multiversion tii~lestarnping scheduler differs from the scheduler described 
in Section 18.8.4 in the follo~ving ways: 

1. \\'hen a new write WT(S) occurs, if it is legal. then a new version of 
database element S is created. Its ~vrite time is rs (T) ,  and \re shall refer 
to it as ,l;, where t = T S ( T ) .  

2. \!-hen a rcad r T ( S )  occurs. the scheduler finds tlic version St of S sucll 
that t 5 T S ( ~ ) ,  11ut thcrc is no other version St, 11-ith t < t' 5 .rs(l .) .  
That is. the version of S I{-rittcn i~ninediatc.ly l~cfore T tllc!orctic.ally cs- 
ccutetl is the versiorl that T reads. 

3. m i t e  times are associated with ccrsiorts of an clclxlcnt, and they never 
change. 

4. Rcad tiliies are also associated wit11 versions. They are used to reject 
celtain n-rites. rialnely one whose time is less thar~  the read tirne of tile 
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version, Figure 18.41 suggests the problem, where S has ~ersiolls 

xZo alld -yloo, forlner \ras read at  tiine 80, and a new write h a 
transaction T \3-hOSe timcstalnp is 60 occilrs. This write must cause T to  
abort, because its value of should hare been read by the trallsaction 
xvith timesta~np 80, had T been al!o\vcd to execute. 

5- \\.llnl a version It  has a write time t s~icll  that no active transaction has 
tilllestalllp less than t ;  then Ive may ddete  any version of 

Prcuzour t o  ' 

0 I 
Xloo 

Attempt to 
~vrite by transactioll 

with timestamp 60 

i g r c  4 4 trassactioll tries to  a r i t e  a version of that rvould make events 

ph\-sically unrc~alizable 

Exalnple 18-28; Let 11s the actions of Fig. 18.40 if muliii-er~ion 

tinlpstanli,illg is used. First. there are t h r w  versiolis of A: -40, \\-hicll exists 
before tliese traiisactions start,  -Ilio. ~ r i t t e n  by 5; and Aroo. written by 6. 
Figurc 18.42 sl,o,rs seqllcece of evnits; when the versions are created. and 
allell they are rrali, so t ic r  in particular that T3 does not have to abort. because - 

it can read all earlier version of -4. 

TI T2 T3 T4 -40 o -4200 
130 200 173 22.5 

r l ( - i )  
Rcad 

P..,.-*- 
L l L a t l  

w1(-4) 
rz  (-4) Rcad 

Create 
w2 ( .A) 

t I \  R(.;lct 
~I \ , 

7' ~(-1) Read 

FigLlrc 18-42: Excclltion of tra~lsactiolis using cnultiversio~i c o l l ~ ~ l l - r e n c ~  control 



18.8.6 Timestamps and Locking 

Generally. timestamping is superior in situations ivherc either most transactioils 
are read-only, or it is rare that concurrent transactions rvill try to read and 
write the same element. In high-cor~flict situatio~ls, locking perforrns better. 
The argument for this rule-of-thumb is: 

Locking will freciuently delay tra~lsactions as they rvait for locks, and can 
even lead to dcarllocks, where several transactions wait for a long rime. 
and then one has to  he rolled back. 

But if concurrent transactions frequently read and write elements in com- 
mon, then rollbacks will be frequent. introducing even more delay than a 
locking system. 

There is an interesting compromise used in several cornr~lercial s! stems. Tile 
sc l~cd~~ler  riiw ides tlie tmnsactiu~is into read-only trt~~isactioss alld read/\vfitp 
transactions. Read/write transactions are executed using t~vo-phase locking. to 
keep both each other and read-only transactions f r o ~ n  aceeasing the ele~ilclits 
they lock. 

Read-only transactions are executed using multiversioe timertampillg. s 
tile readl~vrite transactions create new versions of a database elen~ellt. those 
version5 ale lrianagctl as in Section 18.5.5. .I read-only transaction is allowed to 
read nliatevcr version of a database elelnent is appropriate for its t i i~ ics ta~~ip .  -1 
read-only tra~lsaction thus never llar :o abort. and \vill only rarely be delard. 

18.8.7 Exercises for Section 18.8 

Exercise 18.8.1 : Below are several sequences of eveiits. includii~g sturt ei.enti. 
111ere st{ 11i~a11s  hat tra~isaction Ti s t a r t s  Tl~ese sequences reprrsellt 1-en1 timr. 
and tlre tinlestanip-based scheduler n-ill allocate tilnestamps to tra~~sactions in 
the order of their starts. Tell what happens as each esecutes. 

* a) stl:  ste; rl('4): r2(B);  wz(-4): I L ' ~  (B): 

b)  st^: 7-1 (.4); .st?; v2(B); 7-2(-4): 11.1 (B):  

c) s t l :  st?: .st3: rl(-4): r?(B); wl(C): rs(B): r,?(C): u-?(B): u-:j(-4): 

4) ,ctl: .st:<: .5t2: rl (A): r2(B): 7c1 ( C ) :  rs(B):  r3(C): ~ r z ( B ) :  1(.;3(.4): 

Exercise 18.8.2 : Till ~rll:it 1iaj)pens during thc fullu\viiig seqnna,c,s of  c,viJl,ti 
if a illillti~c'rsiu~i. t ia~estiils~-based scilerlr~ler is lised. What h;i~,prlla illstead. if 
the scheduler does nut maintain multiple versions? 

* a) st,: st?: st3; st,,; I L I I  (-4): wz(-4): 7c3(.4): 7-2 (-4); 7-4 (A): 

b) stl:  ste; ~ t g :  s t j ;  P L ' ~ ( . ~ ) :  21.~(~4): rj(.i): r2(.4): 
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!! Exercise 18.8.3 : \ye observed in our stud? of lock-based schedulers that  there 
a, several reasons transactions that obtain locks could deadlock. Can a 

ti~llestani~,-l~ase~l scheduler rising the coni~nit bit C ( S )  have a deadlock? 

18.9 Concurrel~cy Control by Validation 
\-alitliltiull is allother type of optinlistic concurrency control. where ive allorv 
transactions t o  access data ivithoiit locks; aiid a t  the appropriate time iie dieck 
tllat tile trailsection liar llehaved ill a serialirable manner. I'alidation differs 
froill tilnestamping principally in that the scheduler maintains a record of ~vliat 
;ictivc tralisactions are doing, rat l~er  than keeping read and \irite t i m a  for all 
database elments .  Just before a transaction starts to write values of database 
el ell lent^, it goes through a L.v;llidation phase; where the sets of ele~iiellts it has 
yead and "ill \vrite are cmlyared with the ivrite sets of other active transactions. 
Slloold tllprc be a risk of pllysical]y ,~nrcalizahle behavior. the traost~cti(rl is 
ro1lt:d back 

18.9.1 Architectme of a Validation-Based Scheduler 

j\-llea validatiol~ is rlsed as the mncurrmcy-control medlanism. the sdleduler 
l,l,lst be told for racl1 trallsactioli T the set of database elrrne~its T reads and 
1 ,  f I l l i t s  

These P ~ S  are the i-e(~d set. RS(T): i111d tile ~ i r i t e  

g ~ 4  , L . S ( ~ ) ;  i c s p e c ~ i ~ e ~ y  Tyalisactioiis are execute.1 ill tllrec phases: 

1, neOd, in tile first phase. the tyailsaction rcads from tlie database all t'lle 

c~elllellts in its set. Tho trallsaction also computes in its local address 

space all the results it is guing to %rite 

.? l,ri/ji[ntr, ln the scrolld phase; tile icheduler validates the trassactios b\ -. 
coll,YiiriIlg its alld \yrite sets ,\-it11 tliose of other traosactions. \Ye 
sllall clescribe tllr ralidati<jll P L ~ ( ~ , s  in S~c t ion  15.9.2. If validation fails. 
tllrll tile tr;lsinrtioll is back; othenrise it pmcecds to  the third 

phase. 

:I i iyr t r  tilp tllini l,llasp tllc trans;lction n-rites to the database its rdlucs 
for thc t.l<lnlcnt\ in its ~ v ~ i t r  si,t. 

with this serial order. 
T~ s,lpl,ort the drrisioIl \rhetller to validate a transaction. the s c l l ~ d ~ l e r  

lllailltaills three sets: 



1. START thc scLt of t ransact io~~s that have started. but not yet completed 
va!idation. For each transaction T in this set. the scheduler maintains 
ST.4R-1 (T). the tilnc at  which T started. 

2. K4L; the set of transactions that have been validated hut not yet finished 
tlie n-riting of phase 3. For each transaction T in this set, the scheduler 
niairitains both srr.-\nr(T) and \:-\L(T), the time a t  which T valiciated. 
Sote that \ ~ L ( T )  is also thc time a t  which T is irnagined to execute ill 
the hypotlirtical serial order of esccutioi~. 

3. FIIV: the set of trai~sactio~is that have corripletcd phase 3. For thesc 
tra~isactions T ,  the scheduler records START(T),  \'.-\I.(T), and F I S ( T ) :  the 
time at  which T finished. In principle this set grows, but as a-e shall see. 
n-e do not havc to remember transaction T if ~ l n ( T )  < ST.~KT(C-) for any 
actir~c transaction U (i.e.. for any U in START or VAL).  The scheduler 
may thus periodically purge the FIN set to  keep its size from growing 
beyond bounds. 

18.9.2 The Validation Rules 

If rnaintaincd by the scheduler. the information of Section 18.9.1 is cnotigh for 
it to detect any potential violation of the assulned serial order of the transac- 
tions - the order in which the trai~sactions validate. To understand tlie rules. 
Irt us first consider what can be I\-long ~ v h e ~ i  w\-r try to validate a transaction 
T. 

T reads X 

/ U writes X 

U stalt T start U validated T validating 

Figure 18.43: T cannot ~a l ida te  if an earlier transaction is nolv ~viiting some- 
thing tlrat T slioulci have rcati 

1. Supposcx tlir~rc, is ;I transaction L7 sur.11 t11;it: 

(a) C is in 1/;-lL or FLV: that is. C- has vnlid;~tcd. 

(b) F I S ( C )  > s'I-~\RT(T): that is, C tiid not finish beforc T started.'" 
- - 

'"ore tlrat if 1:  is in VAL. then C has not yet firris11c.d when ?. validates. In that case. 
FIX((.') is trclirricall?. l~ndefined. Holvever. we lirlon. it mrlst he largpr than ST;\KT(T) in this  
case. 

(c) R S ( T )  n nls (U)  is not empty; in particular, let it contain database 
elenlent S. 

Then it is possible that U wrote S after T read S. In fact. I/' may not 
even have written A' yet. -2 situatiorl where LT wrote X, but not in time 
is shown in Fig, 18.43. To interpret the figure. note that the dotted lines 
connrct the eyents in real time ~vi th  the time a t  which they xvould have 
occurred had transactions bee11 executed a t  the molnent they validated. 
Since n.e don't kno~v n-hether or not T got t o  read li 's value, \ve must 
rollback T to avoid a risk that the actions of T and U will not be consistent 
~vitli the assumed serial order 

2. Suppose there is a transaction U such that: 

(a) U is in VAL: i.e., U has successfully validated. 

(h) F I S ( U )  > \:-\L(T); that is, U did not finish before T entered its 
validation phase. 

(c) \ v s (T)  n \\.s(U) # 0: in particular. let S be in both \\-rite sets. 

Thcn the potential probleni is as sho~vn ill Fig. 18.44. T and li must both 
\\rite values of S, and if \vc let T validate. it is possible that  it will wiite 
S before I -  does. Since \ve cannot be sure. n e  rollback T t o  make sure it 
does not violate the assumed serial order in which it f o l l o ~ s  C'. 

T writes X 

I U writes X 

D. validated T validating U finish 

Figure 18.41: T cannot validate if it co~ild t l ~ e n  m i t e  something ahead of an 
earlier transaction 

Tile two descrillpd above are the only situations in I\-hich a write 
T could I,e pl~~sical ly  ullrcalizablt. In Fig. 15.43. if C finished before 7' 

starred. tlle~l sure]!. T lv0~~ltl  read tlic va111c of S that either c- or sollle later 
trallsaction n.roce. In Fig. 18.44. if C. finished hefore T validated. then surely 
C' lvrote .y before T did. \Ye may tli~ls sunllnarize these observations with the 
follon-ing rule for validating a transaction T :  

Check that R S ( T )  n \\.s(U) = 0 for any previously validated C' that did 
not finish before T startcd, i.e.. if F I S ( ~ )  > START(T) .  
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Check that  wS(T) n W S ( U )  = 0 for any previously validated U that did 
not finish before T validated, i.e., if FIS(U) > v.%L(T). 

Example 18.29 : Figure 18.45 shows a time line during which four transactiorls 
T, U ,  V ,  and IV attempt to  execute and validate. The read and write sets for 
each transaction are indicated on the diagram. T starts first, although U is the 
first to  validate. 

Figure 18.45: Four transactiorls and their validation 

1. \'alidation of U: When U validates there are no other validated transac- 
tions, so there is nothing to check. U validates successfully and writes a 
value for database element D. 

2. \lidation of T:  When T validates, LT is validated but not finished. Thus. 
lve must check that  neither the read nor write set of T has anything 
in common with WS(U)  = { D ) .  Since RS(T) = {.4. B) .  and m ( T )  = 
{.-I, C ) ,  both checks are successfiil. and T validates. 

3. \%lidation of IT: \lilien 17 validates. li is validated and finished. and T 
is validated but not finishtd Also. I '  started hefore C finished 711~5. 
ne  n~us t  compare bath R S ( I ' )  and n ~ ( 1 3  against ws(T) Lilt onlv RS(I  .) 
nerds to be compared against \\.s(l*). \\e find: 

R S ( ~ - )  n u s ( T )  = { B )  n {-4.C) = 0. . ns(17) n ~ z s ( T )  = { D ,  E )  n {-4.C) = 0 . R S ( ~ * )  n ~ ( u )  = { B )  n { D )  = 0. 

Thus, I - also validates successfully. 
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I Just a Moment I 
lrou may have been concelned xvith a tacit notion that validation takes 
place in a moment, or indivisible instant of time. For example, we i~nagine 
that vie can decide whether a transaction U has already validated before 
we start to  validate transaction T. Could U perhaps finish validating while 
n-e are xalidating T? 

If we are running on a uniprocessor system, and there is only one 
scheduler process, we can indeed think of validation and other actions of 
the scheduler as taking place in a n  instant of time. The reason is that if 
the scheduler is validating T, then it  cannot also be validating U ,  so all 
during the validation of T ,  the validation status of U cannot change. 

If I\-e are running on a multiprocessor, and there are several sched- 
uler processes, then it might be that  one is validating T while the other 
is validating U. If so, then we need to rely on whatever synchroniza- 
tion mechanism the ~nultiprocessor system provides to make validation an 
atomic action. 

4. Iralidation of 15': \'i;hen \ I T  validates, ~\ -e  find that U finished bcfore Ili 
started. so no co~nparison be twen  IV and U is performed. T is finished 
before 11. validates but did not finish before Ti7 started, so [ve compare 
onl\- RS(TV) with \j's(T). I. is validated but not finished. so x e  need to 
cornpale both ~s(T1 ' )  arid I\ ~ ( 1 1 ~ )  with ws(T). These tests are: 

~ s ( r l / )  n w s ( ~ )  = {A4. D )  n {..l;C) = {.A).  

~s(rv)  n ws(l') = {.4. D )  n { D .  E }  = { D l .  

\vs(11-) n ws(17) = {.-I. C )  n {D; E )  = 0. 

Since the i~ltersections are not all empty. Ti7 IS not validated. Rather, T I T  
is rolled back and does not write values for .-I or C.  

18.9.3 Comparison of Three Concurrency-Control 
Mechanisms 

Tile tllrce approaches to serializabllity that n-e have collsidered -- locks. times- 
tamps. and validation - each have their advantages. First. they can be corn- 
pared for their storage utilization: 

Locks: Space in the lock table is proportional to  the number of database 
elements locked. 



Tzmestamps: In a naive implementation, space is needed for read- and 
write-times with every database element, nhether or not it  is currently 
accessed. However, a more careful implenlentation \%-ill treat all times- 
tamps that are prior to  the earliest active transaction as "minus infinity.' 
and not record them. In that case. we can store read- and write-times in 
a table analogous to  a lock table, in which only those database elements 
that have been accessed recently are mentioned at  all. 

Validation: Space is used for timestamps and read/\vrite sets for each 
currently active transaction, plus a few more transactions that finished 
after some currently active transaction began. 

Thus, the amounts of space used by each approach is approximately propor- 
tional to the sum over all active transactions of the number of database elenle~lts 
the transaction accesses. Timesta~nping and validation may use slightly more 
space because they keep track of certain accesses by recently committed trans- 
actions that a lock table ~vould not record. X poter~tial problem with validation 
is that the w ~ i t e  set for a transaction must be known before the xrites occur 
(but after the transaction's local cornputation has been conlpleteti). 

It'e can also conipare the methods for their effect on the ability of transac- 
tions to complete tvithout delay. The performance of the three methotfs depends 
on whether interaction among transactions (the likelihood that a tra~lractioci 
will access an elenlent that is also being accessed by a concurrent transaction) 
is high or low. 

Locking delays transactions but avoids rollbaclts. even ~vhen interactio~l 
is high. Tiniestamps and validation do not delay transactions. but call 
cause them to rollback, which is a niore serious form of delay and also 
~ ~ a s t e s  resources. 

If interference is lo\v. then neither timestamps nor validation ~vill cause 
many rollbacks. and may be preferable to  locking because they generally 
have lolver overhead than a locking scheduler. 

\\-hen a rollback is necessary, tinlestamps catch some proble~ns earlier 
than validation, which altx-ays lets a transactioll do all its i~ i te r~ la l  n-ork 
before considering whether the transaction niust rollback. 

18.9.4 Exercises for Section 18.9 

Exercise 18.9.1 : In the follo~vi~lg scquc.nccs of events. \\e IISP R,(.\-) to mcnn 
"transaction T, starts, and its read set IS the list of d a t a b a ~ e  elc~nents S." =\lqo. 
I/, lrieans .'T, attempts to talidate." and II;(.Y) lneans that ..T, finishes. and 
its write set was S." Tell nha t  happens n-lien each sequence is piocessect b j  a 
validation-based scheduler. 

* a) R1(.4.B); Rr(B,C);  1;; R3(C. D): 15: II;(.4): I > :  TI:L(,4): 11;(B): 

b) R1(-4.B): R2(B,C):  Vl; Rs(C,D),  t:; fT-1(~4); 15: 11'2(A4); 1 i 7 3 ( ~ ) :  

C )  R1(.4.B); Rr(I3.C); 15; R3(C. D): 15; II7l(c) :  1:; 11'2(-+1): 1ir3(D); 

d) R1(-4.B); R2(B.C):  R3(C); V1: i5; If3; llTl(-4): Ilr2(B); fv3(c): 

e) Rl(.-I.B); R2(B.C);  R3(C); 1;: 1;: V3; ll'-l(C): 11-z(B); 1i73(>4): 

f )  Rl(-4.B): R2(B,  C);  R3(C); 11: 1;: 1;; Ll-1 (-4) I17z(C): 1$-3(B): 

18.10 Summary of Chapter 18 

+ Conszstent Database States: Database states that obey xhatever i~nplied 
or declared constraints the designers inte~lded are called consistent. It 
is essential that operations on the database preserve consiste~lcy. that is. 
they turn one consistent database state into anothel. 

+ C o n s ~ s t e n c ~  of Concurrent Transacttons: I t  is normal for several trans- 
actions to  have access to  a database a t  the same time. Trarisactions, run 
111 isolation, are assumed to preserve consistency of the database. It  is the 
job of the scheduler to assure that concurrently operating transactions 
also preserxe the consistency of the database. 

+ Schedrrles: Tra~lsactions are brokcn into actions, lnaillly reading and writ- 
i ~ l g  from the database. X sequcnce of these actions from one or more 
tra~lsactiolls is called a schedule. 

+ Serial Schedules: If trallsactio~ls esecutc ollf ar a time, the s~ht!du!C is 
said t o  be serial. 

+ Serializable Schedules: --i schcdnle that  is equivalent in its effect on the 
database t o  sollle serial schedule is said to  bc serializable. 111terlcat-i11g of 
actions from transactions is I~ossible in a serializable schedule that 

I 
I is not itself serial, but \ye 1llust ver?- careful what sequences of actions 
I 
i 

m-e allol3-. or all interlea\-ing \vill I e a ~ e  the database in an inconsistent 
state. 

+ Conflict-se~alirabi~ity: -1 i i~nple-to-te~t.  sufficient condition for serializ- 
ability is that  the schedule can be made serial by a sequellce of stvaps 
of adjacellt actiolls \vithout conflicts. Such a schedule is called conflict- 
sPrialixa]lle. ;\ collflicr occurs if ~ v c  try t o  snap  tn-o actions of the same 
transaction. or to sXvap tXyo ac. t io~~s that acccss the same datalxsr elenlent. 
a t  least one of ~vhich actions is ~vritc. 

+ PVecedence Gmyhs: .in easy tcst for cullflirt-serializal~ility is to construct 
a precedellce graph for the schedule. Sodes correspond to transactions. 
and there is an arc T + C if some action of T in the schedule conflicts 
n-itIl a later action of c. .\ schedule is conflict-serializable if and onl> if 
the precedence graph is ac\-clic. 
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+ Locking: The most common approach to assuring serializable schedules is 
to lock database elernents before accessillg them, and to release the lock 
after finishing access to  the element. Locks on an eleluent prevent otlier 
transactions from accessing the element. 

+ TWO-Phase Lockzng: Lorking by itself does not assure serializability. How- 
ever, two-phase locking, in which all transactions first enter a phase ~vhere 
they only acquire locks, and then enter a phase d i e r e  they only release 
locks. will guarantee serializability. 

+ Lock Modes: To a\-oitl locking out transactions unnecessarily, systems 
usually use several lock modes, with different rules for each lriode about 
when a lock can be granted. Most common is the system with shared 
locks for read-only access and esclusive locks for accesses that include 
writing. 

+ Compatzbzlzty Matrzces: A compatibility matrix is a useful summaiy of . 
xhen it is legal to  grant a lock in a certain lock mode, given that there 
may be other locks, in the same or other rnocles, on the same elelnent. 

+ Update Locks: A scheduler can allow a transactiori that plans to  read and 
then write an element first to take an update lock, and later t o  upgrade 
the lock to esclusive. Update locks call be granted  hen there are already 
shared locks on the elcmerit: but once there, an update lock prevents vtlier 
locks from being granted on tliat element. 

+ Increment Loch:  For the common case where a transaction nan t i  only t o  
add or subtract a constant from an element, an increment lock is suitable. 
Increnlent locks on the sanie elelne~lt do not conflict n-it11 each other. 
although they conflict bit11 shared and esclusi~e locks. 

+ Locking Elements Li'zth a GI-u~zularfty Hzerarchy: \\-hell both large and 
srnall elenients - relations, disk; blorks. and tuples, perhaps - may need 
to be locked, a ~va~l l ing  system of locks enforces serializability. Tra~lsac- 
tions place intention locks on large elements to warn other transactions 
that tliey plan to access one or more of its subelements. 

+ Locking Elemen,ts .irmnged in  a Tree: If database elements are only ac- 
cessed by moving dolvn a tree. as in a 13-tree index, then a non-tn-o-phase 
locking strategy call enforce serializability. The rules require a lock to 11e 
held on the parent n-llilt, obtaining a lock on tlic child. altliough the lock 
on the parent c;111 then be rtlleasrd anti adtlitiorial locks taken latcr. 

+ Optimistic Concurrency Control: Instead of locking, a scheduler can as- 
sume transactions d l  be scrializahle. and abort a transactiori if some 
potentially nonserializable behavior is seen. This approach, called opti- 
mistic, is divided into timestamp-based, and validation-based scheduling. 
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Chapter 19 

More About Transaction 
Management 

111 this chapter we cover several issues about transaction managelllent that  
were not addressed in Chapters 17 or 18. If7e begin by reconciling the points of 
vien- of these two chapters: how do the needs t o  recover from errors, t o  allow 
transactions to abort: and to maintain serializability interact? Then, we discuss 
the management of deadlocks aillong transactions: which typically result from 
several transactio~ls each having to wait for a resource, such as a lock, that is 
held by another transaction. 

This chapter also incllldes an introduction to distributed databases. IVe 
focus on ho1v to lock elements that are distributed among several sites, perhaps 
with replicated copies. K e  also consider how the decision to co~nmit or abort a 
transaction can be rnade ~vhen the transaction itself involves actions at several 
sites. 

Finally, consider the problems that arise due to ''long transactions." 
There are applications, such as CAD syste~lls or "workflow" systems, in which 
llumaii and conlputer processes interact, perhaps over a period of days. These 
systelns. like short-transaction systems such as banking or airline reservations, 
need to preserl-e consistency of the database state. Ho\T-ever, the concurrexlcy- 
control methods discussed in Chapter 18 do not rvork reasonably when locks 
are held for days, or decisions to validate are based on events that 'happened 
days in the past. 

19.1 Serializability and Recoverability 

In Chapter 17 Xve discussed the creation of a log and its use to recover the 
database state when a system crash occurs. \Ye introduced the vie\\- of database 
cornputatio~l in which values move bet\\-ecn nonvolatile disk, volatile ~nain-  
menlor?-. and the local address space of transactions. The guarantee the various 
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logging methods give is that, should a crash occur, it ~57ill be able to  reconstruct 
tlie actions of the committed transactions (and only the committed transac- 
tions) on the disk copy of the database. A logging system makes no attempt 
to  support serializabil~ty; it w~l l  blindly reconstruct a database state, even if 
it is the result of a noriserializable schedule of actions. In fact, commercial 
database systems do not always insist on serializabilit~; and in sorne systems. 
serializability is enforced only on explicit request of the user. 

On the othcr hand, Chapter 18 talked about serializability only. Scliedulels 
designed according to the principles of that chapter may do things that the log 
manager cannot tolerate. For instance, there is nothlng in the serializability 
definition that forbids a transaction with a lock on an element A from writing 
a new value of A into the database before committing, and thus violating a rule 
of the logging policy. \Verse, a transaction might write into the database and 
then abort without undoing the Ivnte, which could easily result in a n  incon- 
sistent database state, even though there is no system crash and the scheduler . 
theoretically maintains serializability. 

19.1.1 The Dirty-Data Problem 

Recall from Section 8.6.5 that data is "dirty" if it has been written by a trans- 
action tliat is not yet committed. The dirty data could appear either in the 
buffers, or on disk, or both; either can cause trouble. 

A := A+100; 
wl(d); Il(B); ul(:l); 125 

12 (.A); 7'2 (.A); 
A := A*2; 
wq (.A) ; 250 
12 (B) Denied 

~1 (B); 
Abort; ul(B);  

/2(B): 112 (24); r2 (B) :  
B := B*2: 
tc,,(B): 112(O); .5 0 

Figure 19.1: TI writes dirty data  and then aborts 

Example 19.1 : Let us rcconsider the serializable schedule from Fig. 18.13. 
but suppose that after reading B, TI has to  abolt for sonic reason. Then tlie 
sequence of events is as in Fig. 19.1. After Tl aborts, the sclieduler releases the 

lock on B that TI obtained; that step is essential, or else the lock on B would 
be unavailable to any other transaction, forever. 

Ho~i-ever, T2 has now read data that does not represent a consistent state 
of the database. That is, ?r2 read the value of -4 that TI changed, but read 
the value of B that existed prior to Ti's actions. I t  doesn't matter in this casc 
whether or not the value 125 for il that TI created n-as mi t ten  to  disk or not; ?'? 

gets that value from a buffer, regardless. As a result of reading an incorlsistcr~t 
state, T2 leaves the database (on disk) with an inconsistent state, where -4 # B. 

The problem in Fig. 19.1 is that -4 ~vritten by TI is dirty data, whether 
it is in a buffer or on disk. The fact that 1; read -4 and used it in its on-n 
calculation makes z ' s  actions questionable. -1s we shall see in Section 19.1.2. 
it is necessary, if such a situation is allowed to occur, to  abort and roll back T2 
as \\-ell as  TI. 

Figure 19.2: TI has read dirty data from T2 and nlust abort n-hen Tl docs 

Example 19.2 : Sow, consider Fig. 19.2.1~11ich sho~vs a sequellce of actions i ~ n -  
der a timestamp-based scheduler as in Section 18.8. Ho~vever: lye ilnagille that 
this sclleduler does not use the colnrnit bit that \\-as introduced in Section 18.8.1. 
Recall that, the purpose of this bit is to prevent a value that  !\-as n-ritten b>- 
an uncommitted transaction to be read by anot,her transaction. T h ~ s ,  when TI 
reads B a t  the second step, there is no co~nmit-bit check to tell TI to  delay. 
TI can pr.oceed and could eve11 write to  disk and commit; we haye not shoiv11 
further details of 1v11at Tl dors. 

Eyei~tually. 7; tries to ~i-ritc C in a ph!.sically unrealizable \\-a?. and T2 
aborts. The effecr of f i ' s  prior write of B is cancelled: the value and \\-rite-ti~np 
of B is reset to 1~11at it was before T2 wrote. I-et TI has been allo~i-?ti to  use this 
cancelled value of B and can do anything ~ i t h  it: such as using it to conlpute 
nex  values of .A. B ,  and/or C and ~vriting them to disk. Thus. T I ?  ha\-ing read 
a dirty value of B, can cause an inconsistellt database state. Xote that. had 
the commit bit been recorded and used, the read rl(13) at  step (2) would have 
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been delayed, and not allowed to occur until after T2 aborted and the value of 
B had been restored to its previous (presumably committed) value. 

19.1.2 Cascading Rollback 

AS x e  see from the exam~~les above, if dirty data is available to transactions, 
then \ve so~netilnes have to perform a cascading rollback. That is, when a 
transaction T aborts, we must determine ~vhich tralisactions have read data 
written by T, abort thein: and recursively abort any tralisactions that have read 
data written by an a.borted transaction. That is, we must find each transaction 
L' that read dirty data written by T ,  abort C': find any transaction 5- that 
read dirty data from li, abort V :  and so on. To cancel the effect of an aborted 
transaction, we can use the log, if it is one of the types (undo or undo/redo) 
that provides former ~ralalues. We may also be able to  restore the data  from the 
disk copy of the database, if the effect of the dirty data has not migrated to 
disk. These approaches are considered in the next section. 

As Jve have noted, a ti~ncstamp-based scheduler witti a conlrnit bit pre- 
vents a transaction that rnay Ilax-e read dirty data from proceeding, so there is 
no possibility of cascading rollbaclc xvith such a scheduler. -4 validation-based 
sclieduler avoids cascading rollback, because ~vriting to the database (el-en in 
buffers) occurs only after it is determined that the transaction JX-ill colnmit. 

19.1.3 Recoverable Schedules 

In order for any of the logging metllods ~ v e  Ilave discussed in Chapter 17 to ailon- 
1-ecovery. the set of transactions that are regarded as  committed after recol-el?- 
must be consistent. That is. if a transaction TI is, after recovery. rega~drd  
as committed, and Tl used a value written by G, the11 T2 must also remain 
committed. after recovei 5.. Thus, n e define: 

-1 schedule is rccove~able if earh tra~lsaction coinmits only after each tians- 
action from n-hlcli it lias read lias committed. 

Example 19.3: 111 this and several subsequent exa~nples of schedules n-it11 
read- and n-rite-actions, we shall use c, for the action .'transaction T, commits." 
Here is an example of a recoverable schedule: 

Sl : I C ,  (A): ICI  (B):  w2 (-4): r2 (B):  cl : r2: 

Sote that 2'2 reacts a value ( B )  \ni t ten by TI. so T2 must rol~imit aftcr TI for 
the sclledr~lc to l ~ e  rccovcrable. 

Scliedule S1 above is evidently serial (and tllerefore sc~ializablc) as n-ell as 
recoverable, but the two concepts are orthogonal. For instance, the following 
variation on SI is still recoverable, but not serializable. 

In schedule S2, T2 must precede TI in a serial order because of the writing of 
-4. but TI ~liust  precede T2 because of the n-ritirlg and readillg of B. 

Fillally. observe the follotving variation on S1. \vllich is serializable but not 
rccoveiable: 

In sclledule S3: TI precedes T2: but their cornrnitrne~lts occur in the wrong order. 
If before a crash. the corlllllit record for T'2 reachcd disk, but the conllnit record 
for Ti did 11ot. then regardless of whether u~ldo ,  redo, or urldo/redo logging 
,$-ere used: 6 ~votild be committed after recovery, but Tl would not. fJ 

Irl order fc,r schpclules t o  be truly recoverable under ally of the 
three loggilrg methods, there is one additional assiiniption a c  nlust make re- 
garding schedules: 

The log's colllmit records reach disk in the order in which they are written. 

As 15-c observed in Example 19.3 concerning sclirdule Sg. should it be possible fol 
coniniit records to  reach di4k in the wrong order. then consistent lecovery might 
be iInllossible, \ye return to a ~ i d  exploit this prillciple in Section 19.1.6. 

19.1.4 Schedules That Avoid Cascading Rollback 

Recoverable sclletiules solnetimes require cascading rollback. For instance, if 
after first four steps of ~clicdule S1 in Esnl~iple 19.3 TI had t o  roll back, 
it n-ould be lleccssary to roll back TL, as n-ell. To guar:lntec the absence of 
cascadillg rollback, lleed a stronger co~lditioll tlian rccowrabilit~. 11'~ Siiy 
that : 

-1 schedule olioids cascarlzng rollback (or -is an .4CR schedfile") if trans- 
actions ma! lead only values written 11.1. co~lnnitted tiansactions. 

Put allotller \v\-a\-. a11 XCR schedule forbids the rcadi~ig of dirty data. As for re- 
col-erablc sclledules. \ye assume that "comlnitted" ~neans  that the log's comn~it 
record has reaclled disk. 

Exalllple 19.4 : 5clicdules of Exalnple 19.3 are not -1CR. 111 each case. T2 
reads B frolll the uncomniitted transaction TI.  Hon-ever. consider: 

son., T? rends B ollly after TI .  thc transaction that last n.rotc B. has colnlnit- 
red. alld its log record n-rittc~i to disk. Thus. sc,hcdnle S1 is .ACR. as 'vell as 
rcco\.crablc. 

sot ice tllat sllould a transaction such as  T2 read a value mi t ten  11)- T I  after 
TI conrmits. then surely fi either co~nnlits or a1)orts after T1 commits. Thus: 

Ever>- ;\CR schedule is recotwable. 
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19.1.5 Managing Rollbacks Using Locking 

Our prior discussion applies to  schedules that are generated by any kind of 
scheduler. In the common case that the scheduler is lock-based, there is a simple 
and commonly used way to guarantee that there are no cascading rollbacks: 

Strict Locking: .% transaction must not release any exclusive Iocks (or 
other locks, such as increment locks that allo~ir values to he changed) 
until the transaction has either con~mitted or aborted, and the commit or 
abort log record has been flushed to disk. 

A schedule of transactions that follow the strict-locking rule is called a strict 
schedule. Two important properties of these schedules are: 

1. Every strict schedule is ACR. The reason is that a transaction T2 cannot 
read a value of element X written by TI until Ti releases any exclusive 
lock (or similar lock that allolvs X to be changed). Under strict locking, 
the release does not occur until after commit. 

2. Every strict schedule is serialzzable. To see why, ohscrve that a strict 
schedule is equivalent to  the serial schedule in which each tra~isaction 
runs instantaneously at the time it commits. 

IVith these observations, we can now picture the relationships among the dif- 
ferent kinds of schedules we have seen so far. The containments are suggested 
in Fig.19.3. 

Figure 19.3: Containments an noncontai~lments among classes of schetlules 

Clearly. in a strict schedule. it is not possihle for a transaction to rcad dirty 
data. since data written to a huffer by an unconilnitted transaction re~nairls 
locked until the transaction commits. Ho~vever: we still have tlie prohleni of 
fising the data in buffers when a transaction aborts, since these cllallges must 
have their effects cancelled. How difficult it is to  fix buffered data depellds on 
~vhether database elements are blocks or sornethi~lg smaller. \Ye shall consider 
each. 

Rollback for Blocks 

If the lockable database elements are blocks. then there is a simple rollback 
method that  never requires us to  use tile log. Suppose that a transaction T has 
obtained an esc1usi~-e lock on block A. written a new value for A in a buffer, 
and then had to abort. Since -4 has been locked since T xvrote its value, 110 

other transaction has lead -4. I t  1s easy to  restore the old value of -4 provided 
the folloning rule is follo~ved 

Blocks ~vritten by uilcominittcd transactiolls are pinned in main memory; 
that is. their buffers are not alloxved to be written t o  disk. 

I11 this case. n e  ..roll back.' T when it aborts by telling the buffer manager to  
ignore the value of A. That  is, the buffer occupied by -4 is not written anywhere, 
and its buffer is added to the pool of available buffers. \Ve call be sure that the 
value of A on disk is the most recent value written by a committed transaction, 
which is c ~ a c t l y  the value we want A to have. 

Tllele 1s also a sinlple rollback method if we are using a multiversion system 
as in Sections 18.8.5 and 18.8.6. \Ye niust again assume that blocks written by 
~incomniitted transactions are pinned 111 memory. Then, we simply renlove the 
value of A that was mi t ten  by T from the list of available values of A. So te  
that because T was a i\iiting transaction, its value of .I ~vas  locked from the 
time the lalue n.as \vritten to the time it aborted (assuming the timestamp/lock 
scheme of Section 18.8.6 is used). 

Rollback f o r  Small D a t a b a s e  E1ement.s 

When lockable database elenlcnts are fractions of a block (e.g., tuples or oh- 
~ e c t s ) .  then the sinlple appioach to restori~lg buffels that have been ~nod~fied hl- 
aborted transactions nil1 not uoik The p ~ o h l e ~ n  is that a buffer may contain 
data changed by t ~ v o  or more transactions: if one of them aboits, Tve still nlust 
plesesve tlie changes made by the other \ l e  have several choices \vhen we must 
restore thc old value of a small database element A that n-as written by the 
tlansaction that has a11ortt.d. 

1. We can read the original value of .-I from the database stored on disk and 
modify the buffer contents appropriately. 

2. If the log is an undo or untlo/redo log. then we can obtain the former 
value from the log itself. The same code used t o  recover frorn crashes 
ma?. be used for ..\-oll~ntary" rolll~acks as \~-cll. 

3. \IF can keep a separare ~nair~-l~lclr~ory log of the changes n ~ a d e  by car11 
I transaction, preserved for only the tinlc that transactio~l is active. The 

i old value call be fouxid fro111 this "log." 

Sone of these approaches is ideal. The first s ~ ~ r e l y  il~rolves a disk access. 
The second (examining the log) might not involve a disk access. if the relevant 
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When is a Transaction Really Committed? 

The subtlety of group commit reminds us that a completed transaction can 
be in several different states between when it finishes its xvork and when it 
is truly "committed." in the sense that under no circumstances, including 
the occurrence of a system failure, will the effect of that transaction be 
lost. As we noted in Chapter 17, it is possible for a transaction to finlsh 
its work and even write its COMMIT record to  the log in a main-memory 
buffer, yet have the effect of that transaction lost if there is a system crash 
and the COMMIT record has not yet readied disk. Lloreover, we saw in 
Section 17.5 that even if the COMMIT record is on disk but not yet backed 
up in the archive, a media failure can cause the transaction to be undone 
and its effect to be lost. 

In the absence of failure, all these states are equivalent, in the sense 
that each transaction will surely advance from being finished to having its 
effects survive even a media failure. However, when rve need to take failures 
and recovery into account, it is important to  recognize the differences 
among these states, which otherwis'e could all be referred to  informally as 
'L~ommitted." 

portion of the log is still in a buffer Hone1 er. it could also invol~ e extensix e 
esamination of portions of the log on disk. sea~ching for the update record that 
tells the correct former value. Tlie last approach does not require disk accesses. 
but may consume a large fraction of menioi y for the main-memory '.logs." 

19.1.6 Group Commit 

Under some circumsta~ices, n-e can avoid reading dirty data even if r e  do not 
flush every commit record on the log to  disk immediately. As long as a-e flush 
log records in the order that they ale written, we can release locks as soon as 
tlle commit record is written to  tlie log in a buffer. 

Example 19.5: Suppose transaction TI I\-rites X,  finishes, writes its COMMIT 
record on the log, but the log record remains in a buffer. Even though TI 
has not committed in the sense that its connilit record can survive a crash. 
we shall release TL's locks. Then T2 reads S and .'colnmits." but its c o ~ n n ~ i t  
record, n-hicli follows that of TI. also remains in a buffer. Since we are flushing 
log records ill the order 1s-ritten. T2 cannot be perceived as co~nmittcd b?- a 
recovery manager (because its commit record reached disk) unless Tl is also 
perceived as committed. Thus, there arc three cases that the recovery manager 
could find: 

1. Neither TI nor T.L has its commit record on disk. Then both are aborted by 
the recovery manager, and the fact that T2 read S from an uncommitted 

2. TI is comnlitted. but T2 is not. There is no problerri for two reasons: T2 
did not read S from an uncomlnitted transaction, and it aborted anyway. 
with no effect on the database. 

3. Both are corrnnitted. Then the read of S by Tz was not dirty. 

On the other hand, suppose that  the buffer containing Tz's commit record 
got flushed to disk (say because the buffer manager decided t o  use the buffer 
for somet11i1:g else). but the buffer containing TI'S commit lecord did not. If 
there is a crash a t  that  point. it will look t o  the recovery manager that TI did 
not commit, but T2 did. The effect of T2 will be perlrianently reflected in tlie 
database, but this effect was based on the dirty read of X by T2. 

Our conclusion from Esa~nple  19.5 is that  we can release locks earlier than 
the time that  the transaction's commit record is flushed to disk. This policy, 
often called g i a z p  commit. is: 

Do iiot release locks until the transaction finishes: and the comniit log 
record at  least appears in a buffer. 

Flush log blocks in the order that they \\-ere created. 

Group commit. like the policy of requiring .'recoverable schedules" as discussed 
in Section 19.1.3, guarantees that there is never a read of dirty data. 

19.1.7 Logical Logging 

We salv in Section 19.1.5 that dirty reads are easier to fis up rvhen the unit of 
locking is the block or page. Holvever, there are at  least two problems prese~lted 
when database elements are blocks. 

1. -411 logging methods I-equirc either the old or new value of a database 
element, or both: to  be recorded in the log. \Vhen the change to a block 
is small, e.g., a ren-rittcri attribute of one tuple. or an inserted or deleted 
tuple, then there is a great deal of redundant information written on tile 
log. 

2. Tlie recluireme~it that the schedule be recoverable; releasing its locks only 
after co~nnlit. car1 illhibit concurrency severely. For esample, recall our 
discilssion in Section 18.7.1 of the advantage of early lock release as xr 
access data  tllro,lgll a B-tree indes. If we require that locks be helti until 
connnit. thcn this advalitagc cannot be obtained: and n-e effectively allon- 
only one writing transaction to access a B-tree at  any time. 

Both these concerns motivate the use of logical logging. villere only the 
changes to  the blocks are described. There are several degrees of coniplesity. 
depending on the nature of the change. 



1. .A small rlunlber of bytes of the database element are changed, e.g.. the 
update of a fixed-length field. This situation call be handled in a straight- 
forward way, where we record only the changed bytes and their positions. 
Example 19.6 \rill show this situation and an appropriate form of update 
record. 

2. The change to the database element is simply described; and easily re- 
stored, but it has the effect of cliangiiig most or all of the bytes in the 
database element. One coninion situation: discussed in Example 19.7: is 
when a variable-length field is changed and illuch of its record, and even 
other records must slide within the block. The new and old values of the 
block look very different unless we realize and indicate the simple cause 
of the change. 

3. The change affects many bytes of a database clement, and further changes 
call prevent this change from ever being undone. This situation is true 
"logical" logging, since we cannot even sec the undo/rcdo process as  occur- ' 

ring on the database elenieilts thetiiselves, hut rather on some higher-level 
'.logical" structure that tlie database elenletits represent. 1% shall, in Es- 
ample 19.8, take up the matter of B-trees, a logical structure represe~ited 
by database clements that are disk blocks, t o  illustrate this co~rlples form 
of logical logging. 

Example 19.6 : Suppose database elements are blocks that each contain a set 
of tuples from some relation. 11'e call express the update of an attribute by a 
log record that says somethirig like .'tuple t had its attribute a changed f ro~n  
vahie ~ ' 1  to  02.'' An insertion of a nerv tuple into empty space on the block can 
be expressed as "a tuple t with value (nl. a 2 : .  . . : ak) was inserted beginning 
at offset position p." Unless the attribute changed or the tuple inserted are 
comparable in size t o  a block, the alnount of space taken by these records will 
be much smaller than the entire block. lloreot-er, thcy serve for both undo and 
redo operations. 

Notice that both these operations are idernpotent; if you perform them scv- 
era1 tinlcs on a block; the result is the same as perfor~ning them once. Liken-ise. 
thcir implied inrerses, I\-here the value of t [ n ]  is restored from vz back to 1.1. or 
the tuple t is removed. are also idenrpoteiit. Thus. records of these types can 
be used for rccol-cry in exactly tlie same way that update log rccords were used 
throughout Cliaptcr 17. 0 

Exanlple  19.7: Again assunic database clc~nents arc blocks lioldiiig t l ~ p l c .  
but the tul~les Ilavc sonie rariahle-lengtil ficlds. If a c l l t ~ ~ ~ g e  to a f i ~ l d  such as 
Ivas described in Exalilple 19.6 occurs, n.e niay 1la1-e to slide large portio~ls of 
the block to make room for a longer field. or to preserve space if a ficld beco~~ics 
smaller. In extreme cases, ~ve  could have to crcatc ail overfloxr block (1.c~cal1 
Section 12.5) to hold part of the contents of the original block, or wc could 
remove an ovc.rflo\v block if a shorter field allows us to combine the contenrs of 
two bl~clis into one. 

As 101ig as the block and its o\.erflow block(s) are considered part of one 
database cl~inent ,  then it is straightforward to use the old and/or new value of 
tlic changed field to tundo or redo the change. Ho~vever, the block-plus-overflox~~- 
bloik(s) must l ~ e  thougilt of as holding certain tuples a t  a "lo@cal" level 1Ve 
nlay not even be able to  restore the bytes of these blocks to their original state 
after an undo or redo, because there nlay have been reorganization of the blocks 
due t o  othcr cliarges that varied the length of other fields. Holvever. if we think 
of a database ele~nent as  being a collection of blocks that together represent 
certain tupleb. tile11 a redo or undo can indeed restore the logical *state" of the 
eleme~it. O 

Hoxvever, it ]nay not be possible, as we suggested in Example 19.7, to  treat 
blocks as expandable through the mechanis~ll of overflow blocks. IVe nmay thus 
be able to  undo or redo actions only a t  a level higher than blocks. The next 
esample discusses the important case of B-tree indexes, nhere the management 
of blocks does not perinit ove~flow blocks, and we must think of undo and redo 
as occuiring a t  the ..logical.. level of the B-tree itself; rather tllan the blocks. 

Example 19.8 : Let us consider the problem of logical logging for B-tree nodes. 
Instead of xvriting the old and/or new value of a n  entire node (block) on the 
log. we n-rite a short record that  describes the change. These changes include: 

1. Insertion or deletion of a key/pointer pair for a child. 

2. Change of the key associated \x-it11 a pointer 

3. Splittirig or ~rlerging of nodes. 

Each of these changes call be indicated with a short log record. Even the 
splittin: operation requires only telling xvhere t,he split occurs; and ivhere tahe 
iiex  lodes are. Likewise: merging requires only a reference to the nodes in- 
volved; since rhe manner of rnergirlg is determined by the B-tree rnallagenlent 
algorithms used. 

csillg logical iljii!at~ rerorris of these tj-pesalloirs us to  release locks earlier 
than xrould othern-ise be required for a recoverable schedule. The reasoil is 
that d i r t -  reads of B-tree blocks are never a problem for the transaction that 
reads tl~ein. provided its only purpose is to  use the B-tree t o  locate the data 
the transaction needs to access. 

For instance. suppose that tra~lsactioll T reads a leaf node dY. but the trans- 
action c- tilat 1a.t wrote -\- lates aborts. and sorne change nlade to S (e.g.; the 
illscrrioll of a nelr keT/lloillter pair into due to  a n  insertion of a tuple b\. 

liceds to be undone. If T has also inserted a key/poi~~ter  pair into S. then it is 
liot possiMe to restore '. to  the !ray it was before LT inodified it. Hoxevcr. tlie 
effect of L- on -\- call be undone; in this exa~nple n-e would delete the key/pointer 
pair that C had iiiscrted. Tlie resulting 5 is riot the same as that irllich ex- 
isted before U operated: it has the i~lsertion made by T. Hon-ever, there is no 
database inconsistency. siilcc the B-tree as  a ivhole continues to reflect only the 



1000 CHa4PTER 19. MORE ABOUT TRAA7S.4CTION AlANrlGEJlEl-T 

changes made by committed transactions. That is, we have restored the B-tree 
a t  a logical level, but not a t  the physical level. 

19.1.8 Recovery From Logical Logs 

If the logical actions are idempotent - i.e.. they can be repeated any number 
of times without harm - then we can recover easily using a logical log. For 
instance, we discussed in Example 19 6 how a tuple insertion could be repre- 
sented in the logical log by the tuple and the place within a block where the 
tuple was placed. If we write that tuple in the same place two or more tune5 
then it is as if we had written it once. Thus. when recovering, should \ve need 
to redo a transaction that inserted a tuple, we can repeat the insertion into 
the proper block at  the proper place, without worrying whether me had a l read~  
inserted that tuple. 

In contrast, consider a situation ishere tuples can move around withi11 blocks 
or between blocks, as in Examples 19.7 and 19.8. Sow, we cannot associate a 
particular place into which a tuple is to be inserted; the best we can do is place 
in the log an action such as '.the tuple t was inserted somewhere on block B.. 
If we need to redo the insertion of t during recovery, we may ~r,iild up with t n o  
copies o f t  in block B. W'oise, we may not know whether the block B 1vit11 tlle 
first copy o f t  made it to  disk. Another transaction writing to  another database 
element on block B may have caused a copy of B t o  be written to disk. for 
example. 

To disambiguate situations such as this ~vhen we recover using a logical log. 
a technique called log sequence numbers has been developed. 

Each log record is g i ~ e n  a number one greater than that of tlle previous 
log record.' Thus, a typical logical log record has the form <L,T. .I. B>. 
where: 

- L is the log sequence number, an integer. 

- T is the transaction involved. 

- A is the action performed by T. e.g., "insert of tuple t." 

- B is the block on which the action was performed. 

For each action, there is a cornpensating action that logically undoes the 
action. -4s discussed in Esample 19.8. the compensating action niny not 
restore the database to  exactly the same state S it ~vould liar-e I ~ c c ~ l  in 
had the action never occurred, but it restores the database to a statc that 
is logically equivalent to S. For instance, the compensating action for 
"insert tuple t" is "delete tuple t." 

'~ven tua l ly  the  log sequence numbers must restart a t  0; but the time hetween restarts of 
the sequence is so large that no ambiguity can occur. 

19.1. SERMLIZ.4BILITY AND RECOVERABILITY 

If a transaction T aborts, then for each action performed or1 the database 
by T, the compensating action is performed, and the fact that this action 
was performed is also rccorded in the log. 

Each block maintains, in its header, the log sequence number of the last 
action that  affected that block. 

Suppose noxv that we need t o  use the logical log to  recover after a crash. 
Here is an outlirie of tlle steps to  take. 

1. Our first step is to  reconstruct the state of the database at  the time of the 
crash. including blocks xvhose current values were in buffers and therefore 
got lost. To do so: 

(a) Find the most recent checkpoint on the log, and determine frorn it 
the set of transactions that nere active a t  that time. 

(b) For each log entry <L,T, A, B>, compare the log sequence number 
IV on block B with the log sequence number L for this log record. 
If !V < L, then redo action A: that  action was never perfornled on 
block I?. However, if N 2 L. then do nothlng; the effect of '4 was 
already felt by B. 

(c) For each log entry that  informs us that  a transaction T started, com- 
mitted, or aborted, adjust the set of active transactions accordingly. 

2. The set of transactions that remain active .evllcn .se reach the end of the 
log must be aborted. To do so: 

(a) Scan the log again, rhis time from the end back to the plel-ious check- 
point. Each time we encounter a record <L. T, A. B> for a transac- 
tion T that must be aborted. perfor111 the compensating action for 
-4 on block B and record in the log the fact that that compensatillg 
action was performed. 

(b) If we must abort a tiansaction that began prior to  the most recent 
checkpoint (i.e., that transaction was on the active list for the check- 
p i l l t ) .  then continue back in the log until tile start-records f o ~  all 
such trailsactions have been found. 

(c) Write abort-records in the log for each of the transactions we had to 
abort. 

19.1.9 Exercises for Section 19.1 

* Exercise 19.1.1 : Consider all \\-ays to  insert locks (of a single type only. as in 
Section 18.3) into the sequellce of actiorls 

so that the transaction TI is: 
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a )  Two-phase locked, and strict. 19.2 View Serializability 

b) Two-phase locked, but not strict. 

Exercise 19.1.2: Suppose that each of the sequences of actions below IS fol- 
lolved by an abort action for transactio~l TI. Tell whicli transactions need to be 
rolled back. 

* a)  r1(24); rz(B); wl(B); ~ 2 ( C ) j  r j (B);  r3(C); 703(D); 

b) r l  (A): ml (B); rz(B); 102(C); r3(C); w3(D); 

c) r2(A); r3(A); r l (A);  w ( B ) ;  r2(B): rz(B); m2(C); r3(C); 

d) 72(-4); r3(A); r l (A);  wl(B); rd(B); IUL(C); r3(C); 

Exercise  19.1.3: Consider each of the sequences of actions in Exercise 19.1.2. 
but now suppose that  all three transactions cornrnit and write their cornillit 
record on the log immediately after their last action. Hon-ever, a crash occurs. 
and a tail of the log mas not writtcn to  disk before the crash and is therefore 
lost. Tell, depending on where the lost tail of the log begins: 

2. f hat transactions could be consideled uncomnlitted9 

ii. ilre any dirty reads created during the recovery process? If so. n-hat 
transactions need to he rolled back? 

zii. \$-hat additional dirty reads could have been created if the portion of tlie 
log lost was not a tail. but rather solne potions in the middle? 

! Exercise 19.1.4 : Consider the folloa-ing tn-o transactions. 

TI: WI (-4): (B); r~ (C): cl; 
T2: WZ(-4): TZ(B):  ? U ~ ( C )  CZ; 

* a)  HOW nnany schedules of Tl and T2 are rccovcrable? 

b) Of these. how many are .ICR sclietlules? 

c) How many are both rccoveral~lc and scrializnble? 

d) How many are both .iCR and serializable? 

Exercise  19.1.5: Give an example of an .ICR schedule wit11 shared and es- 
clusive locks that is not strict. 

Recall our discussion in Section 18.1.4 of how our true goal in tlie design of a 
scheduler is t o  allow only schedules that  are serializable. We also saw how tiif- 
ferences in what operations transactions apply to the data  call affect whether or 
not a given schedule is serializable. lye also learned in Section 18.2 that sched- 
u l e r ~  nor~nally ellforce "conflict serializability," which guarantees serializability 
regardless of what tlie transactiolls do with their data. 

However, there are weaker conditions than conflict-serializability that  also 
guarantee serializability. In this sectiorl we shall consider one such condition, 
called .'vie\v-serializability:' Intuitively, view-serializability considers all the 
connectio~is between transactions T and li such that T writes a database el- 
ement ~vhose value U reads. The key difference between view- and conflict- 
serializability appears when a transaction T writes a value A that  no other 
transaction reads (because some other transaction later writes its om11 value for 
.A). In that case, the KT(-4) action can be placed in certain other povitiolls 
of the schedule (where A is like~vise never read) that ~vould not be permitted 
under the definition of conflict-serializability. In this section, 11-e shall define 
vie~v-serializability precisely and give a test for it. 

19.2.1 View Equivalence 

Suppose we have two scheduIcs S1 and S2 of the same set of transactions. 
Imagine that there is a hypothetical transaction To that wrote initial \alu?s for 
each database element read by any transaction in the schedules, and another 
hypothetical transaction T j  that reads every element written by one or more 
tra~isactions after each schedule ends. Then for every read action ri(*.I) in one 
of the schedules. 17c can find the write action l u j ( ; l )  that most closely preceded 
the read in question.' We say T, is the source of the read action ri(=l). So te  
that transaction Tj could be the lippothetical initial tra~isactioll To, and Ti 
could be Tf . 

If for every read action ill one of the schedules, its source is the same in 
the other schedule, we say that S1 and Sg are view-equivalent. Surely, view- 
equivalent schedules are truly equivalent; they each do the same when executed 
on any one database state. If a scliedille S is vie~v-equivalent to  a serial schedule. 
we say S is view-serializable. 

1 E x a m p l e  19.9 : Consider the \chetlulr S defined by: 

TI : rl(-J) 1L-1 ( B )  
T?: r2(B) ~ " ( ~ 4 )  w2(B)  
73 : r3(-4) 1 ~ ' ~  (B) 

'~Vhile we ha\e not previously prevented a transaction from writing an element twice. 
there is generally no need for it t o  do so. and in this study it is useful to assume tha t  a 

f transaction only jvrites a given element once. 
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Sotice that vie have separated the actions of each transaction vertically: to 
indicate better which transaction does what; you should read the schcd~lle from 
left-to-right, as usual. 

In S ,  both TI and T2 write values of B that are lost; only tbe value of 
B written by T3 survives to the elid of the schedule and is "read.' by the 
hypothetical transaction Tf. S is not conflict-serializable. To see rvhi ,  first note 
that T2 writes A before TI reads A: so l'? must precede TI in a hypothetical 
conflict-equivalent serial schedule. TIie fact that  the action ,lnl (Bj precedes 
IC~(B)  also forces TI to precede T2 ill any co~iflict-equivalent serial schedulc. 
Yet neither a l ( B )  nor l(i2(B) has any long-term affect on tlie database. It  is 
these sorts of irrelevant \\,rites that vien.-serializability is able to  ignore, when 
determining the true constraints on an equivalent serial schedule. 

hIore precisely, let us consider the sources of all the reads in S: 

1. The source of rz(B) is To, since there is no prior write of B in S .  

2. The source of rl(A) is T2, since T.l most recently wrote -4 before the read. 

3. Likewise, the source of r3 (-4) is T2. 

4. The source of the hypothetical read of =I by Tf is T2. 

5. Thc source of thc hypothetical read of B by Tf  is TJ, the last wi te r  of B. 

Of course, To appears before all real transactions iri any schrtiule, arid Ij ap- 
pears after all transactions. If we order the real transactions (T.L: T I .  T3). then 
the sources of all reads are the same as in schedulc S .  That is, T2 reads B, and 
surely TO is the previous "15-riter." Tl reads -4; but Tz already wrote .-l. so the 
source of rl(.4) is T2, as in S .  T3 also reads .4: but since the prior T.2 \{-rote -4. 
that is the source of r3(.-l), as in S.  Finally, the hypot,hctical Tf reads -4 and 
B j  but the last writers of d and B in the sched~le (T2: TI, T3) are T2 and T3 rc- 
spectivel!; also as in S .  K e  conclude that S is a view-serializable scliedule, and 
the schedule represented by the order ( f i ,  TI :  T 3 )  is a vien.-cquivaleiit schedule. 

19.2.2 Polygraphs and the Test for View-Serializability 

Therc is a gcneralization of the precedence graph. ivhicll n-c, iiscd to tcst co11- 
flict scri;ilixal~ility in Section 18.2.2. that reflects all thc prcc.odcncc, constrai~lts 
required 1))- thc dc~finition of vicn- scl.ializability. \Ye tl(+i~lr) ill(, pol!/grclpli for ;i 

schedule to consist of the follo~ving: 

1. -1 node for cach transaction and additional rlodcs for tlic hypothetical 
transactions To arid Tf. 

2. For each action r , ( S )  with source T,. place an arc froni T, to  T,. 

3. Suppose Tj is the source of a read ri(X), and Tk is another ~vriter of X. 
It is not allowed for Tk to  intervene between T, and Ti, so it must appear 
either before T, or after Ti. nTe  represent this condition by a n  arc pair 
(sho~r-n dashed) from Tk t o  Ti and froni Ti to  Tk.  Intuitively: one or the 
other of an arc pair is .'real," but lve don't care which, and when x e  t ry 
to make the polygraph acyclic, we can pick whichever of the pair helps to  
make it acyclic. Honever? there are important special cases where the arc 
pair becomes a single arc: 

(a) If T j  is To, then it is not possible for Tk t o  appear before T', so we 
use an arc Ti + Tk in place of the arc pair. 

(b) If Ti is Tf ;  then Tk cannot follow Ti, so we use an arc Tk + Tj in 
place of the arc pair. 

B A 

Figure 19.4: Beginxling of polygraph for Esample 19.10 

Example 19.10: Consider the schedule S from Example 19.9. \Ire show in 
Fig. 19.4 the beginning of the polygraph f o ~  S ,  where only the nodes and the 
arcs fi-om rule (2) have hcen placed. \Ye have also indicated the database 
elemcnt causing each arc. That is, -4 is passed from T2 to  TI. T3. and T f ,  while 
B is passed fro111 To to T2 and from T3 to Tf .  

?;o\v, n.e lllust considel n-hat transactioils might interfere with each of these 
five connections by n-~iting the same clen~cnt bet~vecn them. These potential 
interferences are ruled out by the arc pairs from rule (3). although as n-e shall 
see, in this example each of the arc pairs inrolves a special case and becomes a 
single arc. 

Consider the arc & -+ Ti based on eleliler~t d. The only writers of A are To 
and T2. and ncitller of rllem can get in tlie iniddle of this arc: since To cannot 
move its posirioll. and T2 is already an a i d  of the arc. Thus. 110 additional arcs 
are needed. ;\ sinlilar argurntnt tells us no additional arcs are needed to keep 
writers of .-I outside the arcs T2 -+ 7; and T? -t Tf. 

S o ~ r -  collsider the arcs based on B. Xote that To. TI. T?. and T3 all n-rite 
B. Consider the arc To -+ T2 first. TI and T3 are otlier writers of B: To and T2 
also ~yrite B; but as sav,-. the arc ends cannot cause interfererlce. so we need 
not consider them. -1s we cannot place TI bet\\-een To and T2, in principle \re 
need tlic arc pair (TI -+ To T.r -+ T I ) .  Honever. nothing can precede To, so 
the optioll TI -+ To is not possible. \Ye may in this special case just add the 
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arc T2 -+ Ti to the polygraph. But this arc is already there because of .4, so in 
effect, we make no change to the polygraph to keep Ti outside the arc To -+ T2. 

We also cannot place T3 between To and T2. Similar reasoning tells us to 
add the arc Tz -+ T3, rather than an arc pair. However, this arc too is already 
in the polygraph because of A, so we make no change. 

ivext, consider the arc T3 -+ T f .  Since To, T I ,  and Tz are other writers of 
B, we must keep them each outside the arc. To cannot be moved between T3 
and T f :  but TI or Tz could. Since neither could be moved after T f .  r e  must 
constrain Ti and T.L to  appear before T3. There is already an arc Tz -+ T3, but 
we must add t o  the polygraph the arc Tl -+ T3. This change is the only arc we 
must add to the polygraph, whose final set of arcs is shown in Fig. 19.5. 

Figure 19.5: Complete polygraph for Example 19.10 

Example 19.11 : In Example 19.10, all the arc pairs turned out to  be single 
arcs as a special case. Figure 19.6 is an example of a schedule of four transac- 
tions where there is a true arc pair in the polygraph. 

7-3(C); 
wl ( B ) ;  

7-4 (B):  
U'3 (A) : 

T4 (C); 
w2 (0): 7-2 ( B ) ;  

w4(.4); u:4(B); 

Figure 19.6: Esample of transactions whose polygrapl~ requires an arc pair 

Figuie 19.7 sho\vs the polygraph, with only the arcs that conle fiolil the 
source-to-reader connections. .As in Fig. 19.4 we label each arc by the element (s) 
that require it. We must then consider the possible ways that arc pairs could 
be added. As we saw in Example 19.10, there are several silnplifications Ive can 
make. \Then avoiding interference with the arc T, -t T,, the only transactiol~s 

that need be considered as Tk (the transaction that  cannot be in the middle) 
are: 

\Vriters of a n  e!ement that caused this arc T, -+ T,. 

But not To or T f ,  15-hich can never be Tn.. and 

S o t  Ti or T,, the ends of the arc itself. 

\\*it11 these rules in mind. let us co~lsider the arcs due to database element .4. 
\\-l-hich is xritten by To. T3. and T4. \Ye need nut consider To a t  all. T3 must 
not get between T4 -+ T f .  so \ve add arc T3 -+ T4; remember that  the other 
arc in the pair, Tf + T3 is not an optiotl. Likewise, T3 must not get between 
To -+ Tl or To -+ T2,  tvhich results in the arcs TI -+ T3 and T2 -+ T3. 

Figure 19.7: Beginning of pol\-graph for Example 19.11 

Sou-, coilsider the fact that  T4 also must not get in the middle of an alc 
due to  -4. It is all end of T4 -+ T f .  so that a lc  is irrelevant. TI must not get 
b e t ~ ~ e e n  To -+ TI or To -+ T? n-hicli ~esu l t s  in the arcs TI T4 and ir?2 4 T4. 

Ses t .  let us consider the arcs due to  B. nhich is wi t t en  by To, T1, and T4. 
.igain we need not consider To. The only arcs due to  B are TI -+ T?, TI -+ T4, 
and T4 -t T f .  Tl cannot get in the middle of the first t ~ o ,  but the third requires 
arc Tl -t T4. 

T4 can get in the middle of TI -+ fi only. This arc has neither end a t  To 
or Tf: SO it really requires an arc pair: (7.1 -+ T I ,  Tz -+ T4). We show this arc 
pair, as well as all the other arcs added, in Fig. 19.8. 

Test.  consider the writers of C:  To and Ti. -1s before, To cannot present a 
problem. -41~0, TI is par[ of el-ery arc due to C'. 50 it cannot get in the middle. 
Similarl\-. D is ~ ~ r i t t e n  only by To and f i .  so n-c can dctcrmine that no Inore 
arcs are nccessar): The final j ~ o l ~ g r a p h  is thus the one in Fig. 19.8. 

i 19.2.3 Testing for View-Serializability 
Since we must choose only one of each arc pair. we can find an equivalent serial 
order for schedule S if and onl? if there is son-he selection from each arc pair 
that turns S's polygraph into an acyclic graph. TO see why, notice that if there 
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Figure 19.8: Complete polygraph for Example 19.11 

is such an acyclic graph, then any topological sort of the graph gives an order in 
which no writer may appear between a reader and its source, arid every n-riter 
appears before its readers. Thus, the reader-source connections in the serial 
order are exactly the same as in S ;  the two schedules are view-equivalent, and 
therefore S is view-serializable. 

Conversely, if S is view-serializable. then there is a view-equivalent serial 
order S' E ~ e r y  arc pair (Tk + T,. T, -t Tk) in S's polygraph niust have 
Tk either before T, or after T, in S': otherw~se the writing by Tk breaks the 
connection from T, to  T,, which means that S and Sf are not view-equivalent 
Likewise every arc in the polygraph must be respected by the transaction order 
of S f .  Ke conclude that there is a choice of arcs from each arc pair tliat makes 
the polygraph into a graph for which the serial order S' is consistent with each 
arc of the graph. Thus, this graph is acyclic. 

Example 19.12: Consider the polygraph of Fig. 19.5. It  is already a graph. 
and it is acyclic. The only topological order is (T2, TI, T3), which is therefore a 
view-equivalent serial order for the schedule of Example 19.10. 

Sow consider the polygraph of Fig. 19.8. We must consider each choice from 
the one arc pair. If we choose T4 -t TI. then there is a cycle. Honever, if we 
choose Tz + T4, the result is an acyclic graph. The sole topological order for 
this graph is (Tl.T2, T3, T4). This order yields a view-equivalent serial order 
and shon-s that the original schedule is vie\\--serializable. CI 

19.2.4 Exercises for Section 19.2 

Exercise 19.2.1 : Draw tlie polygraph and finti all view-equ~valent se~ial  orders 
for the following schedules: 

* a) ~1( .4) ;  r2(.4); rg(.4); wl (B); w2(B); tc3(B); 

C) r1 (.-l): r3 (D) :  Z L - ~  (B): rd(B): u3(B); r4(B): 1b(C) :  rs(C): w 4 ( ~ ) ;  r j ( ~ ) ;  
1LV5 (B): 

! Exercise 19.2.2 : Below are solne serial schedules. Tell 1io1v many schedules 
are (i) coilflict-eqlli\.alcnt and ( z i )  vie\-;-equivalent to  thcse yerial ~ ~ I i ~ d u l ~ s .  

* a) 1-1 (-4); (ul(B); ~ ~ ( ~ 4 ) ;  lcq(B); r3('A) w3(B); that is, three transactions 
each read .4 and then write B.  

b) r l  (.A); u)l ( B ) :  lC1 (C): r3 (-4): ulr (B ) .  1r2(C); that is. t ~ o  trailsactioris each 
read -4 and then write B and C. 

19.3 Resolving Deadlocks 

Several tinles \\-e have obscr\.ed that concurri.ntly es~cut ing  transactiorls can 
compete for resources and thereby reach a state \\-here there is a dearflock: each 
of several transactions is waiting for a resource held by one of the otllcrs, and 
none call make progress. 

In Section 18 3.4 \ve saw how ordinaly operation of t~vo-pht~se-locked 
transactions can still lead to a deadlock, because each has lockcd sonie- 
thing that an0thc.r tral~sactio~i also needs to lock. 

e I11 Scc.tlun 15.-1.3 n e  saw how the ab11it)- to 11pgr.idt. loclcs from illarc~rl to  
esclusiTe can cause a deadlock because each trdnsaction holds a shared 
lock on the same elerneilt aiid lvarlts to upgrade the lock. 

There are t ~ v o  broad ap1,roaches to dealing u-it11 deadlock. \IF car1 detect 
deadlocks and fix tlle~n. or we call manage traiisactio~ls in such a way that 
deadlocks are never able to form. 

19.3.1 Deadlock Detection by Timeout 

\\-hen a deadlock exists, it is genclrally iulpossible to repair the situation so tliat 
all transactions involved can proceed. Thus. at least one of the traiisactio~ls \\-ill 
have t o  he rolled back - al~ortcd and rcstartcd. 

The silllplcsr 1 t - a ~  to  detect ant1 resolve deadlocks is \\.it11 a tinleo~rt. Pllt 
a limit on lion- long zi tr;rnsac.tio~~ may he active. and if a trilnsaction excectls 
this tinle. roll it 1,ac.k. For csamplc. in a si~nple transaction qs tc in .  IV\I<Y(' 

t?-pica1 transactions cxecutc ill nlillistc~ollds. a tirneout of one niiiiutc ~\-o~lltl 
affect only transactions that are caught in a deadlock. If some transactions 
are nlore colnplcx. n-e might ~vant tlie tinieout to occur after a longer interval. 
box-ever. 

Sotice that nhen one transaction involved in the deadlock tirncs out. it 
releases its locks or o t l i c ~  resources. Thus. tllercl is a chance that the other 



transactions involved in the deadlock will complete before reaching their timeout 
limits. However. since transactions involved in a deadlock are likely to have 
started at  approximately the same time (or else, one would have completed 
before another started), it is also possible that spurious timeouts of transactions 
that are no longer involved in a deadlock will occur. 

19.3.2 The Waits-For Graph 

Deadlocks that are caused by transactions waiting for locks held by another can 
be addressed by a waits-for graph, indicating which transactions are waiting for 
locks held by another transaction. This graph can be used either to detect 
deadlocks after they have formed or to prevent deadlocks from ever forming. 
We shall assume the latter, which requires us to  maintain the waits-for graph 
at all times, refusing to allow an action that creates a cycle in the graph. 

Recall from Section 18.5.2 that a lock table maintains for each database 
elenlent X a list of the transactions that are ~i-aiting for locks on X, as nell as 
transactions that currently holtl locks on X. The waits-for graph has a node 
for each transaction that currently holds a lock or is waiting for one. There is 
an arc from node (transaction) T to node U if there is some database elenleiit 
d such that: 

1. li holds a lock on A, 

2. T is waiting for a lock on A, and 

3. T cannot get a lock on A in its desired mode unless U first releases its 
lock on .L3 

If theie are no cycles in the waits-for graph, then each tiansactioii can 
evenrually complete. There will be at  least one transactiori u-aiting for no other 
transaction, arid this transaction snrely can complete. At that tlme. t l i e~e  will 
be at  least one other transaction that is not waiting, which can complete. and 
FO 011. 

Hon-ever. if there is a cycle. then no transaction in the cycle can ever make 
progress. so there is a deadlock. Thus. a strategy for deadlock avoidance is to 
roll back any transaction that makes a request that ~vould cause a cycle in the 
waits-for graph. 

Example 19.13: Suppose n-e have the following four transactions. each of 
n-hich reads one element and n-rites another: 

31n common sitnations, such as shared and exclusive locks; every waiting transacrion rvill 
have to w i t  until all current lock holders release their locks; but there are examples of systems 
of lock ]nodes where a transaction can get its lock after only some of the  c~lrrent locks are 
released: see Exercise 19.3.6. 

\Ye use a simple locking system \\-it11 only one lock mode, although the same 
effect nould be noted if we were to use a shared/exclusive system and took 
locks in thc appropriate niode: sharcd for a read and exclusive for a write. 

5) 12(.4): Denied 
6) l 3  (C); Denied 

7 )  /4(z4); Denied 

3) l l (B):  Denied 

Figure 19.9: Beginning of a schedule mith a deadlock 

In Fig. 19.9 is the beginning of a scliedule of these four transactions. In the 
first four steps. each transaction obtains a lock on the elenlent it  wants to read. 
--It step (3), T2 tries to  lock .4: but the request is denied because TI already has 
a lock on -4. Thus: T._, waits for TI: and we draw an arc from the node for T.2 
to  the node for TI .  

Figure 19.10: \Yaits-for graph after step (7) of Fig. 19.9 

Similar1)-. at step (6) T3 is denicd a lock on C because of T2. and at step (7). 
T4 is de~iieti a lock on .f because of TI. The waits-for graph a t  this point is as 
sho\\-n in Fig. 19.10. There is 110 cycle in this graph, 

At step (8). TI  nus st wait for the lock on B held by T3. If \ re  allon-ed TI to 
wait. then there ~ o u l d  be a cycle in the waits-for graph involving Ti. Tz, and 
T3. as suggested by Fig. 19.11. Since they are each waiting for allother to  finish, 
none can iilake progress. and therefore there is a deadlock involving these three 
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Figure 19.11: Waits-for graph with a cycle caused by step (8) of Fig. 19.9 8 - 

Figure 19.12: 1I'aits-for graph after TI is rolled back 

transactions. Incidentally, T4 could not finish either, although it  is not in the 
cycle. because T4's progress depends on TI making progress. 

Since we roll back any transaction that would cause a cycle, then TI must 
be rolled back, yielding thc waits-for graph of Fig. 19.12. TI relinquishc~s its 
lock on A, which may be given to either T2 or Ti. Suppose it is given to T2. 
Then T2 can complete. n-hereupon it relinquishes its locks on .4 and C. Tow T3.  
which needs a lock on C, and T4, which needs a lock on 21, call both complete. 
At solne time, Tl is restarted, but it cannot get locks on .4 and B until T2. T3.  
and T4 have completed. 

19.3.3 Deadlock Prevention by Ordering Elements 

Sow. let us consider several more methods for deadlock prevention. The first 
requires us to order database elements in some arbitrary but fixed order. For 
instance, if database elements are blocks, Ive could order them lexicographically 
by their physical address. Recall from Section 8.3.4 that the physical address 
of a block is normally represented by a sequence of bytes describing its locntioll 
trithin the storage sl-stem. 

If cvcry transaction is required to request locks on elenicnts in order ( a  con- 
dition that is not realistic in   no st applications), then there can be no deadlock 
due to transactions waiting for locks. For suppose T2 is waiting for a lock on 
.-I1 held by T I ;  T3 is waiting for a lock on -42 held by T2,  and so on, while T,, 
is waiting for a lock on An-1 held by Tn-l, and Tl is xvaiting for a lock on .4, 
held by T,,. Since 2'2 11% a lock on -42 but is waiting for .AI, i t  nlust be that 
.-I2 < -41 in t'lie order of eleulents. Similarly, < for i = 3 , 4 , .  . . ; n.  But 
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since Tl has a lock on ,A1 while it is waiting for A,, it also f o l l o ~ s  that  ill < A,. 
\\re noly have .Al < An < -An-1 < . . . < -42 < .-I1, which is impossible, since it 
implies A1 < :I1. 

Example 19.14: Let us suppose elenlents are ordered alphabetically. Then 
if the four transactions of Examplel9.13 are to lock elelllents in alphabetical 
order, ?il and T4 must be ren-ritten to  lock elements in the opposite order. 
Thus, the four transactions are noxr: 

Figure 19.13 shows what happens if the transactions execute ~v i th  the same 
timing as Fig. 19.9. TI begins and gets a lock on A. T2 tries t o  begin next by 
ge t t~ng  a lock on -4, but must ~vait for TI. Then. T3 begills by getting a lock 
on B. but T4 is unable to begin because it  too needs a lock on A, for \vhich it 
must wait . 

TI Tl T3 
1)  il(&4):rl(-4): 

2 l 2  (A): Denied 
3 ) 

13(B): r3(B): 

T4 

14(d); Denied 

Figure 19.13: Locking elenlentc in al~llnletical order prevents deadlock 

Since r.) is stalled, it cannot proceed, and follo\ving the order of events in 
Fig. 109.  T3 gets a turn next. It is able to get its lock on C. whereupon it 
conipletes at  step (6). Soi\-. iviilr T3's locks on B and C released. TI is able 
to  co~nplete. which it does a t  step (8). At this point. the lock on -4 becomes 
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available, and we suppose that it is given on a first-conie-first-served basis t o  T2. 
Then, T2 can get both locks that it needs and completes a t  step (11). Finally. 
T4 can get its locks and completes. 

19.3.4 Detecting Deadlocks by Timestamps 

\re  can detect deadlocks by maintaining the waits-for graph, as we discussed 
in Section 19.3.2. Ho~vever, this graph can be large, and analyzing it for cj-cles 
each time a transaction has to  wait for a lock can be time-co~isuming. An alter- 
native to maintaining the waits-for graph is to  associate with each transaction 
a timestamp. This timestamp: 

Is for deadlock detection only; it is not the same as the timestamp used for 
concurrency control in Section 18.8, even if timestamp-based concurrency 
control is in use. 

In particular, if a transaction is rolled back, it restarts with a new, later 
concurrency timestamp, but its timestamp for deadlock detection never 
changes. 

The timestamp is used when a transaction T has to  wait for a lock that 
is held by another transaction U. Two different things happen. depending on 
whether T or U is older (has the earlier timestamp). There are two different 
policies that can be used to Inanage transactions and detect deadlocks. 

1. The Wait-Die Scheme: 

(a) If T is older than U (i.e.. the timestamp of T is smaller than L*'s 
timestamp), then T is allo~ved to xai t  for the lock(s) held by U. 

(I)) If li is older than T ,  then T .'dies": it is rolled back. 

2. The iifound- Wait Scheme: 

(a) If T is older than CT, it .'wounds" C.  Usually. the "wound" is fatal: 
C' must roll back and relinquish to  T the lock(s) that  T needs from 
U. There is an csception if, by the time the "nound" takes effect. C 
has already finished and lcleased its locks. In that case. C' survives 
and need riot be rolled back. 

(b) If C' is older than T. then T waits for the lotk(s) held by IT 

Example  19.15 : Let us consider the wait-die schcmc. using the transactions 
of Esalnple 19.14. \Ye shall assume that T17T2: T.$. T4 is the order of times: i.e.: 
Tl is the oldest transaction. lye also assume that ~vhen a transaction rolls back. 
it does not restart soon enough to become active before the other transactions 
finish. 

Figure 19.14 sho\x-s a possible sequence of events under the wait-die schcme. 
TI gets the lock on .4 first. \Yhen T2 asks for a lock on 4, it dies; because TI 

2 l?(.A); Dies  
3) 13(B): r3(B): 

4) 
14(-4): Dies  

5) 13(C): w3(C): 

6) US(B): 1~3(C); 

12(=1); Waits 

12 (-4) ; 12 (c); 
T . ~  (C); t~'2(.4); 
~1 (--I) : t f 2  (C) ; 

r4 (D): 7c4(.4); 
T14(*4): 11.,(D); 

Figure 19.14: .Ictions of transactions detecting deadlock under the wait-(lie 
schenie 

TI T2 T3 T4 

1)  11(-4): rl(-4): 

2) l2 (A); Waits 
3) 13(B): r ~ ( B 1 ;  
1 \ l4 (-4): Waits 
- /  

5) l1 (B):  (B): Wounded 

6) TL (-4) : u 1 (B): 

7 )  1*(.4): 12 (C): 
8) r2 (C): lC2 (-4); 

u2(:l): 112 (C) :  
14 (-4): 1, (Dl :  
r4 ( D ) :  1 1 ' ~  (-4): 
u4(-4) :  u , ( D ) :  

I i ( B ) :  r < ( D ) :  
I : (C):  u.i(C): 
11,3(B): ~ ( c ) :  

Figure 19.15: Actions of transactions detecting ticadlock tnldcr the I\-ound-wait 
sclle~ile 
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Why Timestamp-Based Deadlock Detection Works 

We claim that  in either the wait-die or wound-wait scheme, there can be 
no cycle in the waits-for graph, and hence no dcadlock. Suppose other- 
wise; that is. there is a cycle such as TI -+ T2 -+ T3 -+ TI. One of the 
transactions is the oldest, say T?. 

In the wait-dic scheme, you can only wait for younger transactions. 
Thus, it is not possible that TI is waiting for TI, since T2 is surely older 
than TI. In the wound-wait scheme, you can only wait for older transac- 
tions. Thus, there is no way Tl could be 11-aiting for the younger T3. \Ye 
conclude that the cycle cannot exist, and therefore there is no deadlock. 

is older than T2. In step (3), T3 gets a lock on B, but in step (4). T4 asks for . 
a loclc on d and dies because TI, the holder of the lock on A, is older than T4. 
Sext, T3 gets its lock on C and conlpletes. n'hen Tl continues, it finds the lock 
on B available and also completes at  step (8). 

Sow, the two transactions that rolled back - T2 and T4 - start again. - 
Their timestamps as  far as deadlock is concerned, do not change: T2 is still 
older than T4. Honever, XT-e assume that T4 restarts first, a t  step (9). and when 
the older transaction T.L requests a lock on .-I a t  step ( lo ) ,  it is forced to n-ait. 
but does not abort. Ti completes a t  step (12), and then TI is allov-ed to run to 
completion, as slion-n in the last three steps. 

Example  19.16: Sext,  let us consider the same transactions running urlder 
the 11-ound-wait policy, as shown in Fig. 19.15. As in Fig. 19.14, Tl begins by 
locking .-I. When T2 requests a lock on .-I at  step (2); it waits, since Tl is older 
than T2. After T3 gets its lock on B a t  step (3), T4 is also made to wait for the 
lock on .a. 

Then, suppose that  TI cont,inues a t  step (5) with its request for the lock on 
B. That lock is already held by T3; but Tl is older than T3. Thus, TI .'wounds'- 
T3. Since T3 is riot yet finished, the rvound is fatal: T3 relinquishes its lock and 
rolls back. Thus; TI is able to complete. 

\\:hen Tl makes the lock on .1 available, suppose it is given to T2. n-hich 
is thcn a l~ le  to procccd. After T2, the lock is given to T4: which proceeds to 
coniplction. Finally. T3 restarts and co~llpletcs ~vithout interference. 

19.3.5 Comparison of Deadlock-Management Met hods 

In both the nait-die and n-ound-wait schc~n~es, older transactions kill off newer 
transactions. Since tra~isactions restart ivith their old timestamp. eventually 
each trallsaction becomes the oldest In tlie system and is sure to  complete. This 
guarantee. that every transaction eventually completes. is called n o  starvat~orl 
Xotice that otllcr schcnles described in this scction do not necessarily prevent 
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starvation; if extra measures are not taken, a transaction could repeatedly start,  
get in\-olved in a deadlock, and be rolled back. See Exercise 19.3.7. 

There is, however, a subtle difference in the way wait-die and wound-wait be- 
have. In wound-nait, a newer transaction is killed whenever a n  old transaction 
asks for a lock held by the newer transaction. If \ve assume that transactions 
take their locks near the time that  they begin, it will be rare that an old trans- 
action was beaten to  a lock by a new transaction. Thus, we expect rollback to 
be rare in wound-wait. 

On the other hand, when a rollback does occur, wait-die rolls back a trans- 
action that is still in the stage of gathering locks, presumably the earliest phase 
of the transaction. Thus, although wait-die Inay roll back more transactions 
than n-ound-xait, these transactions tend to have done little work. In contrast, 
when ~vound-~i-ait does roll back a transaction, it is likely to have acquired its 
locks and for substantial processor time to have been invested in its activity. 
Thus. either scheme may turn out to cause more wasted work, depending on 
the population of transactions processed. 

We sliould also consider the advantages and disadvantages of both wound- 
n-ait and wait-die xhen compared with a straightfor\vard construction and use 
of the waits-for graph. The important poi~lts are: 

Both wound-wait and wait-die are easier to  implement than a system 
that maintains or periodically constructs the waits-for graph. The disad- 
vantage of constructing the waits-for graph is even more extreme when 
the database is distributed. and the naits-for graph must be constructed 
from a collection of lock tables a t  different sites. See Section 19.6 for a 
discussion. 

Lsing the waits-for minimizes the number of times we must abort 
a transaction because of deadlock. fi never abort a transaction unless 
there really is a deadlock. On the other hand. either wound-wait or wait- 
die will solnetimes roll back a transaction when there a-as no deadlock. 
and no deadlock 11-ould have occurred had the transaction been allo~ved 
t o  survive. 

19.3.6 Exercises for Section 19.3 

Exercise 19.3.1: For each of the sequences of actions belorv. assume that  
shared locks are requested immediately hcfore each read action. and exclusive 
locks are lequested immediately heforc every \\-rite action. .ilso, unlocks occur 
imnlediately after the filial action that a transaction executes. Tell what actions 
are denied, and nhether deadlock occurs. Also tell holv tlie waits-for graph 
evolves during the executioll of the actions. If there are deadlocks, pick a 
transaction to abort, and show how the sequence of actions continues. 
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Exercise 19.3.2 : For each of the action sequences in Exercise 19.3.1, tell n-hat 
happens under the wound-wait deadlock avoidance system. .Assume the order of 
deadlock-timestamps is the same as the order of subscripts for the transactions, 
that is, Tl,T2, T3,T4. Also assume that transactions that  need to restart do so 
in the order that they were rolled back. 

Exercise 19.3.3 : For each of the action sequences in Exercise 19.3.1, tell 
what happens under the wait-die deadlock avoidance system. Make the same 
assumptions as in Exercise 19.3.2. 

! Exercise 19.3.4: Can one have a waits-for graph with a cycle of length n, but 
no smaller cycle, for any integer n > l ?  What about n = 1, i.e., a loop on a 
node? 

!! Exercise 19.3.5 : One approach t o  avoiding deadlocks is to require each trans- 
action to announce all the locks it wants a t  the beginning, and t o  either grant 
all those locks or deny them all and make the transaction wait. Does this ap- 
proach avoid deadlocks due to  locking? Either explain why, or give an example 
of a deadlock that can arise. 

! Exercise 19.3.6: Consider the intention-locking system of Section 18.6. De- 
scribe how to construct the waits-for graph for this system of lock modes. Espe- 
cially, consider the possibility that a database element A is locked by different 
transactions in modes IS and also either S or Ix. If a request for a lock on '1. 
has to  wait, what arcs do we draw? 

*! Exercise 19.3.7: In Section 19.3.5 we pointed out that  deadlock-detection 
methods other than wound-wait and wait-die do not necessarily prevent star- 
vation, where a transaction is repeatedly rolled back and never gets to  finish. 
Give an example of how using the policy of rolling back any transaction that 
~vould cause a cycle can lead to starvation. Does requiring that transactions 
request locks on elements in a fixed order necessarily prevent starvation? \That 
about timeouts as a deadlock-resolution mechanism? 

19.4 Distributed Databases 

We shall now consider the elements of distributed database systems. In a dis- 
tributed system, there are many, relatively autonomous processors that may 
participate in database operations. Distributed databases offer several oppor- 
tunities: 

1. Since many machines can be brought to  bear on a problem, the opportu- 
nities for parallelisn~ and speedy response to  queries are increased. 
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2. Since data  may be replicated a t  several sites, the system may not hare to  
stop processing just because one site or component has failed. 

On the other hand, distributed processing increases the complexity of every 
aspect of a database system, so we need to rethink how even the most basic 
components of a DBMS are designed. In many distributed environments, the 
cost of communicating may dominate the cost of processing, so a critical issue 
becomes how many messages are sent. In this section we shall introduce the 
principal issues, while the next sections concentrate on solutions to  two impor- 
tant problems that come up in distributed databases: distributed commit and 
distributed locking. 

19.4.1 Distribution of Data 

One important reason to distribute data is that the organization is itself dis- 
tributed among many sites, and the sites each have data that is germane pri- 
marily to that site. Some examples are: 

1. A bank may have many branches. Each branch (or the group of branches 
in a given city) will keep a database of accounts maintained a t  that branch 
(or city). Customers can choose t o  bank a t  any branch, but will normally 
bank a t  "their" branch, where their account data is stored. The bank 
may also have data  that is kept in the central office, such as employee 
records and policies such as current interest rates. Of course, a backup of 
the records a t  each branch is also stored, probably in a site that is neither 
a branch office nor the central office. 

2. A chain of department stores may have many individual stores. Each 
store (or a group of stores in one city) has a database of sales a t  that  
store and inventory a t  that store. There may also be a central office 
with data about employees, chain-wide inventory, credit-card customers, 
and information about suppliers such as unfilled orders. and what each 
is owed. In addition. there may be a copy of all the stores' sales data  in 
a "data warehouse." which is used to analyze and predict sales through 
ad-hoc queries issued by analysts: see Section 20.4. 

3. A digital library may consist of a consortium of universities that each hold 
on-line books and other documents. Search a t  any site xvill examine the 
catalog of documents available a t  all sites and deliver an electronic copy 
of the document to  the user if any site holds it. 

In some cases, what we might think of logically as a single relation has 
been partitioned among many sites. For example, the chain of stores might be 
imagined t o  have a single sales relation, such as 

Sales( i tern,  d a t e ,  p r i c e ,  purchaser)  



I Factors in Communication Cost I 
.As b a n d ~ i d t h  cost drops rapidly. one might wonder whether communi- 
cation cost needs to be considered when designing a distributed database 
system. Sow c e ~ t a i n  kinds of data are among the largest objects managed 
electronically, so even with very cheap communicatioil the cost of sending 
a terabyte-sized piece of data caniiot be ignored. Ho~vevcr, comlnunication 
cost generally involves not only the shipping of the bits, but several layers 
of protocol that  prepare the data for shipping, reconst i t~~te them a t  the 
receiving end, and manage the communication. These protocols each re- 
quire substantial computation. While computation is also getting cheaper, 
the con~putation needed to perform the communication is likely to remain 
significant, coinpared to the needs for conventional, single-processor exe- 
cution of key database operations. 

However, this relation does not exist physically. Rather. i t  is the union of a 
number of relations with the same schema, one a t  each of the stores in the 
chain. These local relations are called fragments, and the partitioning of a 
logical relation into physical fragments is called Aorzzontal decomposztion of 
the relation Sales. We regard the partition as "horizontal" because we ma?; 
visualize a single Sales relation with its tuples separated. by horizontal lines. 
into the sets of tuples a t  each store. 

In other situations, a distributed database appears to  have partitioned a 
relation "r~erticall~;" by decomposing ~vhat  niight be one logical relatiori into 
two or more, each with a subset of the attributes, and with each relation at  a 
different site. For instance. if lye want to  find out which sales a t  the Boston store 
\(-ere made to customers who are more than 90 days in arrears on their credit- 
card payments, it \%-ould be useful to  have a relation (or view) that included the 
item. date, and purchaser info~mation from Sales. alorig with the date of the 
last credit-card payment by that purchaser. Howel-er, in the scenario we are 
describing, this relation is decomposed vertically, and \ye ~vould have to join the 
credit-card-custorner relation at  the central headquarters with the fragment of 
Sales at  the Boston store. 

19.4.2 Distributed Transactions 

.I conscqucrice of the tlistribution of data is that a transaction Inay involve pro- 
cesses at  several sites. Thus. our lnodel of what a transaction is must change. 
So longer is a transaction a piece of code executed by a single processor conl- 
municating with a single scheduler and a single log manager a t  a single site. 
Rather. a transaction consists of conimunicating transactzon components. each 
at a different site and communicating with the local scheduler and logger Two 
important issues that  must thus be looked at  anelr. arc: 

1. How do n e  manage the comniit/abort decision when a transaction is dis- 
tributed? K h a t  happens if one component of the transaction wal1tS t o  
abort the ivhole transaction, ~yhile others encountered no problem and 
lyant to commit:' jve discuss a technique called ..two-phase commit" in 
Section 19.5: it allors the decision to he made properly and also frequently 
allows sites that ale up to operate even if s o n ~ e  other site(s) have failed. 

2. How do n e  assure serializability of transactions that involve components 
at  several sites'? \fi look a t  locking in particulal, in Section 186 and 
see how local lock tables can be used t o  support global locks on database 
r.lenlmts and thus support serialirab~lity of transactions in a distributed 
environment. 

19.4.3 Data Replication 

Oire important advantage of a distr~buted system is the ability t o  replicate data ,  
that is. to  make copier of the data  at  diffeiellt sites. One slotivation is that if a 
site fails, there may be other sites that can provide the same data that as a t  
tlie failed site. h second use is ill inlpmving the speed of query answrilrg by 
makillg a copy of needed data  available a t  tlie sites where queries are  initiated. 
For example: 

1. \ bank may lllake copies of current interest-rate policy arrilable a t  eacll 
branch. so a qucry about rates does not have t o  lie sent to  the central 
office. 

2. \ chain store may keep c o p i c ~ f  infolmation about soppliers a t  each 
store. so local rcqucsts for infornlatioll about suppliers (e.g.. thr  ma~lnger 
needs the phone n u ~ i ~ b e r  of a si~pplier to  cliecl; on a slliplne~lt) CBI be 
handled 11-ithout scndillg messages to the ccntral office. 

3 I digital library may temporarily cache a copy of a poplilar document at  
a school ~vlicre students haye bee11 assigned to read tlie docunlent. 

Holve\er. there are problems tlrat most bc faced a h e n  data is repli- 

cated. 

a) HoXv do w keep copies identical? 111 nsmce .  an update to  a replicated 
data elemel?t heconles a distri1,utc.d transaction that updates all copics. 

b) Holy do lye decide \illprc and llcjii illany copies to kerp'? The siori. cnl~i's. 
the Illore effort is rc<lllircd to   pil lilt^. 1 1 ~ t  tlic casirr qurrics ~>ECOI~IC.  For 
exalllple. a r~]atioll  flint is rarely opdatcd nright have copies crrryhllcre 
for lilaxinlrim efficiency. ivhile a frecl~icntly updated relation might have 
only one or t ~ o  copies. 

C) 1Yh.t happals "hen there is a cornnliillication failure in the netivork and 
different copies of the same tlstir have the o~port imity t o  evolve separately 
and must then be reconciled d e n  the netur-ork reconnects? 
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19.4.4 Distributed Query Optimization 19.5 Distributed Commit 
Tlie existence of distributed data also affects the complexity and options avail- 
able in the design of a physical query plan (see Section 16.7). Among the issues 
that must be decided as we choose a physical plan are: 

1. If there are several copies of a needed relation R, from which do rye get 
the valuc of R? 

2. If we apply an operator, say join, to  two relations R and S ,  n-e have 
several options and must choose one. Some of the possibilities are: 

(a) We can copy S to the site of R ant1 do tlie colnputation there. 

(b) We can copy R to the site of S and do the computation there. 

(c) 117e can copy both R and S to a third site and do the conlputation 
a t  that site. 

Which is best depends on several factors, including which site has available 
processing cycles. and whether the result of the operation will be combined 
with data at  a third site. For example. if we are computing (R w S )  w T. 
Tve may choose to ship both R and S to the site of T and take both joins 
there. 

If a relation R is in fragments R1, R2, . . . , R, distributed among several 
sites, 11-e should also replace a use of R in the query by a use of 

RI U R2 U . . . U R,, 

as we seiect a logical query plan. The query may then allow us to  simplify the 
expression significantly. For instance, if the R,'s each represent fragments of 
the Sales relation discussed in Section 19.4.1, arid each fragment is associated 
with a single store, then a query about sales a t  the Boston store might allon- 
us to leniove all R,'s except the fragment for Boston from the union. 

19.4.5 Exercises for Section 19.4 

*!! Exercise 19.4.1: The following exercise ~vill allow you to address sonie of 
the problcrns that come up when deciding 011 a replication strategy for data. 
Suppose there is a relation R that is accessed from n sites. Tlie it11 site issncs 
qi queries about R and 7 l i  updates to  R pcr second. for i = 1 . 2 : .  . . . n .  Thc 
sost of executing a query if there is a copy of R a t  the site issuing the cluerj- is 
c, wliile if tlierc is no copy there, and the query must be sent to some remote 
site: then the cost is 10c. The cost of esecuting an update is d for the copy of 
R at the issuing site and 10d for every copy of R that is not a t  the issuing site. 
.is a fij~lction of these parameters, how ~rould j-ou choose. for large ;en: a set of 
sites at ~vliich to  replicate R. 

In this section, n.e shall address the ~ r o b l e m  of holv a distributed transaction 
that has components a t  several sites can execute atomically. The next section 
discusses another important property of distributed transactions: executing 
them serializably. l i e  shall begin with an example that illustrates the problenis 
that might arise. 

E x a m p l e  19.17 : Consider our example of a chain of stores mentioned in Sec- 
tion 19.4. Suppose a manager of the chain wants t o  query all the stores, find the 
ii~ventory of toothbrushes at  cach, and issue instructions to  move toothbrushes 
from store i o  store in order t o  balance the inventory. The operation is done 
by a single global transaction T that has cornpoilent T, at  the i th  store and 
a coniponent To a t  the office where the manager is located. The sequellce of 
activities performed hy T are summarized belolv: 

1. Corilponellt To is created at  tlie site of the nlanager. 

2. To swds messages t o  all the stores instructing them t o  create components 
TI. 

3. Each T, executes a q u e q  at  store i to discover the number of toothbrushes 
in ill\-entory and reports this ~ i u ~ n b c r  to  To. 

1. To takes these nuinhers and deterlni~les, by some algorithln we shall not 
discuss. \\-hat d~ipmcnts  of tootht)rushci are desired. To then sends mcs- 
sages such as -store 10 should ship .500 toothblushes to store 7" to  the 
appiopliate stores ( ~ t o r e s  7 and 10 in this instance). 

3. Stores receiving instructions update their inventory and perfor111 the ship- 
ment s. 

19.5.1 Supporting Distributed Atomicity 

There are a nulnher of things that could go w o n g  in Example 19.17, and many 
of these result in violations of the atomicity of T .  That is, some of the actions 
comprising T get executed. b ~ ~ t  o t l i ~ r s  do not. SIechanisms such as logging and 
recovery. ~vhi,.h n-c assume arc prespnt a t  each site, ~vill assure that each Ti is 
csecuted atomicail?. but do not asslirc that T itself is atomic. 

E x a m p l e  19.18 : Suppose a b11g in rhc algorithnl to  redistribute tootlibrushes 
migilt cause store 10 to be instructed to ship more toothbrushes than it has. Ti0 
~vill therefore abort. and no tootlibrushcs \<-ill be shipped from store 10; neither 
will the in\-entory at  store 10 be changed. Ho~vever. T7 detects no problems 
and commits a t  <tore 7 .  updating its in\-cntory t o  reflect the supposedly shipped 
toothbrushes. ?;ow. not only has T failed to  execute aton~ically (since Tlo never 
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completes), but it has left the distributed database in an inconsistent state: the 
toothbrush inventory does not equal tllc number of toothbrushes on hand. 

Another source of problems is the possibility that a site will fail or be dis- 
connected from the network wh~le the distributed transaction is running. 

Example 19.19: Suppose Tlo replies to  To's first message by telling its inven- 
tory of toothbrushes. Ho\vever; the machine at  store 10 then crashes, and the 
instructions from To are never received by Tlo. Can distributed transaction T 
ever commit? What should TIo do when its site recovers? 

19.5.2 Two-Phase Commit 

In order to  avoid the problems suggested in Section 19.5.1, distributed DBMS's 
use a complex protocol for deciding whether or not to commit a distributed 
transaction. In this section, \re shall describe the basic idea behind these pro- 
tocols, called two-phase commit By making a global decision about commit- 
ting, each compo~ient of the transaction will commit, or none will. -4s usual. 
~ v e  assume that the atomicity mechanisms at  each site assure that either the 
local component commits or it  has no effect on the database state a t  that site: 
i.e., components of the transaction are atomic. Thus, by enforcing the rule 
that either all components of a distributed transaction commit or none does. 
we make the distributed transaction itself atomic. 

Several salient points about the trvo-phase commit protocol folloxv: 

In a two-phase commit, we assume that each site logs actions at  that site. 
but there is no global log. 

\Ye also assume that one site, called the coordznator, plays a special role 
in deciding whether or not the distributed transaction can commit. For 
example. the coordinator might be the site a t  which the transaction orig- 
inates, such as the site of To in the esalnples of Scction 19.5 1. 

The two-phase commit protocol involves sending certain ~nessagcs be- 
tween the coordinator and the other sites. .Is each message is sent, it is 
logged a t  the sending site, to  aid in Iecovery should it be necessary. 

K i t h  these points in mind, n.c can describe the two phases in terms of the 
messages sent between sites. 

P h a s e  I 

In phase 1 of the two-phase commit. the coordinator for a distributed trans- 
action T decides when to attempt to connnit T. Presumably the attempt to 
commit occurs after the component of T at the coordinator site is ready to 

"0 not confuse tao-phase commit tl i th tno-phase locking. They are independent ideas. 
designed to solve different problems. 
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commit, but in principle the steps must be carried out even if the coordinator's 
component lvants to abort (but mith o b v i o ~ s  simplifications as rve shall see). 
The coordinator polls all the sites mith compollelits of the transaction T t o  
determine their wishes regarding the commit/abort decision. 

1. The coordinator places a log record <Prepare T >  on the log a t  its site. 

2. The coordinator sends to each component's site (in principle including 
itself) the message prepare T. 

3. Each site receiving the message prepare  T decides whether to  commit or 
abort its component of T. The site can delay if the component has not 
yet completed its activity, but must eventually send a response. 

4. If a site wants to commit its component, it must enter a state called 
precommitted. Once in the precommitted state, the site cannot abort its 
component of T without a directive t o  do so from the coordinator. The 
following steps are done to become precommitted: 

(a) Perform whatever steps are necessary to  be sure the local component 
of T \$-ill not have to abort, even if there is a system failure follo~ved 
by recovery at  the site. Thus. not only must all actions associated 
~v i th  the local T be performed. but the appropriate actions regarding 
the log must be taken so that T will be redone rather than undone 
in a recover): The actions depend on the logging method, but surely 
the log records associated \\-it11 nctions of the local T must be flushed 
to disk. 

(b) Place the record <Ready T >  on the local log and flush the log t o  
disk. 

(c) Send to the coordinator the message ready T. 

However. the site does not commit its component of T at  this time; it 
must ~ ~ a i t  for phdae 2. 

3. If; instead, the site Ivants to abort its component of T: then it logs the 
record <Don't commit T >  and sends the message don' t  commit T to 
the coordinator. It is safe to abort the component at this time, since T 
xvill surely abort if even one cornpontnt wants to  abort. 

The messages of phase 1 are suxmnarizcd in Fig. 19.16. 

Phase I1 

The second phase begins ~vlien responses ready or don ' t  commit are receixed 
from each site by the coordinator. However. i t  is possible that some site falls to 
respond: it may be down. or it has been disconnected by the network. 1x1 that 
case. after a suitable timeout period. the coordinator tvill treat the site as if it 
had sent don ' t  commit. 
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prepare 

f / O  
ready or O ~ O ( H  don't commit 

Figure 19.16: Messages in phase 1 of two-phase colnnlit 

1. If the coordinator has received ready T from all components of T1 then 
it decides to  commit T .  The coordinator 

(a) Logs <Commit T >  at  its site, and 

(b) Sends message commit T to all sites involved in T. 

2. If the coordinator has received don't commit T from one or more sites, ' 

it: 

(a) Logs <Abort T> a t  its site, and 

(b) Sends abort T messages to  all sites involved in T 

3. If a site receives a commit T message. it commits the component of T at 
that site, logging <Commit T> as it does. 

4. If a site receives the message abort T ,  it aborts T and writes the log 
record <Abort T>. 

The messages of phase 2 are summarized in Fig. 19.17. 

commit or 

Coordinator 

0 
Figure 19.17: 1Icssages in phase 2 of two-phase corn~nit 

19.5.3 Recovery of Distributed Trallsactions 

.It any time during the two-phase commit process, a site may fail. \Ye need 
to make sure that what happens when the site recovers is consistent ~v i th  the 
global decision that was made about a distributed trdnsaction T. There are 
several cases to  consider: depending on the last log entiy for T .  
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1. If the last log record for T was <Commit T > ,  then T must have been 
committed bv the coordinator. Depending on the log nletl~od used, i t  

1 - may bc necessary to redo the component of T a t  the recovering site. 

I 2.  If the last log record is <Abort T>. then sinlilarly we kno~v that the 
global decision was to  abort T .  If the log method requires it. we undo the 
component of T a t  the recolering site. 

3. If the last log record is <Don't commlt T>,  then the site knon-s that tllc 
global decision must have been to abort T. If necessary. effects of T on 
the local database arc undone. 

4. The hard case is when the last log record for T is <Ready T>. Sow, the 
recovering site does not know 13-liether the global decision was to  conimit 
or abort T. This site must coinlnunlcate wit11 a t  least one other site to  
find out the global decision for T .  If the coordinator is up, the site call 
ask the coordinator. If the coordinator is not up a t  this time. some otller 
site may be asked to consult its log to find out what happcncd to T. In 
the \Torst case. no other site can be contacted. and the local cornpollent 
of T must be kept active until the cornmit/abort decision is deterrninecl. 

3. It may also be the case that tlle local log lias no records about T tllat 
conle from actions of tlle tlvo-phase commit protocol. If so, then the 
recovering site may unilaterally decide to  abort its component of T :  ~vhich 
is consistent n.ith all logging nlethods. It is ~~ossiblc  that t l ~ c  coorclinator 
already detected a timeout from the failetl site ant1 decitfcd to  abort T. If 
the failure \vas brief: T may still be active at  other sites. but it ~vill never 
be inconsistent if the recovering site decides to abort its colliponent of T 
and responds \\-it11 don't commit T if later polled in phasc 1. 

The above analysis assumes that tlic failed site is not the coortiinator. IVhcll 
the coordinator fails during a two-phase commit, nc~v  problems arise. First, the 
survivilig participant sites niust either \T-ait for the coordinator to  recover or 
elect a new coordinator. Since the coordi~lator co~tld be dolvn for an indefinite 
period. there is good nlotivation to elect a nexv leader: a t  least after a brief 
~vaiting period to see if the coordinator conies hack up. 

The matter of lender election is in its on.11 right a cornples p r o b l r l ~ ~  of dis- 
tributed systems. beyond the scol~c of this l~ooli. Hon-cvcr. a si~nplt> tncthod will 
work in most situations. For instance. n-e ilia\- assume that all participallt sitc,s 
h a v ~  uniqnr idcntif\-ing nl~rnbcrs: IP at1tlrci;scs n-ill n-ork in ninny sitllatiol~s. 
Each participant sends nlessages almou~lcil~g its a~ailahility as 1e;idcr to  ;ill thr' 
other sites. pil-ing its identifying nunlbrr. After a suitable length of time. each 
participant ackno~vledges as the neu- coordirlator tlle lowest-n~lnlbered site from 
nhicli it has Ileal-d. and sends messages to that effect to all the otllcr sites. If 
all sites receive consistent messages: then there is a unique choice for new coor- 
dinator. and everyone kao\vs about it. If there is i~iconsistellcy. or a s~lrrivillg 
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sitc has failed to  respond, that too will be universally kno~vn, and the election 
stalts oler. 

Now, the new leader polls the sites for information about each distributed 
transaction T. Each site reports the last record on its log concerning T ,  if there 
is one. Tlle possible cases are: 

1. Some site has <Commit T> on its log. Then the original coordinator 
must have ~vanted to send commit T messages everywhere, and it is safe 
to  commit T. 

2. Similarly, if some site has <Abort T> on its log, then the original coordi- 
nator must have decided to abort T, and it is safe for the new coordinator 
to  order that action. 

3. Suppose now that no site has <Commit T> or <Abort T >  on its log, but 
a t  least one site does not have <Ready T> on its log. Then since actions . 
are logged before the corresponding messages are sent, we know that the 
old coordinator never received ready T  from this site and therefore could 
not have decided to commit. It is safe for the neTv coordinator to  decide 
to  abort T. 

4. The hard case is when there is no <Commit T >  or <Abort T> to  be 
found, hut every surviving site has <Ready T>. Sow, we cannot be sure 
whether the old coordinator fo~und sonle reason to abort T or not; it could 
have decided to do so because of actions a t  its oxvn site, or because of a 
don ' t  commit T message from another failed site, for example. Or the 
old coordinator may h a x  decided to commit T  and already conimitted 
its local conlponelit of T. Thns, the nen- coordinator is not able to  decide 
xvhether to  comniit or abort T  and must wait until the original coordina- 
tor recovers. 111 real systems, the database administrator has the ability 
to intervene and manually force the waiting transaction comporielits to 
finish. The result is a possi1)Ic loss of atomicity, but the person executing 
the blocked transaction will be notified to t,ake soille appropriate compen- 
sating action. 

19.5.4 Exercises for Section 19.5 

! Exercise 19.5.1: Consider a transaction T initiated at a home computer that 
a ~ k s  bank B to transfer $10.000 from a n  acrount at  B to an account at anothel 
I~ank C. 

* a) \That are the colnponents of distributed transactio11 T? \That should tlie 
conlponents at  B and C do? 

b) \Vllat can go lvrong if there is not $10.000 in the account a t  B? 

c )  \That can go wrong if one or both banks' computers crash, or if the 
netxvork is disconnected? 
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d) If one of the problems suggested in (c) occurs, how could the transaction 
resume correctly when the computers and network resume operation? 

Exercise 19.5.2 : In this exercise, n-e need a notation for describing sequences 
of messages that  can take place during a two-phase commit. Let (i, j ,  3f) mean 
that site i sends the message ,If to site j, where the value of AI and its meaning 
can be P (prepare). R (ready), D (don't commit), C (commit), or A (abort). 
We shall discuss a simple situation in which site 0 is the coordinator, but not 
other:\-ise part of the transaction, and sites 1 and 2 are the components. For 
instance, the following is one possible sequence of messages that could take 
place during a successful commit of the transaction: 

* a) Give an example of a sequence of messages that  could occur if site 1 wants 
to  commit and site 2 xvants t o  abort. 

*! b) How Inany possible sequences of messages such as the above are there, if 
the transaction successfully commits? 

! c) If site 1 wants to  commit, but site 2 does not, how many sequences of 
messages are there, assuming no failures occur? 

! d)  If sitc 1 wants to  commit. but site 2 is down and does not respond to 
messages, how many sequences are there? 

!! Exercise 19.5.3: Csing the notation of Esercise 19.5.2, suppose the sites are 
coordiliator and n other sites that are the transaction components. As a 

function of n. how many sequences of messages are there if the transaction 
successfully commits'? 

19.6 Distributed Locking 

In this section we shall see how to extend a locking scheduler to  an environment 
where transactions are distributed and consist of components at several sites. 
n'e assume that lock tables are managed by individual sites, and that the 
component of a transaction at a site can only request a lock on the data elements 
at that site. 

I\'hen data is leplicated. nc  must arrange that the copies of a single ele- 
ment S are changed in the same n-a? b!. each transaction. This r~quircment 
introduces a tlistinctioll betn-een locking the loy~cal database element S and 
locking one or more of the copies of S. In this section, lve shall offer a cost 
model for distributed locking algorithms that applies to  both replicated and 
nonreplicated data. However, before introducing the model, let us consider an 
obvious (and someti~nes adequate) solution t o  the problem of maintaining locks 
in a distributed database - centralized locking. 
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19.6.1 Centralized Lock Systems 

Perhaps the simplest approach is to designate one site, the lock szte, to  ma~ntain 
a lock table for logical elements, whether or not they have copies a t  that site. 
When a transaction wants a lock on logical element X, it sends a request to 
the lock site, ahich grants or denies the lock, as appropriate Since obtaining a 
global lock on X is the same as obtaining a local lock on X at  the lock site. n-e 
can be sure that global locks behave correctly as long as the lock site administers 
locks conventionally. The usual cost is three messages per lock (request, grant. 
and release), unless the transaction happens to be running at  the lock site. 

The use of a single lock site can be adequate in some situations, but if there 
are many sites and many simultaneous transactions, the lock site could become 
a bottleneck. Further, if the lock site crashes, no transaction at  any site can 
obtain locks. Because of these problems with centralized locking. there are a 
number of other approaches t o  maintaining distributed locks, which we shall 
introduce after discussing how to estimate the cost of locking. 

19.6.2 A Cost Model for Distributed Locking Algorithms 

Suppose that each data  element exists a t  exactly one site (i e., there 1s no 
data replication) and that the lock manager at  each site stores locks and lock 
requests for the elements at  its site. Transartions may be distributed, and each 
transaction consists of components at  one or more sites. 

While there are several costs associated with managing locks. many of them 
are fixed, independent of the way transactions request locks over a netn-ork. 
The one cost factor over which we have control is the number of nlessages 
sent bet~veen sites when a transaction obtains and releases its locks. n'e shall 
thus count the number of messages required for various locking schemes on the 
assumption that  all locks are granted ~vhen requested. Of course. a lock request 
may be denied. result~ng in an additional message to deny the request and a 
later message xshen the lock is granted. Hot\-ever. since I\-e cannot predict the 
rate of lock denials. and t h ~ s  rate is not something we can control an!~vay. we 
shall ignore this additional requirement for messages in our comparisons 

Example  19.20: .As we mentioned in Section 19.6.1. in the central locking 
method, the typical lock request uses three messages, one to  request the lock. 
one from the central slte to grant the lock. and a third to release the lo~ l i .  The 
exceptions are: 

1. The messages arc unnccessary 1vhe11 the requestirlg site is the cel~tral lock 
site, and 

2. Additional messages must be sent when the initial request carlnot be 
granted. 

However, n-e assume that both these situations are relatively rare: i e.. most lock 
requests are from sites other than the central lock site, and most lock requests 
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can be granted. Thus: three messages per lock is a good estimate of the cost of 
the centralized lock method. 

XOW, consider a situation more flexible than central locking, where each 
database element X can maintain its locks a t  its own site. It  might seen1 that,  
since a transaction wanting to lock X will have a component at  the site of 
X, there are no messages between sites needed. The local component simply 
negotiates ~v i th  the lock manager a t  that  site for the lock on ,Y. I-Iotvever, if 
the distributed transaction needs locks on several ele~nents, say X. Y, and 2, 
then the transaction cannot complete its computation until it has locks on all 
three elements. If X ,  Y, and Z are a t  different sites, then the con~ponents of 
the transactions a t  those sites must a t  least exchange synchronization messages 
to prevent the transaction from "getting ahead of itself." 

Rather than deal with all the possible variations, we shall take a simple 
model of how transactions gather locks. \ire assume that one component of 
each transaction, the lock coordznator, has the responsibility to  gather all the 
locks that all components of the transaction require. The lock coordinator 
locks elements a t  its own site ~vitliout messages, but locking an elenient X a t  
any other site requires three messages: 

1. .I message t o  the site of X requesting the lock. 

2. X reply message granting the lock (recall \ve assume all locks are granted 
immediately; if not, a denial nlessage folloived by a granti~zg message later 
~vill be sent). 

3. .I message to the site of X releasing the lock. 

Since vie only wish to  compare distributed locking protocols, rather than give 
absolute values for their average number of messages, this simplification will 
serve our purposes. 

If n-e pick as the lock coordinator the site nhere the inost locks are needed by 
the transaction. tllen we niin~mize the require~nent for messages. The nun~ber 
of messages required is three times the number of database elements a t  the 
other sites. 

19.6.3 Locking Replicated Elements 

IVhen an element S has replicas at  seleral sites. n-e must be careful how we 
interpret the locking of S. 

Example 19.21: Suppose there are two copies, S1 and 'Ti?. of a database 
element A'. Suppose also that  a transaction T gets a shared lock on the copy 
XI a t  the site of that copy, while transaction L' gets an exclusive lock on the 
copy .Yg at  its site. Tow. I; can change .Yl but cannot change XI, resulting in 
the two copies of the element S becoming different. 1Ioreover. since T and I; 
may lock other elements as well. and the order in which they read and write 
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X is not forced by the locks they hold on the copies of X, there is also an 
opportu~iity for I' and U to engage in unserializable behavior. 

The problem illustrated by Example 19.21 is that when data  is replicated. 
we must distinguish between getting a shared or exclusive lock on the logical 
element X and getting a local lock on a copy of X a t  the site of that copy. That 
is, in order to  assure serializability, we need for transactions to take global locks 
on the logical elements. But the logical elements don't exist physically - only 
their copies do - and there is no global lock table. Thus. the only way that 
a transaction can obtain a global lock on X is t o  obtain local locks on one or 
more copies of X at the site(s) of those copies. l i e  shall now consider methods 
for turning local locks into global locks that have the required properties: 

No two transactions can have a global exclusive lock on a logical element 
X a t  the same time. 

If a transaction has a global exclusive lock on logical element X, then no 
transaction can have a global shared lock on X. 

Any number of transactions can have global shared locks on X, as long 
as  no tra~lsactioil has a global exclusive lock. 

19.6.4 Primary-Copy Locking 

An improvement on the centralized locki~lg approach is to distribute the func- 
tion of the lock site, but still maintain the ptinciple that each logical element 
has a single site responsible for its global lock. This distributed-lock method 
is called the primary copy method. This change avoids the possibility that the 
central lock site will become a bottleneck. ~vhile still maintaining the simplicity 
of the centralized method. 

In the primary copy lock method, each logical element X has one of its 
copies designated the "primary copy." In order to get a lock on logical element 
S, a transaction sends a request to the site of the primary copy of X. The site 
of the primary copy maintains an entry for X in its lock table and grants or 
denies the request as  appropriate. Again, global (logical) locks will be adminis- 
tered correctly as long as each site administers the locks for the prirnary copies 
correctly. 

Also as with a centralized lock site, most lock requests generate thrcr mes- 
sages, except for those where the transiiction and the primary copy are at the 
same site. However. if we clioose prirnary copies ~visely. then \re expect that 
these sites will frequently be the same. 

Example 19.22 : In the chain-of-stores example, we should make each st0re.s 
sales data  have its primary copy a t  the store. Other copies of this data, such 
as at  the central office or at a data rvarehouse used by salcs analysts, are not 
primary copies. Probably, the typical transaction is rxecuted at  a store and 
updates only sales data  for that store. No mcssages are needed when this type 
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Distributed Deadlocks 

There are many opportunities for transactions to  get deadlocked as they 
try to  acquire global locks on replicated data. There are also many ways to  
construct a global waits-for graph and thus detect deadlocks. However, in 
a distributed environment, it is often simplest and also most effective to use 
a timeout. Any transaction that has not completed after a n  appropriate 
amount of time is assumed t o  have gottea deadlocked and is rolled back. 

of transaction takes its locks. Only if the transaction examined or modified 
data  a t  another store would lock-related messages be sent. 

19.6.5 Global Locks From Local Locks 

Another approach is to  synthesize global locks from collections of local locks. In 
these schemes, no copy of a database element X' is "primary"; rather they are 
symmetric, and local shared or exclusive locks can be requested on any of these 
copies. The key t o  a successful global locking scheme is t o  require transactions 
to obtain a certain number of local locks on copies of X before the transaction 
can assume it has a global lock on A'. 

Suppose database element .-I has n copies. We pick two numbers: 

1. s is the number of copies of A that  must be locked in shared mode in 
order for a transaction to have a global shared lock on .4. 

2. x is the number of copies of .4 that must be locked in exclusive mode in 
order for a transaction to have an exclusive lock 011 A. 

As long as 22 > n and s + x > n ,  x e  have the desired properties: thcie 
can be only one global exclusive lock on A. and theie callnot be both a global 
shared and global exclusive lock on A. The explanation is as  follo~vs. Since 
22 > n. if two transactions had global exclusive locks on '4, there would be at 
least one copy that had granted local exclusive locks to  both (because there are 
more local exclusive locks granted than there are copies of -4). Ilo~vever, then 
the local locking method u oilid he incorrect. Similarly. since s + .c > 1 1 .  if one 
transaction had a global shared lock on .4 and another had a global esclusi~e 
lock on =i. then some copy granted hoth local shared and exclusive locks at  tlie 
same time. 

In general, the number of messages needed t o  obtain a global shared lock is 
3s, and the number t o  obtain a global exclusive lock is 32. That nun~ber  seems 
excessive. compared x i th  centralized methods that  require 3 or fewer messages 
per lock on the average. However. there are compensating arguments. as the 
following tu;o examples of spec~fic (s. x )  choices s h o ~ s .  
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Read-Locks-One; Write-Locks-All. Here, s = 1 and x = n. Obtaining a 
global exclusive lock is very expensive, but a global shared lock requires 
three messages a t  the most. Moreover. this scheme has an advantage over 
the primary-copy method: while the latter allolvs us to  avoid messages 
when we read the primary copy, the read-locks-one scheme allotvs us t o  
avoid messages whenever the transaction is a t  the site of any copy of the 
database element we desire to  read. Thus, this scheme can be superior 
when most transactions are read-only, but transactions to read an element 
X initiate a t  different sites. An example would be a distributed digital 
library that  caches copies of documents where they are most frequently 
read. 

Majorzty Locking. Here, s = x = [ ( n  + 1)/21. It  seems that this system 
requires many messages no matter where the transaction is. Ho~rever, 
there are several other factors that may make this scheme acceptable. 
First, many network systems support broadcast, xhere it is possible for a a 

transaction to send out one general request for local locks on an element 
S, which will be received by all sites. Similarly, the release of locks 
may be achieved by a single message. However, this selection of s and 
x provides an advantage others do not: it allo~vs partial operation even 
when the network is disconnected. As long as there is one component of 
the network that contains a majority of the sites with copies of X, then it 
is possible for a transaction t o  obtain a lock on S. Even if other sites are  
active while disconnected, we know that they cannot even get a shared 
lock on X, and thus there is no risk that transactions running in different 
coniponents of the network will engage in behavior that is not serializable. 

19.6.6 Exercises for Section 19.6 

! Exercise 19.6.1 : 1l.k shorn-ed how to create global shared and exclusive locks 
from local locks of that type. How would you create: 

* a) Global shared, exclusive, and increment locks. 

b) Global shared, exclusive. and update locks. 

!! c) Global shared, exclusire, and intention locks for each type. 

from local locks of the same types? 

Exercise 19.6.2 : Suppose there are five sites. each with a copy of a database 
element X. One of these sites P is the doniinant site for X and will be used 
as X's primary site in a primary-copy distributed-lock system. The statistics 
regarding accesses to  A' are: 

i. 50% of all accesses are read-only accesses originating at  P. 

i i .  Each of the other four sites originates 10% of the accesses, and these are 
read-only. 

iii. The remaining 10% of accesses require exclusive access and may originate 
a t  any of the five sites with equal probability (i.e.. 2% originate a t  each). 

For each of the lock methods below, give the arerage number of messages needed 
to obtain a lock. .Assume that  all requests are granted, so no denial messages 
are needed. 

* a) Read-locks-one; write-locks-all. 

b) 1Iajority locking. 

c) Primary-copy locking, ~ i t h  the primary copy a t  P. 

19.7 Long-Duration Transactions 

There is a family of applications for which a database system is suitable for 
maintaining data, but the model of many short transactions on which database 
concurrency-control mechanisms are predicated, is inappropriate. In this sec- 
tion we shall examine some examples of these applications and the problems 
that  arise. We then discuss a solution based on  compensating transactions" 
that negate thc effects of transactions that were committed, but  shouldn't have 
been. 

19.7.1 Problems of Long Transactions 

Roughly. a long transnctzon is one that takes too long to be allo~ved to hold locks 
that  another transaction needs. Depending on the environment, "too long" 
could mean seconds, minutes. or l~ours; we shall assunle that a t  least several 
minutes, and probably hours. are inl-olved in "long" transactions. Three broad 
classes of applications that involrc long transactio~is are: 

1 Conventzonal DBMS Applzcatzons. While common database applications 
run mostly short transactions. many applications require occasional long 
transactions For esample, one transaction might examine all of a bank's 
accounts to  l-e~ify that the total balance is correct. Another application 
nldl lequire that an indm be reconstructed occasionally to  keep perfor- 
mance dt it5 peak 

2. Deszgn Systems. \I-llether the thing being designed is mechanical like 
an automobile. electronic like a microprocessor. or a software system, the 
c o n ~ ~ n o n  element of design systems is that the design is broken into a set of 
components (e.g., files of a software project). and different designers ~ o r k  
on ditferent conlponrnts simultaneouslg.. \Ye do not want two designers 
taking a copy of a file. editing it t o  make des~gn changes, and then writing 
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the new file versions back, because then one set of changes would overwrite 
the other. Thus, a check-out-check-in system allows a designer to "check 
out" a file and check it in when the changes are finished, perhaps hours or 
days later. Even if the first designer is changing the file, another designer 
might want to look at  the file to learn something about its contents. If 
the check-out operation were tantamount to  an exclusive lock, then some 
reasonable and sensible actions would be delayed, possibly for days. 

3. Workflow Systems. These systems involve collections of processes, some 
executed by software alone, some involving human interaction, and per- 
haps some involving human action alone. We shall give shortly an esample 
of office paperwork involving the payment of a bill. Such applications may 
take days to  perform, and during that entire time, some database elements 
may be subject to  change. Were the system to grant an exclusive lock on 
data involved in a transaction, other transactions could be locked out for 
days. 

Example 19.23 : Consider the problem of an employee voucheririg travel es- 
penses. The intent of the traveler is to  be reimbursed from account X123, and 
the process whereby the payment is made is shown in Fig. 19.18. The process 
begins with action -41, where the traveler's secretary fills out an on-line form 
describing the trawl, the account to  be charged, and the amount. \Ve assume 
in this example that the account is A123, and the amount is $1000. 

The traveler's receipts are sent physica1Iy to the departmental authorization 
office, while the for111 is sent on-line to  an automated action A z .  This process 
checks that there is enough money in the charged account (A123) and reserves 
the money for expenditure; i.e., it tentatively deducts $1000 from the account 
but does not issue a check for that amount. If there is not enough money in 
the account, the transaction aborts, and presumably it 1vill restart when e i the~  
enough money is in the account or after changing the account to  be c11arged.j 

Action As is performed by the departmental administrator, who examines 
the receipts and the on-line form. This action might take place the nest day 
If everything is in order, the form is approved and sent to the corporate ad- 
ministrator, along with the physical receipts. If not, the transaction is aborted. 
Presumably the traveler will be required to modify the request in some way and 
resubmit the form. 

In action .44. which may take place several days later. the corporate admin- 
istrator either approves or denies the request. or passes the form to an assistanr. 
\rho will then make the decision in action .is. If the form is denied. the trans- 
action again aborts and the form  nus st be resubmitted. If the for111 is appro1 ed. 
then at  action .AG the check is written, and the deduction of $1000 from account 
-1123 is finalized. 

'Of course the traxeler ( ~ h o  does not \\ark for Stanford anyway) would never charge the 
travel inappropriately to  another government contract. but would use an appropriate source 
of funds. \lTe haxe to  say this because government auditors, who have no clue about how a 
university should operate, are still swarming all over Stanford. 
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Figure 19.18: Workflow diagram for a traveler requesting expense reimburse- 
ment 

However, suppose that the only way we could implement this workflow is 
by conventio~lal locking. In particular, since the balance of account A123 may 
be changed by the complete transaction, it has t o  be locked exclusively at  
action dz and not unlocked until either the transaction aborts or action As 
completes. This lock may have to be held for days, while the people charged 
with authorizing the payment get a chance to look a t  the matter. If so, then 
there can be no other charges made t o  account X123, even tentatively. On 
the other hand, if there are no controls a t  all over how account -2123 can be 
accessed. then it is possible t!lat several transactions will reserve or deduct 
money from the account simultaneously, leading t o  an overdraft. Thus, some 
compromise betmeen rigid, long-term locks on one hand, and anarchy on the 
other, must be used. 

19.7.2 Sagas 

X saga is a collection of actions. such as those of Example 19.23. that together 
form a long-duration .'transactiorl." That is. a saga consists of: 

1. .I collection of actions. 

2. -4 graph xvhose nodes are either actions or the special Abort and Complete 
nodes, and xvliose arcs link pairs of nodes. No arcs leave the two special 
nodes, ~vhich \ve call term~nal nodes. 
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3. An indication of the node a t  which the action starts, called the start node. 

The paths through the graph, from the start node t o  either of the terminal 
nodes, represent possible sequences of actions. Those paths that lead to the 
Abort node represent sequences of actions that cause the overall transaction 
to be rolled back, and these sequences of actions should leave the database 
unchanged. Paths t o  the Complete node represent successful sequences of ac- 
tions, and all the changes to the database system that these actions perform 
will remain in the database. 

Example 19.24 : The  paths in the graph of Fig. 19.18 that lead to the Abort 
node are: Al A2, A1A2A3, Al.42A3A4, and A1 A2A3i14A5 The paths that  lead 
to the Complete node are -41 A2A3A4 A6, and A1 A2A3A4A5 A+ Notice that in 
this case the graph has no cycles, so there are a finite number of paths leading 
to a terminal node. However, in general, a graph can have cycles, in which case 
there may be an infinite number of paths. 

Concurrency control for sagas is managed by two facilities: 

1. Each action may be considered itself a (short) transaction, that when exe- 
cuted uses a conventional concurrency-control mechanism, such as locking. 
For instance, A2 may be implemented to (briefly) obtain a lock on account 
A123, decrement the amount indicated on the travel voucher, and release 
the lock. This locking prevents two transactions from trying to write new 
values of the account balance a t  the same time, thereby losing the effect 
of the first to  write and making money "appear by magic." 

2. The overall transaction, which can be any of the paths t o  a terminal 
node, is managed through the mechanism of "compensating transactions:.' 
which are inverses to  the transactions at  the nodes of the saga. Their job is 
to roll back the effect of a committed action in a way that does not depend 
on what has happened to the database between the time the action was 
executed and the time the compensating transaction is executed. U e  
discuss compensating transactions in the next section. 

19.7.3 Compensating Transactions 

In a saga, each action -4 has a compensatmg transactzon, ~vhich TVC denote -4-I 
Intuitively, if we execute -4. and later execute A-', then the resulting database 
state is the same as  if neither -4 nor .4-' had executed. Nore forlnally: 

If D is any database state, and B1 B ? .  . . B,, is any sequence of actions 
and compensating transactions (whether from the saga in question or any 
other saga or transaction that may legally execute on the database) then 
the same database states result from running the sequences Bl Bz . . . B, 
and AB1B2 .. . B,4-' on the database state D. 
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When are Database States "The Same"? 

When discussing compensating transactions, we should be careful about 
w h a t  it means to  return the database t o  "the same" state that  it had 
before. L e  had a taste of the problem when we discussed logical logging 
for B-trees in Example 19.8. There we saw that if we "undid" an oper- 
ation, the state of the B-tree might not be identical to  the state before 
the operation, but ~vould be equivalent to  it as far as access operations 
on the B-tree were concerned. More generally, executing an action and 
its compensating transaction might not restore the database t o  a state 
literally identical t o  what existed before, but the differences must not be 
detectable by whatever application programs the database supports. 

If a saga execution leads t o  the Abort node, then we roll back the saga 
by executing the compensating transactions for each executed action, in the 
reverse order of those actions. By the property of compensating transactions 
stated above, the effect of the saga is negated, and the database state is the 
same as if it had never happened. An explanation why the effect is guaranteed 
to be negated is given in Section 19.7.4 

Example 19.25 : Let us consider the actions in Fig. 19.18 and see what the 
compensating transactions for dl through A6 might be. First. -41 creates an on- 
line document. If the document is stored in the database, then A;' must remove 
it from the database. Sotice that this compensation obeys the fundamental 
property for compensating transactions. If we create the document, do any 
sequence of actions a (including deletion of the documexlt if we wish). then the 
effect of Ala;l;l is the same as the effect of a. 

Az must be implemented carefully. We "reserve" the money by deducting 
it from the account. The money will stay removed unless restored by the com- 
pensating transaction K e  claim that this '42' is a correct compensating 
transaction if the usual rules for how accounts may be managed are followed. 
To appreciate the point, it is useful t o  consider a similar transaction where the 
o b ~ i o u s  compensation \vill not I\-ork: we consider such a case in Example 19.26. 
next. 

The actions .A3, .A4. and d5 each invol~e  adding a n  approval to  a form. 
Thus. their compensating transactions can remove that a p p r o ~ a l . ~  

Finally. .is. which writes the check. does not have an obvious conlpensating 
transaction. In practice none is needed, because once .J6 is executed. this saga 
cannot be rolled back. However, technically 2-16 does not affect the database 

'jIn the saga of Fig. 19.18, t he  only time these actions are compensated is when we are 
going to  delete the form anyway, but the  definition of compensating transactions require that 
they work in isolation, regardless of whether some other compensating transaction was going 
to  make their changes irrelemnt. 
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anyway, since the money for the check was deducted by A2. Should we need 
to consider the "database.' as the larger world, where effects such as cashing a 
check affected the database, then we would have to design A;' to first try to 
cancel the check, next write a letter t o  the payee demanding the money back, 
and if all remedies failed, restoring the money to the account by declaring a 
loss due to a bad debt. 

Next, let us take up the example, alluded to in Example 19.23, where a 
change to an account cannot be  compensated by an inverse change. The prob- 
lem is that accounts normally are not allowed to go negative. 

Example 19.26: Suppose B is a transaction that adds $1000 to an account 
that has $2000 in it initially, and B-' is the compensating transaction that 
removes the same amount of money. Also, it is reasonable to  assume that 
transactions may fail if they try to  delete money from an account and the 
balance nould thereby become negative. Let C be a transaction that deletes 
$2500 from the same account. Then BCB-I $ C. The reason is that C by . 
itself fails: and leaves the account with $2000, while if we execute B then C, 
the account is left with $500, xvhereupon B-' fails. 

Our conclusion that a saga with arbitrary transfers among accounts and a 
rule about accounts never being allo~ved t o  go negative cannot be supported 
simply by compensating transactions. Some modification to the system must 
he done, e.g., allo~ving negative balances in accounts. CI 

19.7.4 Why Compensating Transactions Work 

Let us say that two sequences of actions are equivalent (E) if they take any 
database state D to the same state. The fundamental assumption about com- 
pensating transactions can be stated: 

If -4 is any action and cr is any sequence of legal actions and colnpensating 
transactions. then i l ~ ~ 4 - l  = a. 

Tow, KC rleed to sliow that if a saga execution A1A2. . . A, is follorc-ed by its 
conlpensating transactions in reverse order, llzl . . . ;l;'.il;', ~vi th any inter- 
vening actions whatsoever, then the effect is as if neither the actions nor the 
compensating transactions executed. The proof is an induction on n.  

BASIS: If TL = 1. then the sequence of all act~ons bet\$-ern A1 and its compen- 
-sting tiansaction -4;' looks like .-lla.4;l. By the fundame~ltal assumption 
about coInpensating transactions. .-llad;' 2 a: 1.e.. there is no effect 011 the 
database state by the saga. 

INDUCTION: .Assume the statement for paths of up to n - 1 actions, and 
consider a path of n actions. follolved by its compelisating transactions in reverse 
order. ~vith any other transactions intervening. The sequellce looks like 
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where all Greek letters represent sequences of zero or more actions. By the 
definition of compensating transaction, ;1,,/3A,' z P. Thus, (19.1) is eqniv;~]e;,r 
to  

By the inductive hypothesis, expression (19.2) is equivalent t o  

ala2 ...an-13yn-1 ~ ? y l  

since there are only n - 1 actions in (19.2). Tha t  is, the saga and its cornpr;l.- 
satioii leave the database state the same as if the saga had never occurrr:d. 

19.7.5 Exercises for Section 19.7 

*! Exercise 19.7.1 : The process of "uninstalling" software can be thonght (,fa. 
a con~pensatlng transaction for the action of installing the same soft~$dre I: 
a si~ilple model of installing and uninstalling, suppose that an actiorl tor.:.--. 
of load~ng one or more files from the source (e.g., a CD-Rol l )  onto t l i r ,  h:: 
disk of the machine. To Ioad a file f .  we copy f from CD-ROhl, repl;tcinT -:.c 
file ~ \ i t l l  the same path name f .  if there Ivas one. To distinguish files wit). *:.G 
same path name, we may assume each file has a timestamp. 

a) \Vhat is the compensating transaction for the action that 1o:uls 5;:- 1 
Consider both the case xvhere no file i ~ i t l l  that path riame existc.ri. ,:-f 
~vhere there was a file f '  with the same path name. 

b) Explain \\-Ily J our ansa-el- to (a) is guaranteed to compensate. E1271t C:_-.- 

sider carefully the case where after replacing f '  bj- f ,  a later at.t;r,: ::- 
places f by another file with the same path name. 

! Exercise 19.7.2: Describe the process of booking an airline scat as :: ,%,,. 

Consider the possibility that the customer nil1 query about a seat but rior l...-,r 
it. The customer may book the seat, but cancel it, or not pay for I:... ?-A- 

lvithin the required time limit. The customer may or may not show lip ::;: -:.; 
flight. For each action, describe the corresponding compensating tran~zi-:--r 

19.8 Summary of Chapter 19 

+ D ~ r t y  Data: Data that has been \\ritten. either into mai11-memorj . - -  

or on disk. by a transaction that has not yet committed is call(-ri --. I- - 

+ Cascadeng Rollback. .A conibinatlon of logging and concurrenrr , :-- 
that allo\vs a transaction to read dirty data  may hale  to  roll ha(;: -:<-- 
actlolls that read such data from a transaction that later abort. 



+ Strict Lockzng: The strict locking policy requires transactions to  hold 
their locks (except for shared-locks) until not only have they committed. 
but the commit record on the log has been flushed to disk. Strict locking 
guarantees that  no transaction call read dirty data, even retrospectively 
after a crash and recovery. 

+ Group Commit: R'e can relax the strict-locking condition that requires 
commit records to reach disk if we assure that log records are written to 
disk in the order that  they are written. There is still then a guarantee of 
no dirty reads, even if a crash and recovery occurs. 

+ Restoring Database State After an Abort: If a transaction aborts but has 
written values t o  buffers, then we can restore old values either from the 
log or from the disk copy of the database. If the new values have reached 
disk, then the log may still be used to restore the old value. 

+ Logical Logging: For large database elements such as disk blocks, it saves 
much space if we record old and new values on the log incrementally, that 
is, by indicating only the changes. In some cases, recording changes logi- 
cally, that is, in terms of an abstraction of what blocks contain, allo~vs us 
to  restore state logically after a transaction abort, even if it is impossible 
to  restore the state literally. 

+ View Serzalizabclzty: When transactions may write values that are over- 
written without being read, conflict serializability is too strong a conditiori 
on schedules. A weaker condition, called view serializability rcqiiirrs ol;ly 
that in the equivalent serial schedule, each transaction rends the value 
from the same source as  in the original schedule. 

+ Poly,qraphs: The test for view serializability involves constructing a poly- 
graph, with arcs representing writer-to-reader passing of values. and arc 
pairs that represent requirements that a certain m i t e  not intervene bc- 
tween a writer-reader connection. The schedule is view serializable if and 
only if selection of one arc from each pair results in an ac)c.lic giaph. 

+ Deadlocks: These may occur whenever transactions have to nait for a 
resource, such as a lock, held by another transaction. The lisk is that.  
without proper planning, a cycle of w i t s  may occur, and no transaction 
in the cycle is able to  make progress. 

+ Waits-For Graphs: Create a node for each waiting transactio:i. n-it11 a:i 
arc to  the transaction it is waiting for. The esistence of a deadlock is 
the same as  the  esisterlce of one or iiiore cycles in the n-aits-for gl.a~~!i. 
We can avoid deadlocks if we maintain the waits-for graph and abort any 
transaction whose waiting would cause a cycle. 

+ Deadlock Avoidance by Ordering Resovrces: Requiring transactions to 
acquire resources according to some lesicographic order of the resources 
will prevent a deadlock from arising. 

+ Timestainp-Based Deadlock Avoidance: Other schemes maintain a time- 
stamp and base their abort/xait decision on whether the requesting trans- 
action is newer or older than the one with the resource it wants. In the 
wait-die scheme, an older requesting transaction waits, and a newer one 
is rolled back with the same timestamp. In the 1%-ound-wait scheme, a 
nelver transaction waits and an older one forces the transaction with the 
resource to  roll back and give up the resource. 

+ Distrzbuted Data: In a distributed database, data  may be partitioned hor- 
izontally (one relation has its tuples spread over several sites) or vertically 
(a relation's schema is decomposed into several schemas whose relations 
are a t  different sites). It  is also possible to  replicate data, so presumably 
identical copies of a relation exist a t  several sites. 

+ Distributed Transactions: In a distributed database, one logical trans- 
action may consist of components, each esecuting a t  a different site. To 
preserve consistency, these componer~ts must all agree on whether to com- 
mit or abort the logical transaction. 

+ Two-Phase Commit: This approach supports an agreement among trans- 
action components xhether to  commit or abort, often alloli-ing a resolu- 
tion even in the face of a system crash. In the first phase, a coordinator 
component polls the components whether they want t o  commit or abort. 
In the second phase, the coordi~lator tells the components to comniit if 
arid only if all have espressed a xvillingness to commit. 

+ Dzstrlbuted Locks: If transactions must lock database elements found at  
several sites. a method must he found t o  coordinate these locks. In the 
centralized-site method. one site maintains locks on all elements. In the 
primary-copy method. the horne site for an element maintains its locks. 

+ Lockzng Replzcated Data: When database elements are replicated at  sev- 
eral sites. global locks on an element must be obtained through locks on 
one or more replicas. The majority locking method requires a read- or 
~vrite-lock on a majority of the replicas to  obtain a global lock. Alterna- 
tively, we may allow a global read lock by obtaining a read lock on any 
copy. while allowing a global write lock only through write locks on every 
copy. 

+ Sagas: IVhen transactions involve long-duration steps that may take 
hours or days. convelltional locking n~echanisn~s may limit collculrency 
too much. .I saga consists of a netnolk of actions. each of xhich may 
lead to one or more other actions. t o  the completion of the entire saga, or 
to a requirement that the saga abort. 

+ Compensating Transactzons: For a saga to  make sense. each action must 
have a compensating action that  will undo the effects of the first action on 
the database state, xi-hile leaving intact any other actions that have been 
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Chapter 20 

Informat ion Integration 

While there are many directions in which modern database systems are evolving, 
a large family of nen- applications fall under the general heading of injonnation 
~ntegratron. Such applications take data  that is stored in two or more databases 
(znformatzon sources) and build from them one large database, possibly virtual, 
containing information from all the sources. so the data  can be queried as a unit. 
The sources may he con~entional databases or other types of inforination, such 
as collectioils of Web pages. 

In this chapter, we shall introduce important aspects of information in- 
tegiation. l i e  hegiil n-it11 an outline of the principal approaches to integra- 
tion: federation. n-arehousi~lg. and njetliation. Then. ne  examine lvrappers, the 
soflyare that allorss information sources t o  conform to some shared schema. 
Infornlation-integration s l s ten~s  require special kinds of query optimization 
tech~~iques for their efficient operation, and I\-e briefly examine capability-based 
optiinization, an important technique not often found in conventional DBhfS's. 

\Ye look at the kinds of applications that make use of integrated informa- 
tion. Especially important are ..OLdP" (on-line analytic processing) queries 
and ..data-~nining" qucrics: these tvpes of queries are anlong the most complex 
queries that are run on databases of ally kind. X specialized database architec- 
ture. called the ..data cube." is introduced as a n-ay to organize the integrated 
data in some applications and help support OL-IP and data-mining queries. 

20.1 hfodes of Information Integration 

There are several ways that databases or other distributed information sources 
can be made to ~vork together. In this section. n-e consider the three most 
common approaches: 

1. Federated databases. The sources are independent, but one source can call 
on others to  supply information. 
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2. IVarehouszng. Copies of data  from several sources are stored in a single 
database, called a (data)  warehouse. Possibly, the data stored at  the 
warehouse is first processed in some way before storage; e.g., data may 
be filtered, and relations may be joined or aggregated. The ~varehouse is 
updated periodically, perhaps over~iight. As the data  is copied from the 
sources, it may need to be transformed in certain ways to  make all data 
conform to the schema a t  the warehouse. 

3. ~Wediatzon. A mediator is a software component that supports a virtual 
database, which the user may query as if it were materialzzed (physi- 
cally constructed, like a warehouse). The mediator stores no data of its 
own. Rather, i t  translates the user's query into one or more queries to 
its sources. The mediator then synthesizes the answer to the user's query 
from the responses of those sources, and returns the answer to  the user. 

We shall introduce each of these approaches in turn. One of the key issues for 
all approaches is the may that data  is transformed when it is extracted from 
an information source. We discuss the architecture of such transformers, called 
wrappers or extractors, in Section 20.2. Section 20.1.1 first introduces sorne of 
the problems that wrappers are designed to solve. 

20.1.1 Problems of Information Integration 

LVhatever integration architecture we choose. there are subtle problenls that 
come up when trying to attach rneanirlg to  the raw data  in the various sources. 
We refer to (collections of) sources that  deal with the same kind of data. yet 
differ in various subtle xays, as heterogeneous sources. An extended example 
will help expose the issues. 

E x a m p l e  20.1 : The Aardvark Automobile Co. has 1000 dealers. each of ~vliicli 
maintains a database of their cars in stock. =lardvark =ants to  create an inte- 
grated database containing the information of all 1000 sources.' The integrated 
database will help dealers locate a particular model if they don't have one in 
stock. It also can be used by corporate analysts to  predict the market and 
adjust production to provide the models most likely to sell. 

Howler ,  the 1000 dealers do not all use the same database schema. For 
example. one dealer might store cars in a single relation that looks like: 

Cars (se r ia lN0,  model, c o l o r ,  autoTrans,  cdp layer ,  . . .  ) 

11-it11 one boolean-valued attribute for every possible option. =\nother d ~ a l c r  
might use a schema in whic11 options a re  separated out into a seco~ld relation. 
such as: 

'Xlost real automobile companies have similar facilities in place: and the history of their 
development may be different from our example; e.g.: the centralized database may ha\-e come 
first, with dealers later able t o  download relekant portions to their own database. Ho\i-ever. 
this scenario serves as an example of what companies in many industries are attempting 
todajr 

Autos ( s e r i a l ,  model, co lor )  
Opt i o n s  ( s e r i a l ,  opt ion)  

Sotice that not only is the schema different, but apparently equivalent names 
have changed: Cars  becomes Autos, and se r ia lNo becomes s e r i a l .  

To make matters worse, the data in the various databases, while having the 
same meaning, can be represented in many different ways. 

1. Data type differences. Serial numbers might be represented by character 
strings of varying length at one source and fixed length at  another. The 
fixed lengths could differ, and sorne sources might use integers rather than 
character strings. 

2. Value differences. The same concept might be represented by different 
constants a t  different sources. The color black might be represented by 
a n  integer code at  one source, the string BLACK at  another, and the code 
BL a t  a third. The code BL might stand for "blue" a t  yet another source. 

3. Semantic dzfferences. Terms may be given different interpretations at  
different sources. One dealer might include trucks in the Cars  relation, 
while another puts only automobile data  in the Cars relation. One dealer 
might distinguish station wagons from minivans, while another doesn't. 

4. Alzsszng values. A source might not record information of a type that all 
or most of the other sources provide. For instance. one dealer might not 
record colors a t  all. To deal wit11 missing values. sometimes rve can use 
NULL'S or default values. Hoxvever, a modern trend is t o  use "semistruc- 
tured" data, as  described in Section 4.6. t o  represent integrated data  that  
may not conform esactly. 

Each of these inconsistencies among sources requires a form of translation that 
must be implemented before the integrated database can be built. 

20.1.2 Federated Database Systems 

Perhaps the simplest architecture for integrating several databases is to  irnple- 
ment one-to-one connections between all pairs of databases that need t o  talk to  
one another. These connections allow one database system Dl to query another 
D2 in terms that D2 can understand. The problem with this architecture is 
that if it databases each need to talk to the 7~ - 1 other databases. then n-e 
must write n(n - 1) pieces of code to support queries between systerns. The 
situation is suggested in Fig. 20.1. There, we see four databases in a federation. 
Each of the four needs three components, one to  access each of the other three 
databases. 

Severtheless, a federated system may be the easiest t o  build in some circum- 
stances, especially lvhen the communications between databases are limited in 
nature. An example will show how the translation components might n-ork. 



Figure 20.1: A federated collection of four databases needs 12 components to  
translate queries from one to another 

Example  20.2 : Suppose the -4ardvark Automobile dealers want to share in- 
ventory, but each dealer only needs to query the database of a few local dealers 
to  see if they have a needed car. To be specific, consider Dealer 1, mho has a 
relation 

NeededCars(mode1, c o l o r ,  a u t o l r a n s )  

whose tuples represent cars that customers have requested, by model. color. and 
n-hether or not they want an automatic transmission. Dealer 2 stores inventor! 
in the two-relation schema discussed in Example 20.1: 

Autos(ser ia1,  model, co lor )  
Options(ser ia1,  opt ion)  

Dealer 1 &-rites a n  application program that  queries Dealer 2 remotely for cars 
that match each of the cars described in NeededCars. Figure 20.2 is a sketch 
of a program with embedded SQL that would find the desired cars. The intent 
is that the embedded SQL represents remote queries to  the Dealer 2 database. 
with results returned to Dealer 1. We use the convention from standard SQL of 
prefixing a colon to variables that represent constants retrieved from a database. 

These queries address the schema of Dealer 2. If Dealcr 1 also wants to ask 
the same question of Dealer 3. who uses the first schema discussed in Esam- 
ple 20.1. n-it11 a single relation 

Cars(ser ialN0,  model, c o l o r ,  autoTrans,  ...) 

the query ~vould look quite different. But each query works properly for the 
database to which it is addressed. 

20.1. MODES OF 13rFOR11.4TION INTEGRATION 

f o r (each  t u p l e  (:m, : c ,  :a) i n  ~ e e d e d ~ a r s )  C 
i f ( : a =  TRUE) { /*  automatic t ransmiss ion  wanted */ 

SELECT s e r i a l  
FROM Autos, Options 
WHERE Autos . se r ia1  = Opt ions . se r ia1  AND 

Options.opt ion = 'autoTrans'  AND 
Autos.mode1 = :m  AND 
Autos.color  = : c ;  

1 
e l s e  { /* automatic  t ransmiss ion  no t  wanted */ 

SELECT ser ia l  
FROM Autos 
WHERE Autos.mode1 = :m AND 

Autos.color = : c  AND 
NOT EXISTS ( 

SELECT * 
FROM Options 
WHERE s e r i a l  = Autos . se r ia1  AND 

op t ion  = ' autoTrans '  
> ; 

3 
3 

Figure 20.2: Dealer 1 queries Dealer 2 for needed cars 

20.1.3 Data Warehouses 

In the data warehouse integration architecture, data from several sources is 
estracted and cornbilled into a global schema. The data  is then stored a t  the 
warehouse, which looks t o  the user like an ordinary database. The arrangeme~lt 
is suggested by Fig. 20.3, although there may be many more than the t ~ v o  
sources shown. 

Once the data  is in the ~varehouse, queries may be issued by the user exactly 
as they ~vould be  issued t o  any database. On the other hand, user updates to  the 
n-arehouse generally are forbidden, since they are not reflected in the underlying 
sources, and can make the \\-arehouse inconsistent wit11 the sources. 

There are a t  least three approaches to constructlllg the data  in the ware- 
house: 

1. The warehouse is periodically reconstructed from the current data in the 
sources. This approach is the most common, with reconstruction occur- 
ring once a night. (when the system can be shut do~vn so queries aren't 
issued while the ~varehouse is being constructed), or a t  even longer in- 
tervals. The main disadvantages are the requirement of shutting down 



Figure 20.3: A data  warehouse stores integrated information in a separate 
database 

the warehouse, and the fact that sometimes reconstructing the \varehouse 
can take longer than a typical "night." For some applications. another 
disadvantage is that  the data in the warehouse can become seriously out 
of date. 

2. The warehouse is updated periodically (e.g., each night), based on the 
changes that  have been made to the sources since the last time the ware- 
house \%-as modified. This approach can involve smaller amounts of data, 
which is very important if the ~varehouse needs to  be modified in a short 
period of time, and the warehouse is large (multigigabyte and terabyte 
warehouses are in use). The disadvantage is that  calculating changes to  
the ~varehouse, a process called incremental update, is complex, compared 
with algorithms that  simply construct the \+-arehouse from scratch. 

3. The \varehouse is changed immediately, in response to  each change or 
a small set of clia~iges a t  one or more of the sources. This approach 
requires too much co~nmunication and processing to be practical for all 
but small warehouses whose underl!-ing sources change slo~vly. However. 
it is a subject of research, and a successful ~varehouse i~llplernei~tation of 
this type would have a number of important applications. 

Example 20.3 : Suppose for simplicity that there are only two dealers in the 
Aardvark system. and they respectively use the schemas 

Cars (se r ia lN0,  model, c o l o r ,  autoTrans, cdPlayer ,  . . .  ) 

Autos(ser ia1,  model, c o l o r )  
Opt i o n s  ( s e r i a l ,  op t ion)  

\Tie wish to  create a xvarehouse with the schema 

AutosWhse(seria1N0, model, c o l o r ,  au toTrans ,  d e a l e r )  

That is, the global schema is like that of the first dealer, but we record only the 
option of having an automatic transmission, and we include an attribute that 
tells which dealer has the car. 

The software that extracts data  from the two dealers' databases and popu- 
lates the global schema can be written as SQL queries. The query for the first 
dealer is simple: 

INSERT INTO AutosWhse(seria1N0, n o d e l ,  c o l o r ,  
autoTrans,  d e a l e r )  

SELECT ser ia lNo,  model, c o l o r ,  autoTrans,  ' d e a l e r l '  
FROM Cars ; 

The extractor for the second dealer is more complex, since we have to decide 
whether or not a given car has an automatic transmission. We use the strings 
'yes  ' and 'no'  as values of the attribute autoTrans,  with the obvious mean- 
ings. The SQL code for this extractor is shown in Fig 20.4. 

In this simple example. the combiner, sho~vn in Fig. 20.3, for the data  ex- 
tracted from the sources is not needed. Since the warehouse is the union of 
the relations extracted from each source, the data  may be loaded directly into 
the ~varehouse. However, many ~varehouses perform operations on the relations 
that they extract from each source. For instance relations extracted from t x o  
sources might be joined, and the result put a t  the warehouse. Or Ive might 
take the union of relations extracted from several sources and then aggregate 
the data  of this union. Nore generally. several relations may be extracted from 
each source, and different relations combined in different nays. 0 

20.1.4 Mediators 

-1 mediator supports a virtual view. or collection of views. that integrates several 
sources in much the same n a y  that the materialized relation(s) in a n-arehouse 
integrate sourcps. H o ~ v e ~ e r .  since the mediator doesn't store any data. the 
mechanics of mediators and narehouscs are rather different. Figure 20.5 shows 
a mediator integrating t ~ v o  sources: as  for warehouses. there nould typically 
be more than two sources. To begin. the user issues a query to  the mediator. 
Since the mediator has no data  of its olvn. it must get the relevant data  from 
its sources and use that data  to  form the answer t o  the user's query. 

Thus, we see in Fig. 20.5 the mediator sending a query t o  each of its wrap- 
pers, which in turn send queries t o  their corresponding sources. The mediator 
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INSERT INTO AutosWhse(seria1N0, model, c o l o r ,  
autoTrans , d e a l e r )  

SELECT s e r i a l ,  model, co lor ,  ' y e s ' ,  ' dea le r2 '  
FROM Autos, Options 
WHERE Autos . se r ia1  = Opt ions . se r ia1  AND 

op t ion  = 'autoTrans';  

result 

Mediator 

INSERT INTO AutosWhse(seria1N0, model, c o l o r ,  
autoTrans , dea le r )  

SELECT s e r i a l ,  model, c o l o r ,  ' no ' ,  ' dea le r2 '  
FROM Autos 
WHERE NOT EXISTS ( 

SELECT * 
FROM Options 
WHERE s e r i a l  = Autos.ser ia1 AND 

opt ion = 'autoTrans'  
) ;  

Figure 20.5: A mediator and wrappers translate queries into the terms of the 
sources and combine the answers 

The wrapper for Dealer 1 translates the query into the terms of that dealer's 
schema, which we recall is 

Figure 20.4: Extractor for translating Dealer-2 data to  the warehouse 

may send several queries to  a wrapper, and may not query all wrappers. The 
results come back and are combined a t  the mediator; we do not show an explicit 
combiner component as we did in the warehouse diagram, Fig. 20.3, because in 
the case of the mediator, the combining of results from the sources is one of the 
tasks performed by the mediator. 

Example  20.4: Let us consider a scenario similar t o  that of Example 20.3, 
but use a mediator. That is, the mediator integrates the same two automobile 
sources into a view that  is a single relation with schema: 

AutosMed(serialNo, model, c o l o r ,  autoTrans,  d e a l e r )  

Suppose the user asks the mediator about red cars, with the query: 

SELECT ser ia lNo,  model 
FROM AutosMed 
WHERE c o l o r  = ' r e d ' ;  

The mediator. in response to  this user query. can forward the same query to  each 
of the two wrappers. The way that wrappers can be designed and implemented 
to handle queries like this one is the subject of Section 20.2, and for more 
complex scenarios, translation and distribution of query components by the 
mediator could be necessary. However, in this case, the translation work can 
be done by the wrappers alone. 

Cars ( se r ia lNo , model, c o l o r ,  autoTrans , cdPlayer , . . . ) 
A suitable translation is: 

SELECT ser ia lNo,  model 
FROM Cars 
WHERE c o l o r  = ' r e d ' ;  

An ans~ver, which is a set of serialNo-model pairs, viill be returned to the 
mediator by the first Ix:rapper. 

;It the same time, the wrapper for Dealer 2 translates the same query into 
the schema of that dealer, which is: 

Autos ( s e r i a l ,  model, c o l o r )  
Options ( s e r i a l ,  op t ion)  

-1 suitable translated query for Dealer 2 is almost the same: 

SELECT s e r i a l ,  model 
FROM Autos 
WHERE c o l o r  = ' r e d ' ;  

It differs from the query at  Dealer 1 onl?- in the name of the relation queried. 
and in one attribute. The second wrapper returns to the mediator a set of 
ser ial-model  pairs, ~vliich the mediator interprets as serialNo-model pairs. 

The mediator takes the union of these sets and returns the result to  the 
user. Since we expect the serial number t o  be a "global key," with no two cars, 
even in different databases. having the same serial number, we may take the 
bag union. assuming that there will not be duplicates anyway. 
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There are several options. not illustrated by Example 20.4. that a mediator 
may use to answer queries. For instance. the mediator may issue one query to  
one source, look a t  the result, and based on what is returned, decide on the 
next query or queries to issue. This method \auld be appropriate, for instance, 
if the user query asked whether there were any Aardvark "Gobi" model sport- 
utility vehicles available in blue. The first qucry could ask Dealer 1, and only 
if the result was an empty set of tuples would a query be sent to  Dealer 2. 

20.1.5 Exercises for Section 20.1 

! Exercise 20.1.1: Computer company A keeps data about the P C  models it 
sells in the schema: 

Computers(number, p roc ,  speed,  memory, hd) 
Monitors(number, s c r e e n ,  maxResX, maxResY) 

For instance, the tuple (123, P I  I I, 1000,128,40) in Computers means that mod- 
el 123 has a Pentium-I11 processor running at  1000 megahertz, with 128x1 of 
memory and a 40G hard disk. The tuple (456,19,1600,1200) in Monitors 
means that model 456 has a 19-inch screen with a m ~ ~ i m u m  resolution of 
1600 x 1200. 

Computer company B only sells complete systems, consisting of a computer 
and monitor. Its schema is 

Systems(id,  p r o c e s s o r ,  mem, d i s k ,  sc reens ize)  

The attribute p rocessor  is an integer speed; the type of processor (e.g.. Pent- 
ium-111) is not recorded. Neither is the maximum resolution of the monitor 
recorded. Attributes i d ,  mem, and d i s k  are analogous to number, memory, and 
hd from company A, but the disk size is measured in megabytes instead of 
gigabytes. 

a) If company A wants to insert into its relations information about the 
corresponding items from B. what SQL insert statements should it use? 

* b) If Company B ~vants  to  insert into Systems as much inforlnation about 
the systems that can be built from computers and lnonitors made by d. 
what SQL statements best allow this information to be obtained? 

*! Exercise 20.1.2 : Suggest a global schema that ~vould allolv us to maintain as 
much information as \ve could about the products sold by companies -4 and B 
of Exercise 20.1 . l .  

Exercise 20.1.3: W i t e  SQL queries t o  gather the information from the data  
at  companies A and B and put it in a warehouse with your global schema of 
Esercise 20.1.2. You may consult the solutions for the global schema if you 
wish. 
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Exercise  20.1.4 : Suppose your global schema from Esercise 20.1.2 (or the 
schema in the solutions if you don't like your own answer) is used a t  a medi- 
ator. How would the mediator process the query tha t  asks for the  maximum 
amount of hard-disk available with any computer with a 1500 megahertz pro- 
cessor speed? 

! Exercise 20.1.5 : Suggest two other schemas that  computer companies might 
use to hold data like that of Exercise 20.1.1. How nould you integrate your 
schemas into your global schema from Exercise 20.1.2? 

! Exercise 20.1.6 : In Esample 20.3 we talked about a relation Cars  at  Dealer 1 
that  conveniently had an attribute autoTrans with only the values "yes" and 
.:no.'' Since these were the same values used for tha t  attribute in the global 
schema, the construction of relation AutosWhse was especially easy. Suppose 
instead that the attribute Cars.autoTrans has values that  are integers, with 
0 meaning no automatic transmission, and z > 0 meaning that  the car has 
an i-speed automatic transmission. Show how the translation from Cars  to 
AutosWhse could be done by an SQL query. 

Exercise  20.1.7: How would the mediator of Example 20.4 translate the fol- 
lowing queries? 

* a )  Find the serial nu~nbers of cars with automatic transmission. 

b) Find the serial numbers of cars without autorrlatic transmission. 

! c) Find the serial numbers of the blue cars from Dealer 1. 

Exercise  20.1.8: Go to the IYeb pages of several on-line booksellers. and see 
what information about this book you can find. How would you combine this 
information into a global schema suitable for a ivarehouse or mediator'? 

20.2 Wrappers in Mediator-Based Systems 

In a data narellouse system like that of Fig. 20.3. the source extractors corisist 
of: 

1. One or more queries built-in that are executed at  the soulce to  proclucc 
data for the i~arehouse. 

2. Suitable comm~nlication mechanisms. so the nrapper (extractor) can: 

(a) Pass ad-hoc queries to the source, 

(b) Receive responses from the source, and 

(c) Pass information to the \varehouse. 
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The built-in que~ies  to  the source could be SQL queries if the source is an SQL 
database as in our examples of Section 20 1. Queries could also be operations in 
whatever language was appropriate for a source that was not a database system: 
e.g., the wrapper could fill out an on-line form at  a Web page, issue a query to 
an on-line bibliography service in that system's own. specialized language, 01 

use nlrriad other notations to  pose the queries. 
Ho~vevcr, niediator systems require more complex wrappers than do most 

warehouse systems. The wrapper must be able to accept a variety of queries 
from the mediator and translate any of them to the terms of the source. Of 
course. the wrapper lnust then communicate the result to  the mediator. just 
as  a wrapper in a \{-arehouse system cornrnunicates with the warehouse. In the 
balance of this section, we study the construction of flexible wrappers that are 
suitable for use with a mediator. 

20.2.1 Templates for Query Patterns 

.I systematic way to design a wrapper that connects a mediator to a source is to 
classify the possible queries that  the mediator can ask into templates, which are 
queries ~v i th  parameters that represent constants The mediator can provide 
the constants. and the wrapper executes the query with the given constants 
=In example should illustrate the idea: it uses the notation T => S to espress 
the idea that the template T is turned by the mrapper into the source query S 

E x a m p l e  20.5 : Suppose we want to build a n7rapper for the source of Dealer 1. 
1%-hich has the schelna 

Cars (se r ia lN0,  model, c o l o r ,  autoTrans,  cdPlayer, ... ) 
for use by a mediator ~v i th  schema 

AutosMed(seria1N0, model, c o l o r ,  autoTrans, dea le r )  

Consider how the mediator could ask the wrapper for cars of a giren color. 
Khatcrer the color n-as. if we denote the code representing that color by the 
parameter $c. then we can use the template sholvn in Fig. 20.6. 

Si~nilarlp. the lvrapper could have another template that specified only the 
parameter $m representing a model. yet another template in ~vllich it n-as only 
specified 14-hether an automatic transmission was ~vanted, and so on. In this 
case. there are eight choices. if queries are allowed to specify any of three at- 
tributes: model. co lor .  and autoTrans. In general. there would be 2" teni- 
plates if Ive have the option of specifying n attributes.' Other templates 11-ould 

'If the source is a database that can be queried in SQL, as  in our example, you irould 
rightly expect that one template could handle any number of attributes equated to constants; 
simply hy making the WHERE clause a parameter. \\?bile that approach \\.ill work for SQL 
sources and queries that  only bind attributes t o  constants, n e  could not necessarily use the  
same idea with an arbitrary source, such as a IVeb site that  allowed only certain forms as  
an interface. In the general case, we cannot assume that  the way we translate one quer!. 
resembles at all the xay  similar queries are translated. 

SELECT * 
FROM AutosMed 
WHERE c o l o r  = ' $ c ' ;  

=> 
SELECT ser ia lNo,  model, c o l o r ,  autoTrans,  ' d e a l e r l '  
FROM Cars 
WHERE c o l o r  = ' $ c ' ;  

Figure 20.6: X mrapper template describing queries for cars of a fixed color 

be needed to deal with queries that  asked for the total number of cars of cer- 
tain types, or whether there exists a car of a certain type. The number of 
templates could grow unreasonably large, but some simplifications are possible 
by adding rnore sophistication to the wrapper, as we shall discuss starting in 
Section 20.2.3. 

20.2.2 Wrapper Generators 

The templates defining a wrapper must be turned into code for the wrapper 
itself. The software that creates the wrapper is called a wrapper generator;  i t  is 
similar in spirit to  the parser generators (e.g., YACC) that produce components 
of a compiler from high-level specifications. The process, suggested in Fig. 20.7, 
begins when a specification, that is, a collection of templates, is given to the 
mrapper generator. 

Queries from 
mediator 

Templates 

I 
t 

Wrapper Table 
A 

generator I- Driver 

Figure 20.7: .I wrapper generator produces tables for a driver; the driver and 
tabies constitute the \\-rapper 
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The wrapper generator creates a table that holds the various query patterns 
contained in the templates, and the source queries that are associated with 
each. A driver is used in each wrapper; in general the driver can be the same 
for each generated wrapper. The task of the driver is to: 

1. Accept a query from the mediator. The communication mechanism may 
be mediator-specific and is given to the driver as a "plug-in," so the same 
driver can be used in systems that  communicate differently. 

2. Search the table for a template that matches the query. If one is found, 
then the parameter values from the query are used to instantiate a source 
query. If there is no matching template, the wrapper responds negatively 
to  the mediator. 

3. The source query is sent to the source, again using a "plug-in" communi- 
cation mcchanisrn. The response is collected by the wrapper. 

4. The response is processed by the wrapper, if necessary, and then returned 
to the mediator. The next sections discuss how wrappers can support a 
larger class of queries by processing results. 

20.2.3 Filters 

Suppose that a wrapper on a car dealer's database has the template shonn in 
Fig. 20.6 for finding cars by color. H o ~ ~ e v e r ,  the mediator is asked to find cars 
of a particular model and color. Perhaps the wrapper has been designed with 
a more complex template such as that  of Fig. 20.8, which handles queries that 
specify both model and color. I7et, as we discussed a t  the end of Example 20.5, 
it is not always realistic to  write a template for every possible form of query. 

SELECT * 
FROM AutosKed 
WHERE model = '$m' AND color = '$,='; 

=> 

SELECT serialNo, model, color, autoTrans, 'dealerl' 
FROM Cars 
WHERE model = '$m' AND color = '$c'; 

Figure 20.8: A wrapper template that gets cars of a given lilodel and color 

Another approach to supporting more queries is to  have the wrapper filter 
the results of queries that it poses to  the source. 4 s  long as the wrapper has a 
template that (after proper substitution for the parameters) returns a superset 
of what the query wants, then it is possible to  filter the returned tuples at 
the wrapper and pass only the desired tuples to  the mediator. The decision 

Position of the Filter Component 

IVe have: in our examples, supposed that the filtering operations take place 
a t  the wrapper. It  is also possible that the wrapper passes raw data  to  
the mediator, and the mediator filters the data. However, if most of the 
data returned by the template does not match the mediator's query, then 
it is best to filter a t  the wrapper and avoid the cost of shippi~lg unneeded 
tuples. 

whether a mediator query asks for a subset of what the pattern of some wrapper 
template returns is a hard problem in general, although in simple cases such as 
the examples haye seen, the theory is well-developed. The referenccs contain 
some pointers for further study. 

Example  20.6 : Suppose the only template \ye have is the one in Fig. 20.6 
that finds cars given a color. However, the mediator needs t o  find blue 'Gobi' 
model cars, as with the query: 

SELECT * 
FROM AutosMed 
WHERE color = 'blue' and model = 'Gobi'; 

A possible !yay to anslyer the query is to: 

1. Use the template of Fig. 20.6 ~vitli $c = 'blue' t o  find all the blue cars. 

2. Store the result in a temporary relation 

TempAutos(seria1N0, model, color, autoTrans, dealer) 

3. Select from TempAutos the Gobis and return the result, as with the query 

SELECT * 
FROM TempAutos 
WHERE model = 'Gobi'; 

The result is the desired set of automobiles. In practice. the tuplcs of TempAutos 
~yould be produced one-at-a-time and filtered one-at-a-time. in a pipelined fash- 
ion, rather than having the entire relation TempAutos materialized at the wrap- 
per and then filtered. 
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20.2.4 Other Operations at  the Wrapper 

It is possible to transform data in other ways at the wrapper, as long as we are 
sure that the source-query part of the template returns to the wrapper all the 
data needed in the transformation. For instance, columns may be projected out 
of the tuples before transmission to  the mediator. It is even possible to take 
aggregations or joins at the wrapper and transmit the result to the mediator. 

Example 20.7 : Suppose the mediator wants to know about blue Gobis at the 
various dealers, but only asks for the serial number, dealer, and whether or not 
there is an automatic transmission, since the value of the model and color fields 
are obvious from the query. The wrapper could proceed as in Example 20.6, 
but a t  the last step, when the result is to be returned to the mediator, the 
wrapper performs a projection in the SELECT clause as  well as the filtering for 
the Gobi model in the WHERE clause. The query 

SELECT serialNo, autoTrans, dea ler  
FROM TempAutos 
WHERE model = 'Gobi'; 

does this additional filtering, although as in Example 20.6 relation TempAutos 
would probably be pipelined into the projection operator, rather than materi- 
alized a t  the wrapper. 

Example 20.8 : For a more complex example, suppose the mediator is asked 
to find dealers and models such that the dealer has two red cars, of the same 
model, one with and one without an automatic transmission. Suppose also that 
the only useful template for Dealer 1 is the one about colors from Fig. 20.6. 
That is, the mediator asks the wrapper for the answer to the query of Fig. 20.9. 
Note that rve do not have to specify a dealer for either A l  or A2, because this 
wrapper can only access data belonging to Dealer 1. The wrappers for all the 
other dealers will be asked the same query by the mediator. 

SELECT Al.mode1 Al.dealer 
FROM AutosMed A l ,  AutosMed A2 
WHERE Al.mode1 = A2.model AND 

Al.color = ' red '  AND 
A2.color = ' red '  AND 
Al.autoTrans = 'no' AND 
A2.autoTrans = ' yes ' ;  

Figure 20.9: Query from mediator to wrapper 

A cleverly designed wrapper could discover that it is possible to answer the 
mediator's query by first obtaining from the Dealer-1 source a relation with all 
the red cars at that dealer: 
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RedAutos(seria1N0, model, co lo r ,  autoTrans, dea ler )  

To get this relation, the wrapper uses its template from Fig. 20.6, which handles 
queries that specify a color only. In effect, the wrapper acts as if it were give11 
the query: 

SELECT * 
FROM AutosMed 
WHERE color  = ' r ed ' ;  

The wrapper can then create the relation RedAutos from Dealer 1's database 
by using the template of Fig. 20.6 with $C = ' red ' .  Next, the wrapper joins 
RedAutos with itself, and performs the necessary selection, t o  get the relation 
asked for by the query of Fig. 20.9. The work performed by the wrapper3 for 
this step is sh0n.n in Fig. 20.10. 

SELECT DISTINCT Al.mode1, Al .dea ler  
FROM RedAutos Al, RedAutos A2 
WHERE Al.mode1 = A2.model AND 

Al.autoTrans = 'no' AND 
A2.autoTrans = ' yes ' ;  

Figure 20.10: Query performed at  the wrapper (or mediator) t o  complete the 
answer to the query of Fig. 20.9 

20.2.5 Exercises for Section 20.2 

* Exercise 20.2.1 : In Fig. 20.6 we saw a simple wrapper template that trans- 
lated queries from the mediator for cars of a given color into queries at  the dealer 
with relation Cars. Suppose that the color codes used by the mediator in its 
schema were different from the color codes used a t  this dealer, and there v-as 
a relation GtoL (globalColor , 1ocalColor) that translated between the two 
sets of codes. Rewrite the template so the correct query would be generated. 

Exercise 20.2.2: In Exercise 20.1.1 rve spoke of two computer companies, 
A and B, that used different schemas for information about their products. 
Suppose we have a mediator with schema 

PCMed(manf, speed, mem, d i sk ,  screen) 

31n some inforrnation-integration architectures, this task might actually be performed by 
the mediator instead. 
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with the intuitive meaning that  a tuple gives the manufacturer ('4 or B ) ;  pro- 
cessor speed, main-memory size, hard-disk size, and screen size for one of the 
systems you could buy from that company. Write \$-rapper templates for the 
follo~ving types of queries. So te  that you need to write two templates for each 
query, one for each of the manufacturers. 

* a) Given a speed, find the tuples with that speed. 

b) Given a screen size, find the tuples ~vi th that size. 

c) Given memory and disk sizes, find the matching tuples. 

Exercise 20.2.3: Suppose you had the wrapper templates described in Es- 
ercise 20.2.2 available in the wrappers at  each of the two sources (computer 
manufacturers). How could the mediator use these capabilities of the wrappers . 
to  answer the following queries? 

* a) Find the manufacturer, memory size, and screen size of all systems n-ith 
a 1000 megahertz speed and a 40 gigabyte disk. 

! b) Find the maximum amount of hard disk alailable on a system wit11 a 1.300 
megahertz processor. 

c) Find all the systems with 12811 memory and a screen size (in inches) that 
exceeds the disk size (in gigabytes). 

20.3 Capability-Based Optimization in 
Mediators 

111 Sectio~i 16.5 Ive introduced the idea of cost-based optimization. X typical 
DBMS esti~nates the cost of each query plan and picks \\-hat it believes to  
be the best. IVhen a mediator is given a query to anslver, it often has little 
knon-ledge of how long its sources will take to answer the queries it sends them. 
Furthermore, most sources are not SQL databases, and often they will ans~ver 
only a s~nall subset of the kinds of queries that the mediator might like to  pose. 
-1s a result. optimization of mediator clneries cannot re!? on cost measures alone 
to select a query plan. 

Optilnization by a mediator usually follo~vs the sinipler strategy known as 
capability-based optimizat ion.  The central issue is not n-hat a query plan costs. 
but ~vhether the plan can be executed at  all. Only among plans found to be 
executable (.'feasible") do we try to  estimate costs. 

In this section. n-e shall examine why capability of sources is an important 
issue. Then we describe a notation for describing capabilities. Finally, we 
esamine strategies for discovering feasible mediator query plans. 
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20.3.1 The Problem of Limited Source Capabilities 

Today, many useful sources have only IVeb-based interfaces, even if they are, 
behind the scenes, an ordinary database. Web sources usually permit query- 
ing only through a query form, which does not accept arbitrary SQL queries. 
Rather, we are invited to  enter values for certain attributes and can receive a 
response that  gives values for other attributes. 

E x a m p l e  20.9: The Amazon.com interface allows us t o  query about books 
in many different ways. We can specify a n  author and get all their books, or 
we can specify a book title and receive information about that book. IVe can 
specify keywords and get books that  match the  keywords. Horn-ever, there is 
also information rve can receive in answers but cannot specify. For instance, 
Amazon ranks books by sales, but we cannot ask "give nle the top 10 sellers." 
Moreover, we cannot ask questions that  are too general. For instance, the query: 

SELECT * FROM Books; 
"tell me everything you know about books," cannot be asked or answered 
through the Amazon IVeb interface, although it  could be  answered behind the 
scenes if we Ivere able to  access the .Amazon database directly. 

There are a number of other reasons why a source may limit the ways in 
which queries can be asked. Among them are: 

1 Legacy sources are places where data  is kept in an archaic or unique 
system. Many of the earliest databases did not use a DBMS, surely not a 
relational DBMS that supports SQL queries. Many of these systems were 
designed to be queried in certain very specific ways only. It is almost 
impossible to migrate the data  to  a more modern system, because people 
rely on applications that run only on the legacy system. This problem of 
being "locked in" to  an old system that  no one likes is called the legacy 
database problem, and it is unlikely t o  be solved any time soon. 

2. For reasons of security. a source may limit the kinds of queries that it will 
accept. Amazon's un~villingness to  answer the query "tell me about all 
your books" is a rudimentary example: it protects against a rival exploit- 
ing the Amazon database. .is another instance. a medical database may 
ansxer queries about averages. but non ' t  disclose (to unauthorized users) 
the details of a particular patient's medical history. 

3. Indexes on large databases may make certain kinds of queries feasible and 
others too expensive to  execute. For instance, if a books database a-ere 
relational, and one of the attributes were author, then 1s-ithout an index 
on that  attribute, it would be infeasible t o  answer queries that specified 
only a n  author. Such queries n-ould require examining millions of tuples 
each.4 

"t'e should be aware, howe\er. that information like Amazon's about products is not 
accessed as if it were a relational database. Rarher, the information about books is stored 
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20.3.2 A Notation for Describing Source Capabilities 

If data is relational, or may be thought of as relational, then we can describe the 
legal forms of queries by  adornment^,^ which are sequences of codes that repre- 
sent the requirements for the attributes of the relation, in their standard order. 
The codes we shall use for adornments reflect the most common capabilities of 
sources. They are: 

1. f (free) means that the attribute can be specified or not, as we choose. 

2. b (bound) means that we must specify a value for the attribute, but any 
value is allowed. 

3. u (unspecified) means that  we are not permitted to specify a value for the 
attribute. 

4. c[S] (choice from set S )  means that a value must be specified, and that 
value must be one of the values in the finite set S .  This option corre- 
sponds, for instance, t o  values that are specified from a pulldown menu 
in a Web interface. 

5.  o[S] (optional, from set S) means that we either do not specify a value, 
or we specify one of the values in the finite set S. 

In addition, we place a prime (e.g., f') on a code if the attribute is not part of 
the output of the query. 

A capabilities specification for a source is a set of adornments. The intent is 
that in order to query the source successfully, the query must match one of the 
adornments in its capabilities specification. Note that, if an adornment has free 
or optional components, then queries with different sets of attributes specified 
may match that adornment. 

Example  20.10 : Suppose we have two sources like those of the two dealers in 
Example 20.4. Dealer 1 is a source of data in the form: 

Cars(ser ialN0,  model, c o l o r ,  autoTrans, cdPlayer) 

Sote that in the original, we suggested relation Cars could have additional 
attributes representing options, but for simplicity in this example. let us li~iiit 
our thinking to automatic transmissions and CD players only. Here are two 
possible ways that Dealer 1 might allow this data to be queried: 

as text, with an inverted index, as we discussed in Section 13.2.1. Thus, queries about any 
aspect of books - authors, titles, words in titles, and perhaps words in descriptions of the 
book - are supported by this index. 

5This term comes from the  practice of attaching the capabilities of a relation as a super- 
script "adorning" the  name of the relation. 

1. The user specifies a serial number. and all the information about the car 
with that  serial number (i.e., the other four attributes) is produced as 
output.  The adornment for this query form is b'uuuu. That  is, the first 
attribute, ser ialNo must be specified and is not part of the output. The 
other attributes must not be specified and are part of the output. 

2. The user specifies a model and color, and perhaps whether or not au- 
tomatic transmission and CD player are wanted. .A11 five attributes are 
printed for all matching cars. An appropriate adornment is 

ubbo[yes, no]o[yes, no] 

This adornment says we must not specify the serial number; we must 
specify a model and color, but are allowed t o  give any possible value in 
these fields/ Also, we may, if we wish, specify whether we want automatic 
transmission and/or a CD player, but must do so by using only the values 
"yes" and "no" in those fields. 

As a n  alternative to  adornment (2), we might suppose that  queries limit the 
model and/or c o l o r  attributes t o  have values that  are valid; that is, the model 
is chosen from one of the models that  aardvark actually makes, and the color 
is chosen from one of the a~ai lable  colors. If so: then an adornment such as 
uc[Gobi, . . .]c[red, blue.. . .]bo[yes, no]o[yes, no] ~vould be more appropriate. 

20.3.3 Capability-Based Query-Plan Selection 

Given a query a t  the mediator, a capability-based query optimizer first considers 
what queries it can ask a t  the sources that 1%-ill help answer the query. If we 
imagine those queries asked and ansnered, then we have bindings for some 
more attributes, and these bindings may make some more queries a t  the sources 
possible. m e  repeat this process until either: 

1. \Ye have asked enough queries a t  the sources to  resolve all the conditions 
of the mediator query. and therefore we may ansn-er that query. Such a 
plan is called feaszble. 

2. We can construct no more valid forms of source queries, yet we still cannot 
arisner the mediator query. in xvhich case the mediator must give up: it 
has been given an i~npossible query. 

The simplest form of mediator query for which I\-e need t o  apply the above 
strategy is a join of relations, each of which is available, with certain adorn- 
ments, a t  one or more sources. If so. then the search strategy is to try to  get 
tuples for each relation in the join. by providing enough argument bindings that 
some source allo\&-s a query about that  relation to  be asked and anslvered. .A 
simple example will illustrate the point. 
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What Do Adornments Guarantee? 

It would be wonderful if a source that supported queries matching a given 
adornment would return all possible answers to  the query. However, 
sources normaily have only a subset of the possible answers to  a query. 
For instance, Amazon does not stock every book that has ever been writ- 
ten, and the two dealers of our running automobiles example each have 
distinct sets of cars in their database. Thus, a more proper interpretation 
of an adornment is: "I will answer a query in the form described by this 
adornment, and every answer I give will be a true answer, but I do not 
guarantee to provide all true answers." 

Now, consider what happens if several sources provide data  for the 
same relation R. Instead of a mediator selecting only one query plan for 
a query involving R, the mediator should select one plan that uses each 
of the sources for R. If the adornments for these sources are different, 
then these plans may have to be quite different. Further, if several rela- 
tions mentioned in the query have alternative sources, then the number of 
different plans multiplies exponentially in the number of such relations. 

Example  20.11 : Let us suppose we have sources like the relations of Dealer 2 
in Example 20.4: 

Autos(ser ia1,  model, c o l o r )  
Opt ions(se r ia1 ,  op t ion)  

However, let us assume that Autos and Options are relations representing the 
data a t  two different s o ~ r c e s . ~  Suppose that ubf is the sole adornment for 
Autos, while Options has two adornments, bu and uc[autoTrans, cdPlaxer]. 
represent.ing t~i-o different kinds of queries that we can ask at  that source. Let 
the query be "find the serial numbers and colors of Gobi models with a CD 
player." 

Here are three different query plans that the mediator must consider: 

1. Specifying that the model is Gobi, query Autos and get the serial numbers 
and colors of all Gobis. Then, using the bu adornment for Options, for 
each such serial number. find the options for that car and filter to  make 
sure it has a CD player. 

2. Specifying the CD-player option, query Options using the 

'Alternatively, xve may suppose that the wrapper for Dealer 2 supports mediator features 
that allow it to optimize the queries sent to Dealer 2 using capability-based techniques. 

adornment and get all the serial llu~nbers for cars with CD player. Then 
qucry Autos as in (I),  to  get all the serial numbers and colors of Gobis, 
and intersect the two sets of serial numbers. 

3. Query Options as in (2) to  get the serial numbers for cars with a CD 
pla).er. Then use these serial numbers to  query Autos and see which of 
these cars are Gobis. 

Eithcr of the first two plans are acceptable. However. the third plan is one 
of several plans that will not work; the system does not have the capability to 
execute this plan because the second part - the query to  Autos - does not 
have a matching adornment. A capability-based optimizer examines plans such 
as  these and the adornments of the relations involved and eliminates infeasible 
plans such as  the third above. 

20.3.4 Adding Cost-Based Optimization 

The med~ator's query optimizer is not done when the capabilities of the sources 
are examined. Having found the feasible plans, it must choose among them. 
hIaking an intelligent, cost-based optimization requires tha t  the  mediator know 
a great deal about the costs of the queries involved. Since the sources are usually 
independent of the mediator, it is difficult t o  estimate the cost. For instance. 
a source may take less time during periods when it is lightly loaded, but when 
are tllose periods? Long-term observation by the mediator is necessary for the 
mediator even to guess what the response time ~rlight be. 

In Example 20.11, we might simply count the number of queries t o  sources 
that must be ibsued. Plan (2) uses only two source queries. while plan (1) uses 
one plus the number of Gobis found in the Autos relation. Thus, it appears 
that plan (2) has loxver cost. On the other hand. if the queries of Options, one 
xi-it11 each serial number. could be combined into one query, then plan (1) might 
turn out to be the superior choice. 

20.3.5 Exercises for Section 20.3 

Exercise 20.3.1 : Suppose each relation from Exercise 20.1.1: 

Computers (number, proc,  speed ,  memory, hd) 
Monitors(number , s c r e e n ,  maxResX, maxResY) 

IS an information sollrce. Using the notation from Section 20.3.2. ~vrite one or 
inore adornments that express the follon-ing capabilities: 

* a) lye can query for computers having a given processor, which must be one 
of '.P-IV." "G-1," or "AAthlon." a given speed, and (optionally) a given 
amount of memory. 

b) K e  can query for computers having any specified hard-disk size and/or 
any given memory size. 
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c) \%'e can query for monitors if we specify either the number of the monitor, 
the screen size, or the maximum resolution in both dimensions. 

d) We can query for monitors if we specify the screen size, which must be 
either 15, 17, 19, or 21 inches. All attributes except the screen size are 
returned. 

! e) \Ve can query for computers if we specify any two of the processor type, 
processor speed, memory size, or disk size. 

Exercise 20.3.2 : Suppose we have the two sources of Exercise 20.3.1, but 
understand the attribute number of both relations to refer t o  the number of a 
complete system, some of whose attributes are found in one source and some in 
the other. Suppose also that the adornments describing access to  the Computers 
relation are buuuu, ubbff, and vuubb, while the adornments for Monitors are 
bfff and ubbb. Tell what plans are feasible for the following queries (exclude any , 
plans that are obviously more expensive than other plans on your list): 

* a) Find the systems with 128 megabytes of memory, an 80-gigabyte hard 
disk, and a 19-inch monitor. 

b) Find the systems with a Pentium-IV processor running a t  2000 megahertz. 
with a 21-inch monitor and a maximum resolution of 1600-by-1200. 

! c) Find all systems with a G4 processor running at  750 megahertz with 256 
megabytes of memory, a 40 gigabyte disk, and a 17-inch monitor. 

20.4 On-Line Analytic Processing 

We shall now take up an important class of applications for integrated informa- 
tion systems, especially data lvarehouses. Companies and organizations create 
a warehouse with a copy of large amounts of their available data  and assign 
analysts to  query this warehouse for patterns or trends of importance t o  the or- 
ganization. This activity, called OLAP (standing for On-Line Analytzc Process- 
zng and pronounced "oh-lap"), generally involves highly complex queries that 
use one or more aggregations. These queries are often termed OLAP queries 
or decision-support queries. Some examples will be given in Section 20.4.1: a 
typical example is t o  search for products ni th  increasing or decreasing overall 
sales. 

Decision-support queries used in OL.4P applications typically exanline very 
large amounts of data. even if the query results are small. In contrast. common 
database operations, such as bank deposits or airline reservations, each touch 
only a tiny portion of the database; the latter type of operation is often referred 
to as OLTP (On-Line Transaction Processing, spoken "oh-ell-tee-pee"). 

Recently, new query-processing techniques have been developed that  are 
especially good a t  executing OL.iP queries effectively. Furthermore, because of 

Warehouses and OLAP 

There are several reasons why data  warehouses play an important role in 
OLAP applications. First, the warehouse may be necessary t o  organize 
and centralize corporate data  in a way that supports OLAP queries; the 
data  may initially be scattered across many different databases. But often 
more important is the fact that OLXP queries, being complex and touch- 
ing much of the data, take too much time to be executed in a transaction- 
processing system with high throughput requirements. OLAP queries of- 
ten can be considered "long transactions" in the sense of Section 19.7. 

Long transactions locking the entire database would shut down the 
ordinary OLTP operations (e.g., recording new sales as they occur could 
not be permitted if there were a concurrent OLAP query computing av- 
erage sales). -4 common solution is to make a copy of the raw data  in a 
warehouse, run OLAP queries only a t  the warehouse, and run the OLTP 
queries and data  modifications a t  the data  sources. In a common sce- 
nario, the warehouse is only updated overnight, while the analysts work 
on a fro7en copy during the day. The warehouse data  thus gets out of date 
by as much as  24 hours, which limits the timeliness of its answers to  OLAP 
queries, but the delay is tolerable in many decision-support applications. 

the distinct nature of a certain class of OLXP queries, special forms of DBMS's 
have been developed and marketed t o  support OLAP applications. The same 
technology is beginning to migrate to standard SQL systems, as well. 1% shall 
discuss the architecture of these systems in Section 20.5. 

20.4.1 OLAP Applications 

.i comlnon OLXP application uses a warehouse of sales data. Major store chains 
will accumulate terabytes of information representing every sale of every item 
a t  every store. Queries that aggregate sales into groups and identify significant 
groups can be of great use t o  the company in predicting future problems and 
opportunities. 

Example 20.12: Suppose the Aardvark Automobile Co. builds a data  ware- 
house t o  analyze sales of its cars. The schema for the ~varehouse might be: 

S a l e s  ( s e r i a l N o ,  d a t e ,  d e a l e r ,  p r i c e )  
Autos ( s e r i a l N o ,  model, c o l o r )  
Dea le rs  (name, c i t y ,  s t a t e ,  phone) 

X typical decision-support query might examine sales on or after April 1, 2001 
to see how the recent average price per vehicle varies by state. Such a query is 
shown in Fig. 20.11. 
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SELECT state, AVG (price) 
FROM Sales, Dealers 
WHERE Sales.dealer = Dealers.name AND 

date >= '2001-01-04' 
GROUP BY state; 

Figure 20.11: Find average sales price by state 

Notice how the query of Fig. 20.11 touches much of the data  of the database, 
as it classifies every recent Sales fact by the state of the dealer that sold it. 
In contrast, common OLTP queries, such as "find the price a t  which the auto 
with serial number 123 was sold," would touch only a single tuple of the data. 

For another OLAP example, consider a credit-card company trying to decide 
whether applicants for a card are likely to  be credit-worthy. The company 
creates a warehouse of all its current customers and their payment history. 
OLAP queries search for factors, such as age, income, home-o~vnership, and 
zip-code, that might help predict whether customers will pay their bills on time. 
Similarly, hospitals may use a warehouse of patient data  - their admissions, 
tests administered, outcomes, diagnoses, treatments, and so on - to analyze 
for risks and select the best modes of treatment. 

20.4.2 A Multidimensional View of OLAP Data 

In typical OLAP applications there is a central relation or collection of data. 
called the fact table. A fact table represents events or objects of interest, such 
as sales in Example 20.12. Often, it helps to  think of the objects in the fact 
table as arranged in a multidimensional space, or "cube." Figure 20.12 suggests 
three-dimensional data, represented by points within the cube; we have called 
the dimensions car, dealer, and date, t o  correspond to our earlier example of 
automobile sales. Thus, in Fig. 20.12 we could think of each point as a sale of 
a single automobile, while the dimensions represent propert,ies of that sale. 

.I data space such as Fig. 20.12 will be referred to  informally as a .'data 
cube," or more precisely as a raw-data cube when we want to distinguish it 
froni the more complex "data cube" of Section 20.5. The latter, \vliicl~ we shall 
refer to  as a formal data cube when a distinction from the ran--data cube is 
needed, differs from the raw-data cube in two ways: 

1. It includes aggregations of the data  in all subsets of dimensions, as well 
as the data  itself. 

2. Points in the formal data  cube may represent an initial aggregation of 
points in the raw-data cube. For iristaxice, instead of the "car" dimension 
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date --) 

Figure 20.12: Data organized in a multidimensional space 

representing each individual car (as we suggested for the raw-data cube), 
that  dimension might be aggregated by model only, and a point of a formal 
data  cube could represent the total sales of all cars of a given model by a 
given dealer on a given day. 

The distinctions between the raw-data cube and the formal data  cube are 
reflected in the two broad directions that have been taken by specialized systems 
that support cube-structured data  for OLAP: 

1. ROLAP, or Relational OLAP. In this approach, data  may be stored in 
relations with a specialized structure called a "star schema." described in 
Section 20.4.3. One of these relations is the "fact table," ~vhich contains 
the raw, or unaggregated, data, and corresponds t o  what we called the 
raw-data cube. Other relations give information about the values along 
each dimension. The query language and other capabilities of the system 
may be tailored to the assumption that data  is organized this way. 

2. MOLAP, or hlultzdzmenszonal OLAP. Here, a specialized structure, the 
formal "data cube" mentioned aboie, is used to hold the data, includ- 
ing its aggregates. Sonrelational operators may be implemented by the 
system to support OLAP queries on data  in this structure. 

20.4.3 Star Schemas 

A star schema consists of the schema for the fact table, lvhich links to  several 
other relations. called "dimension tables." The fact table is a t  tlie center of the 
..star." whose points are the dimension tables. A fact table normally has several 
attributes that represent dzmensrons. and one or more dependent a t t ~ i b u t e s  
that represent properties of interest for tlie point as a 11-hole. For instance. 
dimensions for sales data might include t!le date of the sale. the place (store) 
of the sale, the type of item sold, the method of payment (e.g.. cash or a credit 
card), and so on. The dependent attribute(s) might be the sales price, the cost 
of the item. or the tax, for instance. 

Example 20.13: The Sales relation froni Esample 20.12 
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Sales (se r ia lNo,  d a t e ,  d e a l e r ,  p r i c e )  

is a fact table. The dimensions are: 

1. ser ialNo,  representing the automobile sold, i.e., the position of the point 
in the space of possible automobiles. 

2. date ,  representing the day of the sale, i.e., the position of the event in 
the time dimension. 

3. d e a l e r ,  representing the position of the event in the space of possible 
dealers. 

The one dependent attribute is p r i c e ,  which is what OLAP queries to this 
database will typically request in an aggregation. Horvever, queries asking for 
a count, rather than sum or average price would also make sense, e.g., "list the 
total number of sales for each dealer in the month of May, 2001." O 

Supplementing the fact table are dimension tables describing the values 
along each dimension. Typically, each dimension attribute of the fact table 
is a foreign key, referencing the key of the corresponding dimension table. as 
suggested by Fig. 20.13. The attributes of the dimension tables also describe 
the possible groupings that would make sense in an SQL GROUP BY query. .In 
example should make the ideas clearer. 

Dimension Dimension 
table 

Dimension 
attributes 

Dimension 
table 

Dimension 
table 

Figure 20.13: The dimension attributes in the fact table reference the keys of 
the dimension tables 

Example 20.14: For the automobile data  of Example 20.12, trvo of the three 
dimension tables are obvious: 

Autos(ser ialNo,  model, co lor )  
Dealers(name, c i t y ,  s t a t e ,  phone) 

Attribute ser ialWo in the fact table 

S a l e s  ( se r ia lNo , d a t e ,  d e a l e r ,  p r i c e )  

is a foreign key, referencing ser ialNo of dimension table ~ u t o s . ~  The attributes 
Autos .model and Autos. c o l o r  give properties of a given auto. nie could hare 
added many more attributes in this relation. such as  boolean attributes indicat- 
ing whether the auto has an automat~c transnlission. If we join the fact table 
S a l e s  wit11 the dimension table Autos, then the attributes model and c o l o r  
may be used for grouping sales in interesting mays. For instance. ~ v e  can ask 
for a breakdown of sales by color, or a breakdown of sales of the Gobi model 
by month and dealer. 

Similarly, attribute d e a l e r  of S a l e s  is a foreigil key, referencing name of 
the dimension table Dealers. If S a l e s  and Dealers  are joined, then we have 
additional options for grouping our data; e.g., we can ask for a breakdown of 
sales by state or by city. as rvell as by dealer. 

One might wonder where the dimension table for time (the d a t e  attribute of 
S a l e s )  is. Since time is a physical property. it does not nlake sense to  store facts 
about time in a database. since TT-e cannot change the ansxter t o  questions such 
as ..in \\-hat year does the day July 3, 2000 appear?" :-ion-eler. since grouping 
by various time units. such as weeks, months. quarters. and years, is frequently 
desired by analysts. it helps to build into the database a notion of time, as if 
there \\-ere a tiiile dimension table such as 

Days(day, week, month, year)  

A typical tuple of this ..relation" would be 

representing July .5. 2000. The intcrpretatioll is that this day is the fifth da!- 
of the seventh month of the year 2000: it also happens to  fall in the 27th full 
nerk of the year 2000. There is a certain amount of redundancy. since the neck 
is calculable from the other three attributes. Hoxve~er. Tveeks are not exactly 
commensurate with months. so it-e cannot obtain a groupi~lg by months froin 
a grouping by rt-eeks. or vice versa. Thus, it makes sense to imagine that both 
weeks and months are represented in this '.dimension table." 

'It happens that serialNo is also a key for the  Sales relation, but there need not be an 
attribute that is both a key for the  fact table and a foreign key for some dimension table. 
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20.4.4 Slicing and Dicing 

L e  can think of the points of the raw-data cube as partitioned along each 
dimension at  some level of granularity. For example, in the time dimension, we 
might partition ("group by" in SQL terms) according to days, weeks, months, 
years, or not partition a t  all. For the cars dimension, we might partition by 
model, by color, by both model and color, or not partition. For dealers, we can 
partition by dealer, by city, by state, or not partition. 

Car 

A 
I 

dealer 

car 

t 
dealer 

date - 
Figure 20.14: Dicing the cube by partitioning along each dimension 

A choice of partition for each dimension "dices" the cube, as suggested by 
Fig. 20.14. The result is that the cube is divided into smaller cubes that repre- 
sent groups of points whose statistics are aggregated by a query that p e r f o ~ ~ n s  
the partitioning in its GROUP BY clause. Through the WHERE clause, a query aiso 
has the option of focusing on particular partitions along one or more dimensions 
(i.e., on a particular "slice" of the cube). 

E x a m p l e  20.15 : Figure 20.15 suggests a query in which we ask for a slice in 
one dimension (the date), and dice in two other dimensions (car and dealer). 
The date is divided into four groups, perhaps the four years over which data 
has bee11 accumulated. The shading in the diagram suggests that we are only 
interested in one of these years. 

The cars are partitioned into three groups, perhaps sedans, SUV's, and 
convertibles, while the dealers are partitioned into two groups, perhaps the 
eastern and western regions. The result of the query is a table giving the total 
sales in six categories for the one year of interest. 

The general form of a so-called "slicing and dicing" query is thus: 

SELECT grouping a t t r i b u t e s  and aggrega t ions  
FROM f a c t  t a b l e  joined with ze ro  o r  more dimension t a b l e s  
WHERE c e r t a i n  a t t r i b u t e s  are cons tan t  
GROUP BY grouping a t t r i b u t e s ;  

Example  20.16: Let us continue n-ith our automobile esample, but include 
the conceptual Days dimension table for time discussed in Example 20.14. If 

date --+ 

Figure 20.15: Sclecting a slice of a diced cube 

the Gobi isn't selling as well as we thought it would, we might try to  find out 
which colors are not doing well. This query uses only the Autos dimension table 
and c;in be w i t t e n  in SQL as: 

SELECT c o l o r ,  SUM(price) 
FROM S a l e s  NATURAL JOIN Autos 
WHERE model = 'Gobi' 
GROUP BY c o l o r ;  

This query dices by color and then slices by model. focusing on a particular 
model. the Gobi, and ignoring other data. 

Suppose the query doesn't tell us much: each color produces about the same 
revenue. Since the query does not partition on time, we only see thc total over 
all time for each color. lye might suppose that the recent trend is for one or 
more colors to  have ~veak sales. We may thus issue a revised query t,hat also 
partitions time by month. This query is: 

SELECT c o l o r ,  month, SUM(price) 
FROM (Sa les  NATURAL JOIN Autos) JOIN Days ON d a t e  = day 
7 ,T " nr?cRE ntodel = 'Gobi' 
GROUP BY c o l o r ,  month; 

It is important to  remember that the Days relation is not a con\-eiltional stored 
relation. although we may treat it as if it had tlie schema 

Days(day, week, month, year)  

Tlie til~ility to use such a ,.rrlatioll" is one m y  that a system specializ~d to 
0 L . V  queries could differ from a conventional DBlIS. 

m e  might discov(sr that red Gobis have not sold yell recently. The nest. 
question 11-e might ask is n-hether this problel~l exists a t  all dealers, or xhether 
0111)- some dealers have had lorn sales of red Gobis. Thus, Ive further focus tlie 
querJ- by lookillg at  only red Gobis. and n.e partition along the dealer dilnensioll 
as well. This query is: 
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SELECT dealer, month, SUM(price) 
FROM (Sales NATURAL JOIN Autos) JOIN Days ON date = day 
WHERE model = 'Gobi' AND color = 'red' 
GROUP BY month, dealer; 

At this point, we find that the sales per month for red Gobis are so sniall 
that we cannot observe any trends easily Thus. we decide that it was a mistake 
to  paitition by month. A better idea xvould be to  paltition only by ycals. and 
look at  only the last two years (2001 and 2002, in this hypothetical example). 
The final query is shown in Fig. 20.16. 
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SELECT dealer, year, SUM(price) 
FROM (Sales NATURAL JOIN Autos) JOIN Days ON date = day 
WHERE model = 'Gobi' AND 

color = 'red' AND 
(year = 2001 OR year = 2002) 

GROUP BY year, dealer; 

Figure 20.16: Final slicing-and-dicing query about red Gobi sales 

20.4.5 Exercises for Section 20.4 

* Exercise 20.4.1 : An on-line seller of computers wishes t o  nlaintain data about 
orders. Custon~ers can order their PC with any of sevcral processors. a selected 
amount of main memory, any of several disk units, aiid any of several CD 01 

DVD readers. The fact table for such a database inight be: 

Orders(cust, date, proc, memory, hd, rd, quant, price) 

We should understand at,tribute cust to be an ID that is the foreign kej- for 
a dimension table about customers, and understand attributes proc, hd (hard 
disk), and rd (removable disk:' CD or DVD, typically) similarly. For example. 
an hd ID  night be elaborated in a dinlension tablc giving rlle rnanufactnrer of 
the disk and several disk cliaracteristics. The memory artriljntc is silnply all 
intcgcr: thc nu1n1,rr of megabytes of mclnoi-y ordrrrd. The quant attl.il)utc ia 
the number of macliincs of this typc ordpred by this customer. :rnJ the price 
attribute is the total cost of eacli niachinc ordered. 

a) \Yllich are dinlension attributes. and which are dependent attributes'! 

b) For some of the dimension attributes, a dimension table is likely to  be 
needed. Suggest appropriate scl~emas for these dinlension tables. 

! Exercise 20.4.2 : Suppose that xve want t o  examine the data of Exercise 20.4.1 
to find trends and thus predict ivhich coniponents tlie con~pany sliould ordcr 
more of. Describe a series of drill-down and roll-up queries that could lead to 
the conclusion that customers are beginning to prefer a DVD drive to a CD 
drive. 

20.5 Data Cubes 

In this section. we shall consider tlic LLformal" data cube and special operations 
on data presented in this form. Recall from Section 20.4.2 that the formal data 
cube (just "data cube" in this section) precomputes all possible aggregates in 
a systematic \Yay. Surprisingly. the anlount of extra storage needed is often 
tolerable. and as long as the warehoused data  does not change, there is no 
penalty incurred trying to keep all the aggregates up-to-date. 

In the data  cube, it is normal for there to be some aggregation of the ra\v 
data  of the fact tablc before it is entered into the data-cube and its further 
aggregates computed. For instance, in our cars example, the dimension we 
thought of as a serial number in the star schema might be replaced by the 
nlodel of the car. Then. each point of the data cube becomes a description of a 
model. a dealer and a date. together n-ith the sum of the sales for that model. 
on that date. by that dealer. lte shall continue to call the points of the (formal) 
data cube a -fact table." even tliough the interpretation of tlie points may be 
 lightly different from fact tablcs in a star sclicnia built from a raw-data cube. 

20.5.1 The Cube Operator 

Given a fact table F. n-e can define an augmented table CLBE(F) that adds 
an additional value. denoted c,  to  each dimension. The * has the intuitive 
meaning "any." and it represents aggregation along the dimension in ~vliich 
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it appears. Figure 20.17 suggests the process of adding a border to the cube 
in each dimension, to  represent the * u l u e  and the aggregated values that 
it implies. In this figure u;e see three din~ensions. with the lightest shading 
representing aggregates in one dimension, darker shading for aggregates over 
two dimensions, and tlle darkest cube in the corner for aggregation over all 
three dimensions. Notice that if the number of values along each dirnension is 
reasonably large, but not so large that most poil~ts in tlle cube are unoccupied. 
then the "border" represents only a small addition to  the volume of the cube 
(i.e., the number of tuples in the fact table). In that case, the size of the stored 
data CCBE(F)  is not much greater than tlic size of F itself. 

Figure 20.17: The cube operator augments a data cube with a border of aggre- 
gations in all combinations of ctinien.ions 

A tuple of the table CLBE;(F) that has * in one or more dimensions TI-ill 
have for each dependent attribute the sum (or another aggregate f~~nc t ion)  of 
the values of that  attribute in all the tuples that xve can obtain by replacing 
the *'s by real values. In effect. we build into the data the result of aggregating 
along any set of dimensions. Sotice. holvever. that the C U B E  operator does 
not support <\ggregation a t  intermediate levels of granularity based on values in 
the dirnension tables For instance. n e  may either leave data broken dovi-11 by 
day (or whatever the finest granularity for time is). or xve may aggregate time 
completely, but \re cannot, with thc CCBE operator alone, aggregate by weeks. 
months. or years. 

Example 20.17 : Let us reconsider the -1ardvark database from Esarnple 20.12 
in the light of ~vhat  the C t - B E  oprr;i~or can givc us. Recall the fact table from 
that exiumplc, is 

Sa les (se r ia lN0,  d a t e ,  d e a l e r ,  p r i c e )  

Hoxvever, the dimension represented by se r ia lNo is not well suited for the cube. 
since the serial number is a key for Sa les .  Thus. sumning the price over all 
dates, or over all dealers, but keeping the serial ~ lumbrr  fixed has 110 effect: n-e 
n-ould still gct the "sum" for the one auto ~v i th  that serial number. .I Illole 

useful data cube would replace the serial number by the t x o  attributes - model 
and color - to  which the serial number connects S a l e s  via the dimension table 
Autos. Sotice that  if we replace se r ia lNo by model and co lor ,  then tile cube 
no longer has a key among its dimensions. Thus, an entry of the cube ~vould 
hare the total sales price for all automobiles of a given model. with a given 
color, by a given dealer, on a given date. 

There is another change that  is useful for the data-cube implementation 
of the S a l e s  fact table. Since the C U B E  operator normally sums dependent 
variables, and 13-e might want to  get average prices for sales in some category, 
n-e need both the sum of the prices for each category of automobiles (a given 
model of a given color sold on a given day by a given dealer) and the total 
number of sales in that category. Thus, the relation S a l e s  to  which we apply 
the C C B E  operator is 

Sales(mode1, c o l o r ,  d a t e ,  d e a l e r ,  v a l ,  c n t )  

The attribute v a l  is intended t o  be the total price of all automobiles for the 
given model, color. date. and dealer, while cn t  is the total number of automo- 
biles in that category. Xotice that in this data cube. individual cars are not 
identified: they only affect the value and count for their category. 

Son-. let us consider the relation c C ~ ~ ( S a 1 e s ) .  .-I hypothetical tuple that 
n-ould be in both S a l e s  and ti lo sales). is 

( 'Gobi ' ,  ' r e d ' ,  '2001-05-21', 'F r iend ly  F r e d ' ,  45000, 2) 

The interpretation is that on May 21; 2001. dealer Friendly Fled sold two red 
Gobis for a total of $45.000. The tuple 

( 'Gobi ' ,  * ,  '2001-05-21', 'F r iend ly  F r e d ' ,  152000, 7) 

says that on SIay 21, 2001. Friendly Fred sold seven Gobis of all colors, for 
a total price of S152.000. So te  that this tuple is in  sales) but not in 
Sales .  

Relation  sales) also contains tuples that represent the aggregation 
over more than one attribute. For instance. 

( 'Gobi ' ,  * ,  '2001-05-21', *, 2348000, 100) 

says rliat on \la!- 21. 2001. rllei-e n-ere 100 Gobis sold by all the dealers. and 
the total price of tliose Gobis Tvas S2.348.000. 

( 'Gobi ' ,  *, *, *, 1339800000, 58000) 

Says that over all time, dealers. and colors. 58.000 Gobis have been sold for a 
total price of S1.339.800.000. Lastly. the tuple 



tells us that total sales of all Aardvark lnodels in all colors, over all time at all 
dealers is 198.000 cars for a total price of $3,521,727,000. 

Consider how to answer a query in \\-hich we specify conditions on certain 
attributes of the Sa les  relation and group by some other attributes, n-hile 
asking for the sum, count, or average price. In the relation are r sales), we 
look for those tuples t with the fo1lov;ing properties: 

1. If the query specifies a value v for attribute a;  then tuple t has v in its 
component for a. 

2. If the query groups by an attribute a,  then t has any non-* value in its 
conlponent for a. 

3. If the query neither groups by attribute a nor specifies a value for a. then 
t has * in its component for a.  

Each tuple t has tlie sum and count for one of the desired groups. If n-e \%-ant 
the average price, a division is performed on the sum and count conlponents of 
each tuple t. 

E x a m p l e  20.18 : The query 

SELECT c o l o r ,  AVG(price) 
FROM Sales  
WHERE model = 'Gobi' 
GROUP BY co lor ;  

is ansn-ered by looking for all tuples of  sales) ~vi th  the form 

( 'Gobi ' ,  C .  *, *, 21, n)  

 here c is any specific color. In this tuple, v will be the sum of sales of Gobis 
in that color, while n will be the nlini!)cr of sales of Gobis in that color. Tlie 
average price. although not a n  attribute of S a l e s  or  sales) directly. is 
v / n .  Tlie answer to  the query is the set of (c ,  vln) pairs obtained fi-om all 
( 'Gobi' .  c ,  *, *. v. n )  tuples. 

20.5.2 Cube ImplementaOion by Materialized Views 

11% suggested in Fig. 20.17 that  adding aggregations to the cube doesn't cost 
much in tcrms of space. and saves a lot in time \vhen the common kincis of 
decision-support queries are asked. Ho~vever: our analysis is based on the as- 
sumption that queries choose either t o  aggregate completely in a dimension 
or not to aggregate a t  all. For some dime~isions. there are many degrees of 
granularity that could be chosen for a grouping on that dimension. 

U c  have already mentioned thc case of time. xvl-here numerolls options such 
as aggregation by weeks, months: quarters, or ycars exist,, in addition to the 

all-or-nothing choices of grouping by day or aggregating over all time. For 
another esanlple based on our running automobile database, Ive could choose 
to  aggregate dealers completely or not aggregate them a t  all. Hon-ever, we could 
also choose to  aggregate by city, by state, or perhaps by other regions, larger 
or smaller. Thus: there are a t  least s is  choices of grouping for time and at  least 
four for dealers. 

l\Tllen the number of choices for grouping along each dimension grows, it 
becomes increasingly expensive to  store the results of aggregating by every 
possible conlbination of groupings. S o t  only are there too many of them, but 
they are not as  easily organized as the structure of Fig. 20.17 suggests for tlle 
all-or-nothing case. Thus, commercial data-cube systems may help the user t o  
choose some n~aterialized views of the data cube. A materialized view is the 
result of some query, which we choose t o  store in the database, rather than 
reconstructing (parts of) it as needed in response t o  queries. For the data  cube, 
the vie~vs we n-ould choose to  materialize xi11 typically be aggregations of the 
full data cube. 

The coarser the partition implied by the grouping, the less space the mate- 
rialized view takes. On the other hand, if ire ~vant  to use a view to answer a 
certain query, then the view must not partition any dimension more coarsely 
than the query does. Thus, to maximize the utility of materialized views, we 
generally n-ant some large \-iers that group dimensions into a fairly fine parti- 
tion. In addition, the choice of vien-s to  materialize is heavily influenced by the 
kinds of queries that the analysts are likely to ask. .in example will suggest tlie 
tradeoffs in\-011-ed. 

INSERT INTO SalesVl 
SELECT model, c o l o r ,  month, c i t y ,  

SUM(va1) AS v a l ,  SUM(cnt) AS cn t  
FROM S a l e s  JOIN Dealers  ON d e a l e r  = name 
GROUP BY model, c o l o r ,  month, c i t y ;  

Figure 20.18: The materialized vien. SalesVl 

Example 20.19 : Let us return to  the data  cube 

S a l e s  (model, c o l o r ,  d a t e ,  d e a l e r ,  v a l  , c n t )  

that n e  de\-eloped in Esample 20.17. One possible materialized vie\\- groups 
dates by nionth and dealers by city. This view. 1%-hich 1%-e call SalesV1, is 
constlucted by the query in Fig. 20.18. This query is not strict SQL. since n-e 
imagine that dates and their grouping units such as months are understood 
by the data-cube system n-ithout being told to join S a l e s  with the imaginary 
relation rep~esenting da j s  that \ve discussed in Example 20.14. 
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INSERT INTO SalesV2 
SELECT model, week, s t a t e ,  

SUM(va1) AS v a l ,  SUM(cnt) AS cn t  
FROM S a l e s  JOIN Dealers  ON d e a l e r  = name 
GROUP BY model, week, s t a t e ;  

Figure 20.19: Another materialized view, SalesV2 

Another possible materialized view aggregates colors completely, aggregates 
time into u-eeks, and dealers by states. This view, SalesV2, is defined by the 
query in Fig. 20.19. Either view SalesVl or SalesV2 can be used to ansn-er a 
query that partitions no more finely than either in any dimension. Thus, the 
query 

41: SELECT model, SUM(va1) 
FROM S a l e s  
GROUP BY model; 

can be answered either by 

SELECT model, SUM(va1) 
FROM SalesVl 
GROUP BY model; 

SELECT model, SUM(va1) 
FROM SalesV2 
GROUP BY model; 

On the other hand, the query 

42: SELECT model, year ,  s t a t e ,  SUM(va1) 
FROM S a l e s  JOIN Dealers  ON d e a l e r  = name 
GROUP BY model, year ,  s t a t e ;  

can o n 1  be ans\vered from SalesV1. as 

SELECT model, year ,  s t a t e ,  SUM(va1) 
FROM SalesVl 
GROUP BY model, y e a r ,  s t a t e ;  

Incidentally. the query inmediately above. like the qu'rics that nggregate time 
units, is not strict SQL. That is. s t a t e  is not ari attribute of SalesVl: only 
c i t y  is. \Ye rmust assume that the data-cube systenl knol\-s how to perform the 

aggregation of cities into states, probably by accessing the dimension table for 
dealers. 

\Ye cannot answer Q2 from SalesV2. Although we could roll-up cities into 
states (i.e.. aggregate the cities into their states) to  use SalesV1, we carrrlot 
roll-up ~veeks into years, since years are not evenly divided into weeks. and 
data  from a week beginning. say, Dec. 29, 2001. contributes to  years 2001 and 
2002 in a way we carinot tell from the data  aggregated by weeks. 

Finally, a query like 

43: SELECT model, c o l o r ,  d a t e ,  ~ ~ ~ ( v a l )  
FROM S a l e s  
GROUP BY model, c o l o r ,  d a t e ;  

can be  anslvered from neither SalesVl nor SalesV2. It  cannot be answered 
from S a l e s v l  because its partition of days by ~nonths is too coarse to  recover 
sales by day, and it cannot be ans~vered from SalesV2 because that  view does 
not group by color. We would have to answer this query directly from the full 
data  cube. 

20.5.3 The Lattice of Views 

To formalize the cbservations of Example 20.10. it he!ps to think of a lattice of 
possibl~ groupings for each dimension of the cube. The points of the lattice are 
the ways that we can partition the ~ a l u c s  of a dimension by grouping according 
t o  one or more attributes of its dimension table. nB say that partition PI is 
belo~v partition P2. written PI 5 P2 if and only if each group of Pl is contained 
within some group of PZ. 

All 

Years / 1 
I Quarters 

I 
Weeks Months 

Days 

Figure 20.20: A lattice of partitions for time inter\-als 

Example 20.20: For the lattice of time partitions n-e might choose the dia- 
gram of Fig. 20.20. -4 path from some node fi  dotvn to PI means that PI 5 4. 
These are not the only possible units of time, but they \\-ill serve as an example 



of what units a s ~ s t e r n  might support. Sotice that daks lie below both \reeks 
and months, but weeks do not lie below months. The reason is that while a 
group of events that took place in one day surely took place within one \reek 
and within one month. it is not true that a group of events taking place in one 
week necessarily took place in any one month. Similarly, a week's group need 
not be contained within the group cor~esponding to one quarter or to  one year. 
At tlie top is a partition we call "all," meaning that events are grouped into a 
single group; i.e.. we niake no distinctions among diffeient times. 

All 

I 
State 

I 
City 

I 
Dealer 

Figure 20.21: A lattice of partitions for automobile dealers 

Figure 20.21 shows another lattice, this time for the dealer dimension of our 
automobiles example. This lattice is siniplcr: it shows that partitioning sales by 
dealer gives a finer partition than partitioning by the city of the dealer. i<-hich is 
in turn finer than partitioning by tlie state of tlie dealer. The top of tlle ldrtice 
is the partition that places all dealers in one group. 

Having a lattice for each dimension, 15-12 can now define a lattice for all the 
possible materialized views of a data cube that can be formed by grouping 
according to some partition in each dimension. If 15 and 1% are two views 
formed by choosing a partition (grouping) for each dimension, then 1; 5 1 1  
means that in each dimension, the partition Pl that ~ v e  use in 1; is a t  least as 
fine as the partition Pl that n.e use for that dimension in T i ;  that is. Pl 5 P? 

Man) OLAP queries can also be placed in the lattice of views In fact. fie- 
quently an OLAP query has the same form as the views we have described: the 
query specifies some pa~titioning (possibly none or all) for each of the dimen- 
sions. Other OL.iP queiics involve tliis same soit of grouping, and then "slice 
tlie cube to focus 011 a subset of the data. as nas  suggested by the diag~ani in 
Fig. 20.15. The general rule is. 

I \ c  can ansn-er a quciy Q using view 1-  if and o~ily if 1-  5 Q. 

Example 20.21 : Figure 20.22 takes the vielvs and queries of Example 20.19 
and places them in a lattice. Sotice that the S a l e s  data cube itself is technically 
a view. corresponding to tlie finest possible partition along each climensio~l. As 
we observed in the original example, Q I  can be ans~vered from either SalesVl or 

Sa les  

Figure 20.22: The lattice of views and queries from Example 20.19 

SalesV2; of course it could also be answered froni the full data  cube S a l e s ,  but 
there is no reason to want to  do so if one of the other views is materialized. Q2 
can be answered from either SalesVl or Sa les ,  while Q3 can only be answered 
from Sa les .  Each of these relationships is expressed in Fig. 20.22 by the paths 
downxard from the queries to  their supporting vie~vs. 

Placing queries in the lattice of views helps design data-cube databases. 
Some recently developed design tools for data-cube systems start with a set of 
queries that they regard as ..typical" of the application a t  hand. They then 
select a set of views to materialize so that each of these queries is above a t  least 
one of the riel\-s, preferably identical to it or very close (i.e., the query and the 
view use the same grouping in most of the dimensions). 

20.5.4 Exercises for Section 20.5 

Exercise 20.5.1 : IVhat is the ratio of the size of CCBE(F) to the size of F if 
fact table F has the follorving characteristics? 

* a) F has ten dimension attributes, each with ten different values. 

b) F has ten dimension attributes. each with two differcnt values. 

Exercise 20.5.2: Let us use the cube ~nBE(Sa1es)  from Example 20.17, 
~vhich was built from the relation 

S a l e s  (model, c o l o r ,  d a t e ,  d e a l e r ,  v a l ,  c n t )  

Tcll I\-hat tuples of the cube n-e 15-ould use to answer tlle follon-ing queries: 

* a)  Find the total sales of I~lue cars for each dealer. 

b) Find the total nurnber of green Gobis sold by dealer .'Smilin' Sally." 

c) Find the average number of Gobis sold on each day of March, 2002 by 
each dealer. 
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*! Exercise 20.5.3: In Exercise 20.4.1 lve spoke of PC-order data organized as 
a cube. If we are to apply the CCBE operator, we might find it convenient to  
break several dimensions more finely. For example, instead of one processor 
dimension, we might have one dimension for the type (e.g., AlID Duron or 
Pentium-IV), and another d~mension for the speed. Suggest a set of dimrnsions 
and dependent attributes that will allow us to obtain answers to a variety of 
useful aggregation queries. In particular, what role does the customer play? 
.Also, the price in Exercise 20.4.1 referred to  the price of one macll~ne, while 
several identical machines could be ordered in a single tuple. What should the 
dependent attribute(s) be? 

Exercise 20.5.4 : What tuples of the cube from Exercise 20.5.3 would you use 
to answer the following queries? 

a) Find, for each processor speed, the total number of computers ordered in 
each month of the year 2002. 

b) List for each type of hard disk (e.g., SCSI or IDE) and eacli processor 
type the number of computers ordered. 

c) Find the average price of computers with 1500 megahertz processors for 
each month from Jan., 2001. 

! Exercise 20.5.5 : The computers described in the cube of Exercise 20.5.3 do 
not include monitors. IVhat dimensions would you suggest to represent moni- 
tors? You may assume that the price of the monitor is included in the price of 
the computer. 

Exercise 20.5.6 : Suppose that  a cube has 10 dimensions. and eacli dimension 
has 5 options for granularity of aggregation. including "no aggregation" and 
"aggregate fully.'' How many different views can we construct by clioosing a 
granularity in each dinlension? 

Exercise 20.5.7 : Show how t o  add the following time units to  the lattice of 
Fig. 20.20: hours, minutes, seconds, fortnights (two-week periods). decades. 
and centuries. 

Exercise 20.5.8: How 15-onld you change the dealer lattice of Fig. 20.21 to 
include -regions." ~ f :  

a )  A region is a set of states. 

* b) Regions are not com~liensurate with states. but each city is in only one 
region. 

c) Regions are like area codes: each region is contained \vithin a state. some 
cities are in two or more regions. and some regions h a ~ e  several cities. 

20.6. DATA -111-YIA-G 1089 

! Exercise 20.5.9: In Exercise 20.5.3 n e  designed a cube suitable for use ~v i th  
the CCBE operator. Horn-ever. some of the dimensions could also be  given a non- 
trivial lattice structure. In particular, the processor type could be  organized by 
manufacturer (e g., SUT, Intel. .AND. llotorola). series (e.g.. SUN Ult~aSparc. 
Intel Pentium or Celeron. AlID rlthlon, or llotorola G-series), and model (e.g., 
Pentiuni-I\- or G4). 

a) Design tlie lattice of processor types following the examples described 
above. 

b) Define a view that groups processors by series, hard disks by type, and 
removable disks by speed, aggregating everything else. 

c) Define a view that groups processors by manufacturer, hard disks by 
speed. and aggregates everything else except memory size. 

d) Give esamples of qneries that can be ansn-ered from the view of (11) only, 
the vieiv of (c) only, both, and neither. 

*!! Exercise 20.5.10: If the fact table F to n-hicli n-e apply the CuBE operator is 
sparse (i.e.. there are inany fen-er tuples in F than the product of the number 
of possihle values along each dimension), then tlie ratio of the sizes of CCBE(F) 
and F can be very large. Hon large can it be? 

20.6 Data Mining 

A family of database applications cal!ed data rnin,ing or knowledge discovery in 
dntnbases has captured considerable interest because of opportunities to learn 
surprising facts fro111 esisting databases. Data-mining queries can be thought 
of as an estended form of decision-support querx, although the distinction is in- 
formal (see the box on -Data-llining Queries and Decision-Support Queries"). 
Data nli11i11:. stresses both the cpcry-optimization and data-management com- 
ponents of a traditional database system, as 1%-ell as  suggesting some important 
estensions to database languages, such as language primitix-es that support effi- 
cient sampling of data. In this section, we shall esamine the principal directions 
data-mining applications have taken. Me then focus on tlie problem called "fre- 
quc'iit iteinsets." n-hich has 1-eceiwd the most attention from the database point 
of view. 

20.6.1 Data-Iblining Applications 

Broadly. data-mining queries ask for a useful summary of data, often ~vithout 
suggcstir~g the values of para~netcrs that would best yield such a summary. 
This family of problems thus requires rethinking the nay  database systems are 
to be used to provide snch insights abo~i t  the data. Below are some of tlie 
applications and problems that are being addressed using very large amounts 
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(stop words) such as  .'and" or 'The." which tend to be present in all docu- 
ments and tell us nothing about the content A document is placed in this 
space according t o  the  fraction of its word occurrences that are any particular 
word. For instance, if the document has 1000 word occurrences, two of which 
are "database." then the doculllent ~vould be placed a t  the ,002 coordinate in 
the dimension cor~esponding to "database." By clustering documents in this 
space, we tend t o  get groups of documents that talk about the same thing. 
For instance, documents that talk about databases might have occurrences of 
words like "data," "query," "lock," and so on, while documents about baseball 
are unlikely to have occurrences of these rvords. 

The data-mining problem here is to  take the data  and select the "means" 
or centers of the clusters. Often the number of clusters is given in advance. 
although that  number niay be selectable by the data-mining process as ti-ell. 
Either way, a naive algorithm for choosing the centers so that the average 
distance from a point to  its nearest center is minimized involves many queries; 
each of which does a complex aggregation. 

20.6.2 Finding Frequent Sets of Items 

Now. we shall see a data-mining problem for which algorithms using secondary 
storage effectively have been developed. The problem is most easily described 
in terms of its principal application: the analysis of market-basket data. Stores 
today often hold in a data  warehouse a record of what customers have bought 
together. That  is, a customer approaches the checkout with a .'market basket" 
full of the items he or she has selected. The cash register records all of these 
items as part of a single transaction. Thus, even if lve don't know anything 
about the customer, and we can't tell if the customer returns and buys addi- 
tional items. we do know certain items that a single customer bu-s  together. 

If items appear together in market baskets more often than ~vould be es- 
pected, then the store has an opportunity to learn something about how cus- 
tomers are likely to traverse the store. The items can be placed in the store so 
that customers will tend to take certain paths through the store, and attractive 
items can be placed along these paths. 

Example 20.22 : .A famous example. which has been clainied by several peo- 
ple; is the discovery that people rvho buy diapcrs are unusually likely also to 
buy beer. Theories have been advanced foi n.hy that relationship is true. in- 
cluding tile possibility that peoplc n-110 buy diapers. having a baby at  home. ale 
less likely to  go out to  a bar in the evening and therefore tcnd to drink beer at 
home. Stores may use the fact that inany customers 15-ill walk through the store 
from where the diapers are to where the beer is. or vice versa. Clever maiketers 
place beer and diapers near each other, rvitli potato chips in the middle. The 
claim is that sales of all three items then increase. 

We can represent market-basket data  by a fact table: 

Baskets (basket, item) 

where the first attribute is a .'basket ID," o r  unique identifier for a market 
basket, and the secoild attribute is the ID of some item found in that  basket. 
So te  that it is not essential for the relation t o  come from true ma~ket-basket 
data; it could be any relation from which we x a n t  t o  find associated items. For 
~nstance, the '.baskets" could be documents and the "items" could be words, 
in which case n e  are really looking for words that  appear in many documents 
together. 

The simplest form of market-basket analysis searches for sets of items that 
frequently appear together in market baskets. The support for a set of items is 
the number of baskets in which all those items appear. The problem of finding 
frequent sets of ~ t e m s  is to find, given a support threshold s,  all those sets of 
items that have support a t  least s .  

If the number of items in the database is large, then even if we restrict our 
attention to small sets, say pairs of items only, the time needed to count the 
support for all pairs of items is enormous. Thus, the straightforward way to 
solve even the frequent pairs problem - compute the support for each pair of 
items z and j, as suggested by the SQL query in Fig. 20.24 - ~vill not work 
This query involves joining Baskets r ~ i t h  itself, grouping the resulting tuples 
by the tri-o l t e~ns  found 111 that tuple, and throwing anay groups where the 
number of baskets is belon- the support threshold s Sote that  the condition 
I. item < J. item in the WHERE-clause is there to  prevent the same pair from 
being considered in both orders. or for a .'pair" consisting of the same item 
twice from being considered at all. 

SELECT I.itern, J.item, COUNT(I.basket) 
FROM Baskets I, Baskets J 
WHERE 1.basket = J.basket AND 

I.item < J.item 
GROUP BY I.item, J.item 
HAVING COUNT(I.basket) >= s; 

Figure 20.24: Saive way to find all high-support pairs of items 

20.6.3 The A-Priori Algorithm 

There is an optimization that greatly reduccs the running time of a qutry like 
Fig. 20.21 \\-hen the support threshold is sufficiently large that few pairs meet 
it. It  is ieaso~iable to set the threshold high, because a list of thousands or 
millions of pairs would not be very useful anyxay; ri-e xi-ant the data-mining 
query to focus our attention on a sn~al l  number of the best candidates. The 
a-przorz algorithm is based on the folloiving observation: 
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Association Rules 

A more complex type of market-basket mining searches for associatzon 
~ x l e s  of the form {il,  22, . . . , i n )  3 j. TKO possible properties that \ve 
might want in useful rules of this form are: 

1. Confidence: the probability of finding item j in a basket that has 
all of {il , i2..  . . , in )  is above a certain threshold. e.g., 50%; e.g.. "at 
least 50% of the people who buy diapers buy beer." 

2. Interest: the probability of finding item j in a basket that has all 
of {il ,  i2,. . . , in}  is significantly higher or lower than the probability 
of finding j in a random basket. In statistical terms, j correlates 
with {il ,  i z ,  . . . , i,,), either positively or negatively. The discovery in 
Example 20.22 was really that  the rule {diapers) + beer has high 
interest. 

Sote  that el-en if a n  association rule has high confidence or interest. it n-ill 
tend not to be useful unless the set of items inrrolved has high support. 
The reason is that  if the support is low, then the number of instances of 
the rule is not large, which limits the benefit of a strategy that exploits 
the rule. 

If a set of items S has support s. then each subset of A' must also have 
support a t  least s. 

In particular, if a pair of items. say {i. j )  appears in, say, 1000 baskets. then 
we know there are a t  least 1000 baskets with item i and we know there are at 
least 1000 baskets xvith item j. 

The converse of the above rule is that  if we are looking for pairs of items 
~vi th  support a t  least s. we may first eliminate from consideration any item that 
does not by itself appear in a t  least s baskets. The a-priorz algorltl~m ans11-ers 
the same query as Fig. 20.24 by: 

1. First finding the srt of candidate nte~ns - those that appear in a sufficient 
number of baskets by thexnsel~es - and then 

2. Running the query of Fig. 20.24 on only the candidate items. 

The a-priori algorithnl is thus summarized by the sequence of two SQL queries 
in Fig. 20.25. It first computes Candidates. the subset of the Baskets relation 
i~hose  iter~ls ha\-c high support by theniselves. then joins Candidates ~vith itself. 
as in the naive algorithm of Fig. 20.24. 

INSERT INTO Candidates 
SELECT * 
FROM Baskets 
WHERE item IN ( 

SELECT item 
FROM Baskets 
GROUP BY item 
HAVING COUNT(*) >= s 

>; 

SELECT I.item, J.item, ~ ~ ~ N ~ ( ~ . b a s k e t )  
FROM Candidates I, Candidates J 
WHERE 1.basket = J.basket AND 

I.item < J.item 
GROUP BY I.item, J.item 
HAVING COUNT(*) >= s; 

Figure 20.25: Tlie a-priori algorithm first finds frequent items before finding 
frequent pairs 

E x a m p l e  20.23 : To get a feel for how the a-priori algorithm helps, consider a 
supermarket that sells 10,000 different items. Suppose that  the average market- 
basket has 20 items in it. Also assume that the database keeps 1,000,000 baskets 
as data (a  small number compared with what would be stored in practice). 
Then the Baskets relation has 20,000,000 tuples, and the join in Fig. 20.24 
(the naive algorithm) has 190,000,000 pairs. This figure represents one million 
baskets times ( y )  which is 190: pairs of items. These 190,000,000 tuples must 
all be grouped and counted. 

However, suppose that s is 10,000, i.e., 1% of the baskets. It is impossi- 
ble that Inore than 20.000,000/10,000 = 2000 items appear in a t  least 10,000 
baskets. because there are only 20,000.000 tuples in Baskets, and any item ap- 
pearing in 10.000 baskets appears in at  least 10,000 of those tuples. Thus: if we 
use the a-priori algoritllrn of Fig. 20.25, the subquery that  finds the candidate 
i te~ns cannot produce more than 2000 items. and I\-ill probably produce many 
fewer than 2000. 

\\'e cannot he sure ho~v large Candidates is. since in the norst case all the 
items that appear in Baskets will appear in at  least 1% of them. Honever. in 
practice Candidates will be considerably smaller than Baskets. if the threshold 
s is high. For sake of argument, suppose Candidates has on the average 10 
itelns per basket: i.e., it is half the size of Baskets. Then the join of Candidates 
with itself in step (2) has 1,000,000 times ( y )  = 45,000,000 tuples, less than 
11-1 of the number of tuples in the join of Baskets ~ - i t h  itself. \Ye ~vould 
thtis expect the a-priori algorithm to run in about 111 the time of the naive 
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algorithm. In common situations, where Cand ida tes  has much less than half 
tlie tuples of Baske t s ,  the improvement is even greater, since running time 
shrinks quadratically with the reduction in the number of tuples involved in 
the join. 

20.6.4 Exercises for Section 20.6 

Exercise 20.6.1: Suppose we are given the eight "market baskets" of Fig. 
20.26. 

B1 = {milk, coke, beer) 
BP = {milk, pepsi, juice) 
B3 = {milk, beer) 
B4 = {coke, juice) 
Bg = {milk, pepsi, beer) 
B6 = {milk, beer, juice, pepsi) 
B7 = {coke, beer, juice) 
B8 = {beer, pepsi) 

Figure 20.26: Example market-basket data 

* a) As a percentage of the baskets, what is the support of the set {beer, juice)? 

b) What is the support of the set {coke, pepsi)? 

* c) What is the  confidence of milk given beer (i.e., of the association rule 
{beer) + milk)? 

d) What is the confidence of juice given milk? 

e) What is the confidence of coke, given beer and juice? 

* f )  If the support threshold is 35% (i.e., 3 out of the eight baskets are needed), 
which pairs of items are frequent? 

g) If the support threshold is 50%, which pairs of items are frequent? 

! Exercise 20.6.2 : The a-priori algorithm also may be used to find frequent sets 
of more than ttvo items. Recall that a set S of k items cannot have support at 
least s t~nless every proper subset of S has support a t  least s. In particular. 
the subsets of X that  are of size k - 1 must all have support a t  least s. Thus. 
having found the frequent itemsets (those with support a t  least s) of size k - 1. 
we can define the candidate sets of size k to be those sets of k items, all of nhose 
subsets of size k - 1 have support a t  least s. Write SQL queries that, given the 
frequent itemsets of size k - 1 first compute the candidate sets of size k ,  and 
then compute the  frequent sets of size k. 
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Exercise 20.6.3: Using the baskets of Exercise 20.6.1, answer the following: 

a) If the support threshold is 35%, what is the set of candidate triples? 

b) If the support threshold is 35%, what sets of triples are frequent? 

20.7 Summary of Chapter 20 

+ Integration of Information: Frequently, there exist a variety of databases 
or other information sources that contain related information. nTe have 
the opportunity to  combine these sources into one. Ho~vever, hetero- 
geneities in the schemas often exist; these incompatibilities include dif- 
fering types, codes or conventions for values, interpretations of concepts, 
and different sets of concepts represented in different schernas. 

+ Approaches to Information Integration: Early approaches involved "fed- 
eration," where each database would query the  others in the terms under- 
stood by the second. Nore recent approaches involve ~varehousing, where 
data  is translated to a global schema and copied to the warehouse. An 
alternative is mediation, where a virtual warehouse is created to allolv 
queries to a global schema; the queries are then translated to the terms 
of the data sources. 

+ Extractors and Wrappers: Warehousing and mediation require compo- 
nents a t  each source, called extractors and wrappers, respectively. X ma- 
jor function is to  translate querics and results betneen the global schema 
and the local schema a t  the source. 

+ Wrapper Generators: One approach to designing wrappers is t o  use tem- 
plates, which describe how a query of a specific form is translated from the 
global schema to the local schema. These templates are tabulated and in- 
terpreted by a driver that tries to  match queries t o  templates. The driver 
may also have the ability to  combine templates in various ways, and/or 
perform additional ~vork such as  filtering. to  answer more con~plex queries. 

+ Capability-Based Optimtzation: The sources for a mediator often are able 
or ~villing to  answer only limited forms of queries. Thus. the mediator 
must select a query plan based on the capabilities of its sources, before it 
can el-en think about optiniizing the cost of query plans as  con\-entional 
DBAIS's do. 

+ OLAP: An important application of data I<-arehouses is the ability t o  ask 
complex queries that touch all or much of the data. a t  the same t i ~ n e  that 
transaction processing is conducted at the data  sources. These queries, 
which usually involve aggregation of data. are termed on-line analytic 
processing, or OLAP; queries. 
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+ ROLAP and AIOLAP: It  is frequently useful when building a warehouse 
for OLAP, to think of the data  as  residing in a multidimensional space. 
with diniensions corresponding t o  independent aspects of the data repre- 
sented. Systems that  support such a vie~v of data take either a relational 
point of view (ROLAP, or relational OLAP systems), or use the special- 
ized data-cube model (lIOL.AP, or multidimensional OLAP systems). 

+ Star Schernas: In a star schema, each data element (e.g., a sale of an item) 
is represented in one relation, called tlie fact table, while inforniation 
helping to interpret the values along each dimension (e.g.. what kind of 
product is iten1 1234?) is stored in a diinension table for each diinension. 

+ The Cube Operator: A specialized operator called CCBE pre-aggregates 
the fact table along all subsets of dimensions. It may add little to the space 
needed by the fact table, and greatly increases the speed with which many 
OLAP queries can be answered. 

+ Dzmenszon Lattices and Alaterialized Vzews: A more polverful approach 
than the CLBE operator, used by some data-cube implementations. is to 
establish a lattice of granularities for aggregation along each dimension 
(e.g., different time units like days, months, and years). The ~vareliouse 
is then designed by materializing certain v iew that aggregate in different 
\va!.s along the different dimensions, and the rien- with the closest fit is 
used t o  answer a given query. 

+ Data Mining: IVareliouses are also used to ask broad questions that in- 
volve not only aggregating on command. as in OL.1P queries, but search- 
ing for the "right" aggregation. Common types of data mining include 
clustering data  into similar groups. designing decision trees to  predict one 
attribute based on the value of others. and finding sets of items that occur 
together frequently. 

+ The A-Priori Algorithm: -An efficiellt \\-a?; to  find frequent itemsets is to  
use the a-priori algorithm. This technique exploits the fact that if a set 
occurs frequently. then so do all of its subsets. 
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